A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems

A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems. A classical hyper-heuristic framework consists of two levels, including the high-level heuristic and a set of low-level heuristics. The low-level heuristics to be used in th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex System Modeling and Simulation Ročník 1; číslo 2; s. 91 - 108
Hlavní autoři: Zhao, Fuqing, Di, Shilu, Cao, Jie, Tang, Jianxin, Jonrinaldi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tsinghua University Press 01.06.2021
Témata:
ISSN:2096-9929, 2096-9929
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems. A classical hyper-heuristic framework consists of two levels, including the high-level heuristic and a set of low-level heuristics. The low-level heuristics to be used in the optimization process are chosen by the high-level tactics in the hyper-heuristic. In this study, a Cooperative Multi-Stage Hyper-Heuristic (CMS-HH) algorithm is proposed to address certain combinatorial optimization problems. In the CMS-HH, a genetic algorithm is introduced to perturb the initial solution to increase the diversity of the solution. In the search phase, an online learning mechanism based on the multi-armed bandits and relay hybridization technology are proposed to improve the quality of the solution. In addition, a multi-point search is introduced to cooperatively search with a single-point search when the state of the solution does not change in continuous time. The performance of the CMS-HH algorithm is assessed in six specific combinatorial optimization problems, including Boolean satisfiability problems, one-dimensional packing problems, permutation flow-shop scheduling problems, personnel scheduling problems, traveling salesman problems, and vehicle routing problems. The experimental results demonstrate the efficiency and significance of the proposed CMS-HH algorithm.
AbstractList A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems. A classical hyper-heuristic framework consists of two levels, including the high-level heuristic and a set of low-level heuristics. The low-level heuristics to be used in the optimization process are chosen by the high-level tactics in the hyper-heuristic. In this study, a Cooperative Multi-Stage Hyper-Heuristic (CMS-HH) algorithm is proposed to address certain combinatorial optimization problems. In the CMS-HH, a genetic algorithm is introduced to perturb the initial solution to increase the diversity of the solution. In the search phase, an online learning mechanism based on the multi-armed bandits and relay hybridization technology are proposed to improve the quality of the solution. In addition, a multi-point search is introduced to cooperatively search with a single-point search when the state of the solution does not change in continuous time. The performance of the CMS-HH algorithm is assessed in six specific combinatorial optimization problems, including Boolean satisfiability problems, one-dimensional packing problems, permutation flow-shop scheduling problems, personnel scheduling problems, traveling salesman problems, and vehicle routing problems. The experimental results demonstrate the efficiency and significance of the proposed CMS-HH algorithm.
Author Zhao, Fuqing
Cao, Jie
Jonrinaldi
Tang, Jianxin
Di, Shilu
Author_xml – sequence: 1
  givenname: Fuqing
  surname: Zhao
  fullname: Zhao, Fuqing
– sequence: 2
  givenname: Shilu
  surname: Di
  fullname: Di, Shilu
– sequence: 3
  givenname: Jie
  surname: Cao
  fullname: Cao, Jie
– sequence: 4
  givenname: Jianxin
  surname: Tang
  fullname: Tang, Jianxin
– sequence: 5
  surname: Jonrinaldi
  fullname: Jonrinaldi
BookMark eNp1UF1rwjAUDcPBnPN5r_0D1TRp0-ZRZJuCzoHzOeTjRjLaRtIquF-_VjcYgz3dew_nHM4992hQ-xoQekzwhFCe8Ol8u95OCCbJBOME36AhwZzFnBM--LXfoXHTOIUzUmQZo2yIdrPo1Z-gjObeHyDI1p0gWh_L1sXbVu4hWpw7OF7AMbimdTqyPnTcSrm64_o62hxaV7nP6_EWvCqhah7QrZVlA-PvOUK756f3-SJebV6W89kq1jQt2lhhnCsJmBkLIBVPlbGpYQC0UIxIqnHGjWEFUMi14bmlWBcUy1wxarTWdISWV1_j5Yc4BFfJcBZeOnEBfNgLGbrUJQgGaZrQLMeUJKkktihSnSvNbJ5xZqH3yq5eOvimCWCFdu3lrTZIV4oEi0vVoq9a9FWLvupON_2j-8nxn-ILkEiEOQ
CitedBy_id crossref_primary_10_2174_1574893617666220920102401
crossref_primary_10_1016_j_eswa_2022_119192
crossref_primary_10_1007_s10586_024_04587_0
crossref_primary_10_26599_TST_2023_9010076
crossref_primary_10_3390_electronics11071080
crossref_primary_10_1016_j_energy_2023_127000
crossref_primary_10_1109_TCC_2022_3216541
crossref_primary_10_1016_j_bspc_2022_104511
crossref_primary_10_3233_JCM_230019
crossref_primary_10_1016_j_compbiomed_2023_107769
crossref_primary_10_1007_s10586_024_04982_7
crossref_primary_10_1016_j_compbiomed_2023_106950
crossref_primary_10_1016_j_ins_2022_11_008
crossref_primary_10_3390_app132111896
crossref_primary_10_1093_jcde_qwac112
crossref_primary_10_1093_jcde_qwad006
crossref_primary_10_1093_jcde_qwac038
crossref_primary_10_1007_s42235_022_00292_z
crossref_primary_10_1007_s42947_023_00349_0
crossref_primary_10_3390_a18050294
crossref_primary_10_3390_biomimetics9090516
crossref_primary_10_1155_2022_8011003
crossref_primary_10_32604_cmes_2023_024247
crossref_primary_10_1016_j_compbiomed_2022_105618
crossref_primary_10_1016_j_cie_2021_107778
crossref_primary_10_1016_j_enconman_2022_116246
crossref_primary_10_3390_app12146907
crossref_primary_10_1109_TII_2022_3192881
crossref_primary_10_1016_j_solener_2022_06_046
crossref_primary_10_1016_j_swevo_2024_101669
crossref_primary_10_3390_electronics11020209
crossref_primary_10_7717_peerj_cs_1501
crossref_primary_10_1109_ACCESS_2024_3369039
crossref_primary_10_1007_s42235_022_00262_5
crossref_primary_10_32604_cmes_2022_020263
crossref_primary_10_3390_sym14020331
crossref_primary_10_1016_j_swevo_2022_101148
crossref_primary_10_1007_s13042_022_01647_y
crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_1007_s42235_022_00304_y
crossref_primary_10_1007_s42235_022_00228_7
crossref_primary_10_1016_j_bspc_2023_105147
crossref_primary_10_1002_ese3_1273
crossref_primary_10_1016_j_bspc_2022_104373
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_26599_TST_2023_9010015
crossref_primary_10_32604_ee_2023_027537
crossref_primary_10_1007_s12652_022_03766_4
crossref_primary_10_1016_j_eswa_2023_119657
crossref_primary_10_3390_app14199133
crossref_primary_10_1016_j_neucom_2023_126467
crossref_primary_10_1016_j_compbiomed_2022_105563
crossref_primary_10_1049_ell2_12603
crossref_primary_10_1155_2022_6215574
crossref_primary_10_1016_j_asoc_2023_110815
crossref_primary_10_3390_math10122117
crossref_primary_10_1007_s10586_025_05228_w
crossref_primary_10_1007_s11227_024_06498_8
crossref_primary_10_1007_s42235_022_00295_w
crossref_primary_10_3390_app12094776
crossref_primary_10_3233_JIFS_221994
crossref_primary_10_1093_jcde_qwac085
crossref_primary_10_1007_s11227_024_05909_0
crossref_primary_10_1016_j_eswa_2022_119041
crossref_primary_10_1002_cpe_7479
crossref_primary_10_1145_3701236
crossref_primary_10_1016_j_swevo_2022_101172
crossref_primary_10_1007_s10462_022_10370_7
crossref_primary_10_26599_TST_2023_9010069
crossref_primary_10_1016_j_compbiomed_2022_105356
crossref_primary_10_1016_j_compbiomed_2022_105752
crossref_primary_10_1109_ACCESS_2022_3156008
crossref_primary_10_1016_j_bspc_2022_104139
crossref_primary_10_1002_er_8011
crossref_primary_10_1007_s10462_024_10919_8
crossref_primary_10_1016_j_neunet_2025_107554
crossref_primary_10_3390_math10214162
crossref_primary_10_1007_s10489_022_03964_9
crossref_primary_10_32604_cmes_2025_060481
crossref_primary_10_3389_fninf_2022_956423
Cites_doi 10.1016/j.asoc.2020.106760
10.1016/j.knosys.2019.104982
10.1016/j.ejor.2019.07.073
10.3390/math8101702
10.1016/j.swevo.2020.100716
10.1109/TFUZZ.2020.2986673
10.1016/j.eswa.2020.113853
10.1016/j.swevo.2019.05.007
10.1016/j.jclepro.2020.123932
10.1016/j.ejor.2020.08.028
10.1016/j.knosys.2019.104901
10.1016/j.asoc.2020.106520
10.1016/j.eswa.2019.113166
10.1016/j.amc.2016.03.035
10.1016/j.eswa.2020.113678
10.1016/j.jclepro.2019.119464
10.1016/j.ejor.2015.09.003
10.1016/j.swevo.2017.04.007
10.1109/TCYB.2020.3015756
10.1016/j.swevo.2020.100647
10.1109/TEVC.2019.2906581
10.1016/j.artint.2020.103354
10.1016/j.ejor.2020.09.022
10.1016/j.ins.2019.07.073
10.1016/j.ejor.2020.07.038
10.1016/j.knosys.2020.106264
10.1109/TEVC.2014.2319051
10.1016/j.asoc.2019.105565
10.1016/j.swevo.2020.100742
10.1162/evco_a_00277
10.1016/j.eswa.2018.06.020
10.1016/j.ejor.2018.10.022
10.1016/j.ins.2020.08.040
10.1016/j.eswa.2020.113959
10.1109/TCYB.2021.3051242
10.1016/j.swevo.2017.12.005
10.1016/j.swevo.2019.04.002
10.1016/j.eswa.2019.113147
10.1016/j.ejor.2020.03.038
10.1016/j.ins.2014.10.045
10.1016/j.knosys.2020.106623
10.1109/TCYB.2020.3025662
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23919/CSMS.2021.0010
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2096-9929
EndPage 108
ExternalDocumentID oai_doaj_org_article_6e44135703214a2f884c7bc6f7596fec
10_23919_CSMS_2021_0010
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
GROUPED_DOAJ
ID FETCH-LOGICAL-c348t-b007bae06dfeeab94bdf4d6ee38b62a3c059dd68e3e7cd97f30c830a7b63dccc3
IEDL.DBID DOA
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544307200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2096-9929
IngestDate Fri Oct 03 12:50:49 EDT 2025
Tue Nov 18 22:16:00 EST 2025
Sat Nov 29 03:38:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-b007bae06dfeeab94bdf4d6ee38b62a3c059dd68e3e7cd97f30c830a7b63dccc3
OpenAccessLink https://doaj.org/article/6e44135703214a2f884c7bc6f7596fec
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_6e44135703214a2f884c7bc6f7596fec
crossref_citationtrail_10_23919_CSMS_2021_0010
crossref_primary_10_23919_CSMS_2021_0010
PublicationCentury 2000
PublicationDate 2021-6-00
2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-6-00
PublicationDecade 2020
PublicationTitle Complex System Modeling and Simulation
PublicationYear 2021
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
de (ref31) 2020; 97
References_xml – volume: 97
  start-page: 106760
  year: 2020
  ident: ref31
  article-title: Hyper-heuristics based on reinforcement learning, balanced heuristic selection and group decision acceptance
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106760
– ident: ref3
  doi: 10.1016/j.knosys.2019.104982
– ident: ref32
  doi: 10.1016/j.ejor.2019.07.073
– ident: ref38
  doi: 10.3390/math8101702
– ident: ref37
  doi: 10.1016/j.swevo.2020.100716
– ident: ref18
  doi: 10.1109/TFUZZ.2020.2986673
– ident: ref21
  doi: 10.1016/j.eswa.2020.113853
– ident: ref2
  doi: 10.1016/j.swevo.2019.05.007
– ident: ref19
  doi: 10.1016/j.jclepro.2020.123932
– ident: ref42
  doi: 10.1016/j.ejor.2020.08.028
– ident: ref4
  doi: 10.1016/j.knosys.2019.104901
– ident: ref41
  doi: 10.1016/j.asoc.2020.106520
– ident: ref11
  doi: 10.1016/j.eswa.2019.113166
– ident: ref10
  doi: 10.1016/j.amc.2016.03.035
– ident: ref13
  doi: 10.1016/j.eswa.2020.113678
– ident: ref20
  doi: 10.1016/j.jclepro.2019.119464
– ident: ref30
  doi: 10.1016/j.ejor.2015.09.003
– ident: ref22
  doi: 10.1016/j.swevo.2017.04.007
– ident: ref9
  doi: 10.1109/TCYB.2020.3015756
– ident: ref23
  doi: 10.1016/j.swevo.2020.100647
– ident: ref25
  doi: 10.1109/TEVC.2019.2906581
– ident: ref35
  doi: 10.1016/j.artint.2020.103354
– ident: ref40
  doi: 10.1016/j.ejor.2020.09.022
– ident: ref27
  doi: 10.1016/j.ins.2019.07.073
– ident: ref39
  doi: 10.1016/j.ejor.2020.07.038
– ident: ref1
  doi: 10.1016/j.knosys.2020.106264
– ident: ref29
  doi: 10.1109/TEVC.2014.2319051
– ident: ref36
  doi: 10.1016/j.asoc.2019.105565
– ident: ref6
  doi: 10.1016/j.swevo.2020.100742
– ident: ref34
  doi: 10.1162/evco_a_00277
– ident: ref16
  doi: 10.1016/j.eswa.2018.06.020
– ident: ref24
  doi: 10.1016/j.ejor.2018.10.022
– ident: ref8
  doi: 10.1016/j.ins.2020.08.040
– ident: ref7
  doi: 10.1016/j.eswa.2020.113959
– ident: ref33
  doi: 10.1109/TCYB.2021.3051242
– ident: ref14
  doi: 10.1016/j.swevo.2017.12.005
– ident: ref17
  doi: 10.1016/j.swevo.2019.04.002
– ident: ref15
  doi: 10.1016/j.eswa.2019.113147
– ident: ref26
  doi: 10.1016/j.ejor.2020.03.038
– ident: ref28
  doi: 10.1016/j.ins.2014.10.045
– ident: ref5
  doi: 10.1016/j.knosys.2020.106623
– ident: ref12
  doi: 10.1109/TCYB.2020.3025662
SSID ssib052855636
ssib053565417
Score 2.484805
Snippet A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems. A classical hyper-heuristic...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 91
SubjectTerms combinatorial optimization
hyper-heuristic algorithm
multi-armed bandits (mab)
relay hybridization technology
Title A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems
URI https://doaj.org/article/6e44135703214a2f884c7bc6f7596fec
Volume 1
WOSCitedRecordID wos001544307200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2096-9929
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib053565417
  issn: 2096-9929
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09TxtBEF0hREGDiEgEIUFbUKTZ-G53bz9KYoHc2LHkWHJ32o9ZhAQ2MoYyvz2zt4dlCpSG5orT3Gk1N5p5o5t5j5DL6KPHKqUZJn_BpA-S-brRDHgMkteqCRA7sQk9mZjFwk53pL7yTFihBy6OGyjAgi0yTxSvpePJGBm0DyrpxqoEIWffStudZgojqeEmE19tC20jmqx3nXenOWJ2ZhEUFJ4fLmxtB8PZeIa9Iq_zj4nqTYnaYfLvSs7NMTnqsSK9Kmf8RPZgeULmV3SyeoF7OlytHqHwdtNujZYhcLwFOsLOcs1G8Fw4mCmiUrR9wA64-wj0NyaJh377kk6LnszTZzK_uf4zHLFeG4EFIc0m6-Zo76BSMQE4b6WPSUYFIIxX3ImAsClGZUCADtHqJKpgROW0VyKGEMQXsr9cLeGUUG6S9M55rq2VNkXjUwOpCcKkyjlZn5Gfr-5oQ08cnvUr7ltsIDr_tdl_bfZfHpGrzsiP7QOPhTPjfdNf2b9bs0x23d3AEGj7EGj_FwJfP-Il5-Qwn6pMgX0j-5v1M3wnB-Flc_e0vuiiC6_jv9f_AGt-0o0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Cooperative+Multi-Stage+Hyper-Heuristic+for+Combination+Optimization+Problems&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Zhao%2C+Fuqing&rft.au=Di%2C+Shilu&rft.au=Cao%2C+Jie&rft.au=Tang%2C+Jianxin&rft.date=2021-06-01&rft.issn=2096-9929&rft.eissn=2096-9929&rft.volume=1&rft.issue=2&rft.spage=91&rft.epage=108&rft_id=info:doi/10.23919%2FCSMS.2021.0010&rft.externalDBID=n%2Fa&rft.externalDocID=10_23919_CSMS_2021_0010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon