Optimum Spatio-Spectral Filtering Network for Brain-Computer Interface

This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary neurophysiologic phenomenon of motor imagery, termed event-related desynchronization, and formulate the learning task for feature extraction as maximiz...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural networks Vol. 22; no. 1; pp. 52 - 63
Main Authors: Zhang, Haihong, Chin, Zheng Yang, Ang, Kai Keng, Guan, Cuntai, Wang, Chuanchu
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.01.2011
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1045-9227, 1941-0093, 1941-0093
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary neurophysiologic phenomenon of motor imagery, termed event-related desynchronization, and formulate the learning task for feature extraction as maximizing the mutual information between the spatio-spectral filtering parameters and the class labels. After introducing a nonparametric estimate of mutual information, a gradient-based learning algorithm is devised to efficiently optimize the spatial filters in conjunction with a band-pass filter. The proposed method is compared with two existing methods on real data: a BCI Competition IV dataset as well as our data collected from seven human subjects. The results indicate the superior performance of the method for motor imagery classification, as it produced higher classification accuracy with statistical significance (≥95% confidence level) in most cases.
AbstractList This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary neurophysiologic phenomenon of motor imagery, termed event-related desynchronization, and formulate the learning task for feature extraction as maximizing the mutual information between the spatio-spectral filtering parameters and the class labels. After introducing a nonparametric estimate of mutual information, a gradient-based learning algorithm is devised to efficiently optimize the spatial filters in conjunction with a band-pass filter. The proposed method is compared with two existing methods on real data: a BCI Competition IV dataset as well as our data collected from seven human subjects. The results indicate the superior performance of the method for motor imagery classification, as it produced higher classification accuracy with statistical significance (≥95% confidence level) in most cases.
This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary neurophysiologic phenomenon of motor imagery, termed event-related desynchronization, and formulate the learning task for feature extraction as maximizing the mutual information between the spatio-spectral filtering parameters and the class labels. After introducing a nonparametric estimate of mutual information, a gradient-based learning algorithm is devised to efficiently optimize the spatial filters in conjunction with a band-pass filter. The proposed method is compared with two existing methods on real data: a BCI Competition IV dataset as well as our data collected from seven human subjects. The results indicate the superior performance of the method for motor imagery classification, as it produced higher classification accuracy with statistical significance ( ≥ 95% confidence level) in most cases.This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary neurophysiologic phenomenon of motor imagery, termed event-related desynchronization, and formulate the learning task for feature extraction as maximizing the mutual information between the spatio-spectral filtering parameters and the class labels. After introducing a nonparametric estimate of mutual information, a gradient-based learning algorithm is devised to efficiently optimize the spatial filters in conjunction with a band-pass filter. The proposed method is compared with two existing methods on real data: a BCI Competition IV dataset as well as our data collected from seven human subjects. The results indicate the superior performance of the method for motor imagery classification, as it produced higher classification accuracy with statistical significance ( ≥ 95% confidence level) in most cases.
This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary neurophysiologic phenomenon of motor imagery, termed event-related desynchronization, and formulate the learning task for feature extraction as maximizing the mutual information between the spatio-spectral filtering parameters and the class labels. After introducing a nonparametric estimate of mutual information, a gradient-based learning algorithm is devised to efficiently optimize the spatial filters in conjunction with a band-pass filter. The proposed method is compared with two existing methods on real data: a BCI Competition IV dataset as well as our data collected from seven human subjects. The results indicate the superior performance of the method for motor imagery classification, as it produced higher classification accuracy with statistical significance ( ≥ 95% confidence level) in most cases.
Author Haihong Zhang
Cuntai Guan
Kai Keng Ang
Chuanchu Wang
Zheng Yang Chin
Author_xml – sequence: 1
  givenname: Haihong
  surname: Zhang
  fullname: Zhang, Haihong
  email: hhzhang@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research, Agency for Science, Technology and Research, 138632, Singapore. hhzhang@i2r.a-star.edu.sg
– sequence: 2
  givenname: Zheng Yang
  surname: Chin
  fullname: Chin, Zheng Yang
– sequence: 3
  givenname: Kai Keng
  surname: Ang
  fullname: Ang, Kai Keng
– sequence: 4
  givenname: Cuntai
  surname: Guan
  fullname: Guan, Cuntai
– sequence: 5
  givenname: Chuanchu
  surname: Wang
  fullname: Wang, Chuanchu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23740519$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21216696$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYNU7Jd7QZDZiKupN8kkkyz14dNCeV20XYc7mTsSnS-TGcT_3jzeq0IX3SS55HcO3HPO2ck4jcTYGw5XnIP9eL_bXQnIkwBTgbUv2Bm3FS8BrDzJb6hUaYWoT9l5Sj8AeKVAv2KngguutdVnbHs7L2FYh-JuxiVM5d1MfonYF9vQLxTD-L3Y0fJ7ij-LborF54hhLDfTMK_5t7ge89mhp0v2ssM-0evjfcEetl_uN9_Km9uv15tPN6WXlVlK5BKJt53wRojWmrbWqhK8UxoJpDFCVaCpRWo60dQaawEoWmWwFU1jZSMv2IeD7xynXyulxQ0heep7HGlakzNScW5A2ky-O5JrM1Dr5hgGjH_c4-oZeH8EMHnsu4ijD-k_J-sKFN8b6QPn45RSpM75sOyzGnNOoXcc3L4Ll7tw-y7csYsshCfCR-9nJG8PkkBE_3CluVHayL_mH5Lb
CODEN ITNNEP
CitedBy_id crossref_primary_10_1016_j_bspc_2020_101917
crossref_primary_10_1016_j_irbm_2019_11_002
crossref_primary_10_1109_JPROC_2015_2404941
crossref_primary_10_1016_j_neucom_2012_11_004
crossref_primary_10_1109_TPAMI_2012_69
crossref_primary_10_1109_TPAMI_2014_2330598
crossref_primary_10_1109_TCYB_2019_2963709
crossref_primary_10_3390_sym12091387
crossref_primary_10_1109_TNNLS_2016_2601084
crossref_primary_10_1002_acs_1236
crossref_primary_10_1109_ACCESS_2020_2967814
crossref_primary_10_3390_electronics9020203
crossref_primary_10_1007_s10916_016_0567_5
crossref_primary_10_1109_TBME_2015_2487738
crossref_primary_10_1109_TNSRE_2017_2757519
crossref_primary_10_1109_TNNLS_2013_2249087
crossref_primary_10_3390_math12111727
crossref_primary_10_1016_j_jneumeth_2016_12_010
crossref_primary_10_3389_fnins_2021_715855
crossref_primary_10_1016_j_eswa_2016_08_007
crossref_primary_10_1016_j_compbiomed_2016_10_004
crossref_primary_10_1016_j_neucom_2018_04_087
crossref_primary_10_4028_www_scientific_net_AMR_981_171
crossref_primary_10_1016_j_protcy_2016_05_219
crossref_primary_10_1109_TNNLS_2015_2402694
crossref_primary_10_1109_ACCESS_2019_2941867
crossref_primary_10_1109_TBME_2014_2345458
crossref_primary_10_1016_j_patcog_2021_107918
crossref_primary_10_1109_LSP_2018_2823683
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_1109_TCDS_2016_2555952
crossref_primary_10_1088_1741_2560_8_4_046035
Cites_doi 10.1023/A:1007958904918
10.1016/j.patcog.2009.12.013
10.1016/j.patcog.2003.12.002
10.1109/MIS.2008.41
10.1109/TBME.2007.903709
10.1016/S0169-7161(82)02038-0
10.1109/IEMBS.2008.4650130
10.1109/TNSRE.2003.816866
10.1109/TBME.2008.2009768
10.1109/TNSRE.2003.814456
10.1109/TBME.2006.883649
10.1016/S1388-2457(98)00043-1
10.1088/1741-2560/1/3/002
10.1109/TBME.2008.921154
10.1016/S0013-4694(97)00066-7
10.1109/MSP.2008.4408441
10.1016/S1388-2457(02)00057-3
10.1109/IEMBS.2009.5334093
10.1016/S1388-2457(03)00093-2
10.1093/oso/9780198523963.001.0001
10.1212/01.WNL.0000158616.43002.6D
10.1109/TNSRE.2006.875567
10.1109/86.895946
10.1109/TBME.2004.827088
10.1016/S0013-4694(97)00080-1
10.1109/TBME.2005.851521
10.1109/5.939829
10.1109/TBME.2008.919125
10.1016/S1388-2457(98)00038-8
10.1016/j.neuroimage.2007.01.051
10.1088/1741-2560/3/3/003
10.1109/TNN.2008.2005601
10.1002/9780470316849
10.1088/1741-2560/4/2/R03
10.1088/1741-2560/5/1/002
10.1113/jphysiol.2006.125948
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNN.2010.2084099
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 63
ExternalDocumentID 21216696
23740519
10_1109_TNN_2010_2084099
5618568
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c348t-a13ae1df2c822d98d765421f56ae038825406edaebf2b76a720a2d58ad2bb93b3
IEDL.DBID RIE
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286010000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
1941-0093
IngestDate Fri Sep 05 08:32:29 EDT 2025
Mon Jul 21 05:48:38 EDT 2025
Mon Jul 21 09:13:56 EDT 2025
Tue Nov 18 21:45:10 EST 2025
Sat Nov 29 08:08:15 EST 2025
Tue Aug 26 17:18:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Brain
Gradient
Statistical analysis
Filtering
Electroencephalography
Pattern recognition
Network interfaces
spatio-spectral filtering
motor imagery electroencephalography
Optimization
Search algorithm
Brain-computer interface
User interface
Classification
Feature extraction
Spatial filters
Desynchronization
Learning algorithm
Artificial intelligence
Pattern extraction
Mutual information
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-a13ae1df2c822d98d765421f56ae038825406edaebf2b76a720a2d58ad2bb93b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 21216696
PQID 835118039
PQPubID 23479
PageCount 12
ParticipantIDs pascalfrancis_primary_23740519
pubmed_primary_21216696
crossref_citationtrail_10_1109_TNN_2010_2084099
proquest_miscellaneous_835118039
ieee_primary_5618568
crossref_primary_10_1109_TNN_2010_2084099
PublicationCentury 2000
PublicationDate 2011-Jan.
2011-01-00
2011
2011-Jan
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
cover (ref27) 2006
ref2
ang (ref22) 2008
ref1
ref39
ref17
ref16
ref19
ref18
wolpaw (ref3) 2002; 113
bowman (ref34) 1997
(ref24) 0
ref23
scott (ref33) 1992
ref25
ref20
ref41
chang (ref38) 2001
ref21
fukunaga (ref26) 1990
ref29
ref8
ref7
goncharova (ref12) 2003; 114
ref9
ref4
muller-gerking (ref5) 1999; 110
ben-bassat (ref28) 1982; 2
ref6
ref40
References_xml – ident: ref32
  doi: 10.1023/A:1007958904918
– ident: ref30
  doi: 10.1016/j.patcog.2009.12.013
– year: 2006
  ident: ref27
  publication-title: Elements of Information Theory
– ident: ref29
  doi: 10.1016/j.patcog.2003.12.002
– ident: ref2
  doi: 10.1109/MIS.2008.41
– ident: ref36
  doi: 10.1109/TBME.2007.903709
– volume: 2
  start-page: 773
  year: 1982
  ident: ref28
  publication-title: Handbook of Statistics
  doi: 10.1016/S0169-7161(82)02038-0
– ident: ref23
  doi: 10.1109/IEMBS.2008.4650130
– ident: ref39
  doi: 10.1109/TNSRE.2003.816866
– ident: ref15
  doi: 10.1109/TBME.2008.2009768
– year: 2001
  ident: ref38
  publication-title: LIBSVM A library for support vector machines
– start-page: 2391
  year: 2008
  ident: ref22
  article-title: filter bank common spatial pattern (fbcsp) in brain-computer interface
  publication-title: Proc Int Joint Conf Neural Netw
– ident: ref9
  doi: 10.1109/TNSRE.2003.814456
– ident: ref20
  doi: 10.1109/TBME.2006.883649
– ident: ref11
  doi: 10.1016/S1388-2457(98)00043-1
– ident: ref14
  doi: 10.1088/1741-2560/1/3/002
– ident: ref8
  doi: 10.1109/TBME.2008.921154
– ident: ref10
  doi: 10.1016/S0013-4694(97)00066-7
– ident: ref17
  doi: 10.1109/MSP.2008.4408441
– volume: 113
  start-page: 767
  year: 2002
  ident: ref3
  article-title: brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref25
  doi: 10.1109/IEMBS.2009.5334093
– volume: 114
  start-page: 1580
  year: 2003
  ident: ref12
  article-title: emg contamination of eeg: spectral and topographical characteristics
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00093-2
– year: 1997
  ident: ref34
  publication-title: Applied Smoothing Techniques for Data Analysis The Kernel Approach with S-Plus Illustrations
  doi: 10.1093/oso/9780198523963.001.0001
– ident: ref6
  doi: 10.1212/01.WNL.0000158616.43002.6D
– ident: ref35
  doi: 10.1109/TNSRE.2006.875567
– ident: ref16
  doi: 10.1109/86.895946
– ident: ref7
  doi: 10.1109/TBME.2004.827088
– ident: ref4
  doi: 10.1016/S0013-4694(97)00080-1
– ident: ref19
  doi: 10.1109/TBME.2005.851521
– ident: ref37
  doi: 10.1109/5.939829
– ident: ref21
  doi: 10.1109/TBME.2008.919125
– volume: 110
  start-page: 787
  year: 1999
  ident: ref5
  article-title: designing optimal spatial filtering of single trial eeg classification in a movement task
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00038-8
– year: 0
  ident: ref24
  publication-title: BCI Competition IV
– ident: ref41
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: ref18
  doi: 10.1088/1741-2560/3/3/003
– ident: ref31
  doi: 10.1109/TNN.2008.2005601
– year: 1992
  ident: ref33
  publication-title: Multivariate Density Estimation Theory Practice and Visualization
  doi: 10.1002/9780470316849
– ident: ref13
  doi: 10.1088/1741-2560/4/2/R03
– ident: ref40
  doi: 10.1088/1741-2560/5/1/002
– year: 1990
  ident: ref26
  publication-title: Introduction to statistical pattern recognition
– ident: ref1
  doi: 10.1113/jphysiol.2006.125948
SSID ssj0014506
Score 1.6648642
Snippet This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms Applied sciences
Artificial intelligence
Band pass filters
Brain - physiology
Brain-computer interface
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Electroencephalography
Electroencephalography - methods
Entropy
Evoked Potentials, Motor - physiology
Exact sciences and technology
Feature extraction
Humans
Male
motor imagery electroencephalography
Mutual information
Neural Networks (Computer)
Optimization
Pattern Recognition, Automated - standards
Rhythm
Software
spatio-spectral filtering
User-Computer Interface
Title Optimum Spatio-Spectral Filtering Network for Brain-Computer Interface
URI https://ieeexplore.ieee.org/document/5618568
https://www.ncbi.nlm.nih.gov/pubmed/21216696
https://www.proquest.com/docview/835118039
Volume 22
WOSCitedRecordID wos000286010000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH-0ZYf10HbJtmZtgw5jMJgWW7I-fOzGQk_eYB3kZiRLhkLjjCYZ7L-fnuS4HayDgg8GP9nGvyfrfen9AN7y1mteeEEVNxktcuVoqRpHgydgM2bbVrtENqGqSi8W5bc9-DDshfHex-Iz_xFPYy7frZothspmYa3XQup92FdKpr1aQ8agEJFHM3gXgpaMqV1KMitn11WVarhYhu5MGRsAs1xK7NT_YDWK9CpYHGnW4fu0idjiccszrkDz46e9-wkc9ZYmuUyq8QL2fDeC8WUXvOzlb_KOxNrPGFQfwfGO3IH0c30Ehw86FY5h_jX8WpbbJfkeK7Ap0tZjjITMbzDdHmRIlQrKSbCCyScknqDDTWPYsTWNfwk_5l-uP1_RnoKBNrzQG2pybnzuWtYEQ8KV2ikkuMpbIY3HPjLBvcykd8bbllkljWKZYU5o45i1Jbf8FRx0q86fAtFCKBOMvVx7UXgWrjFmnZQ2uHw5s2ICsx0UddP3J0eajNs6-ilZWQcca8Sx7nGcwPthxM_Um-M_smPEZJDr4ZjA9C-0h-uMqwKt2wmQHfx1mHiYTTGdX23XtcYUrM54EHmd1OJ-cK9db_790DN4niLTeJzDweZu6y_gWfNrc7O-mwblXuhpVO4_tRLyUg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFWwfrN5Ze37UfRBBcL1kN5vdPFbxqFij4Al9C7vZCRR6udK7E_zv3dnkYgUVhDwEMpuE_Gaz87XzA3ghGzQyQ8W1tAnPUu15oWvPgyfgEuGaxviObEKXpTk_L77swOthLwwixuIzfEOnMZfvl_WGQmXTsNYblZtbcJuYs_rdWkPOIFORSTP4F4oXQuhtUjIppvOy7Kq4REIOTRFbAIs0z6lX_431KBKsUHmkXYUv1HTUFn-3PeMaNDv4v7e_D_d6W5OddMrxAHawHcH4pA1-9uIHe8li9WcMq4_gYEvvwPrZPoL9G70KxzD7HH4ui82CfY012JyI6ylKwmYXlHAPMqzsSspZsIPZW6Ke4MNNY-CxsTU-hG-z9_N3p7wnYeC1zMya21RaTH0j6mBK-MJ4TRRXaaNyi9RJJjiYSY7eomuE07nVIrHCK2O9cK6QTh7Cbrts8QiYUUrbYO6lBlWGIlwTwvk8d8HpS4VTE5huoajqvkM5EWVcVtFTSYoq4FgRjlWP4wReDSOuuu4c_5AdEyaDXA_HBI5_Q3u4LqTOyL6dANvCX4WpR_kU2-Jys6oMJWFNIoPIo04tfg3utevxnx_6HO6ezj-dVWcfyo9PYK-LU9PxFHbX1xt8Bnfq7-uL1fVxVPGfxN70sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+Spatio-Spectral+Filtering+Network+for+Brain-Computer+Interface&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=HAIHONG+ZHANG&rft.au=ZHENG+YANG+CHIN&rft.au=KAI+KENG+ANG&rft.au=CUNTAI+GUAN&rft.date=2011&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1045-9227&rft.volume=22&rft.issue=1&rft.spage=52&rft.epage=63&rft_id=info:doi/10.1109%2FTNN.2010.2084099&rft.externalDBID=n%2Fa&rft.externalDocID=23740519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon