Nonlinear Equations Solving with Intelligent Optimization Algorithms: A Survey

Nonlinear Equations (NEs), which may usually have multiple roots, are ubiquitous in diverse fields. One of the main purposes of solving NEs is to locate as many roots as possible simultaneously in a single run, however, it is a difficult and challenging task in numerical computation. In recent years...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex System Modeling and Simulation Ročník 1; číslo 1; s. 15 - 32
Hlavní autoři: Gong, Wenyin, Liao, Zuowen, Mi, Xianyan, Wang, Ling, Guo, Yuanyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tsinghua University Press 01.03.2021
Témata:
ISSN:2096-9929, 2096-9929
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nonlinear Equations (NEs), which may usually have multiple roots, are ubiquitous in diverse fields. One of the main purposes of solving NEs is to locate as many roots as possible simultaneously in a single run, however, it is a difficult and challenging task in numerical computation. In recent years, Intelligent Optimization Algorithms (IOAs) have shown to be particularly effective in solving NEs. This paper provides a comprehensive survey on IOAs that have been exploited to locate multiple roots of NEs. This paper first revisits the fundamental definition of NEs and reviews the most recent development of the transformation techniques. Then, solving NEs with IOAs is reviewed, followed by the benchmark functions and the performance comparison of several state-of-the-art algorithms. Finally, this paper points out the challenges and some possible open issues for solving NEs.
AbstractList Nonlinear Equations (NEs), which may usually have multiple roots, are ubiquitous in diverse fields. One of the main purposes of solving NEs is to locate as many roots as possible simultaneously in a single run, however, it is a difficult and challenging task in numerical computation. In recent years, Intelligent Optimization Algorithms (IOAs) have shown to be particularly effective in solving NEs. This paper provides a comprehensive survey on IOAs that have been exploited to locate multiple roots of NEs. This paper first revisits the fundamental definition of NEs and reviews the most recent development of the transformation techniques. Then, solving NEs with IOAs is reviewed, followed by the benchmark functions and the performance comparison of several state-of-the-art algorithms. Finally, this paper points out the challenges and some possible open issues for solving NEs.
Author Gong, Wenyin
Guo, Yuanyuan
Liao, Zuowen
Mi, Xianyan
Wang, Ling
Author_xml – sequence: 1
  givenname: Wenyin
  surname: Gong
  fullname: Gong, Wenyin
– sequence: 2
  givenname: Zuowen
  surname: Liao
  fullname: Liao, Zuowen
– sequence: 3
  givenname: Xianyan
  surname: Mi
  fullname: Mi, Xianyan
– sequence: 4
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
– sequence: 5
  givenname: Yuanyuan
  surname: Guo
  fullname: Guo, Yuanyuan
BookMark eNp1kE1PAjEQhhuDiYicve4fALrttrv1RggqCcJh9dyUfqw1ZYvdgsFf77JoYkw8zWQy75OZ5xr0al9rAG5TOEaYpWwyK5_KMYIoHUMI0QXoI8joiDHEer_6KzBsGruBBBWEUEz7YLXytbO1FiGZv-9FtL5uktK7g62r5MPG12RRR-2crXQdk_Uu2q397NaSqat8aDe2zV0yTcp9OOjjDbg0wjV6-F0H4OV-_jx7HC3XD4vZdDmSOCviqDBpxnIiBUESKkpyyqgh0EiJFZU0p5ghkVOlU4EzpTHdZFBnBhtREEwVwwOwOHOVF298F-xWhCP3wvJu4EPFRYhWOs01yzWjEBNVZJlJESs0xEalsmUVFJmWRc4sGXzTBG24tLF7MQZhHU8h7xzzk2N-csxPjtvc5E_u547_El-OhoBG
CitedBy_id crossref_primary_10_4018_IJSIR_352060
crossref_primary_10_1016_j_eswa_2025_129635
crossref_primary_10_1016_j_knosys_2022_110214
crossref_primary_10_1109_TEVC_2022_3199775
crossref_primary_10_26599_TST_2023_9010031
crossref_primary_10_1016_j_knosys_2024_112239
crossref_primary_10_1109_TEVC_2023_3332913
crossref_primary_10_1109_TSMC_2023_3245212
crossref_primary_10_1007_s40747_023_01074_8
crossref_primary_10_3390_app132212241
crossref_primary_10_1016_j_ins_2023_02_049
crossref_primary_10_1016_j_compag_2024_109011
crossref_primary_10_1016_j_tws_2024_112841
crossref_primary_10_1007_s00704_025_05678_7
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1016_j_swevo_2024_101754
crossref_primary_10_1109_JSEN_2024_3493935
crossref_primary_10_1109_TSMC_2022_3157816
crossref_primary_10_1016_j_knosys_2021_107972
crossref_primary_10_1016_j_knosys_2021_107731
crossref_primary_10_1007_s00521_023_08330_5
crossref_primary_10_3390_s23218918
crossref_primary_10_3390_math11122603
crossref_primary_10_26599_TST_2023_9010123
crossref_primary_10_1061_JCCEE5_CPENG_6559
crossref_primary_10_1007_s10489_022_03433_3
crossref_primary_10_1016_j_knosys_2023_110808
crossref_primary_10_1007_s12293_022_00380_x
crossref_primary_10_1016_j_swevo_2024_101669
crossref_primary_10_1016_j_dt_2024_04_006
crossref_primary_10_1109_TETCI_2023_3281876
crossref_primary_10_32604_cmes_2022_020263
crossref_primary_10_1016_j_cie_2022_108099
crossref_primary_10_1016_j_ins_2024_120139
crossref_primary_10_1007_s13042_022_01647_y
crossref_primary_10_1016_j_swevo_2025_102059
crossref_primary_10_1109_TSMC_2023_3299570
crossref_primary_10_1016_j_ins_2023_119106
crossref_primary_10_1016_j_asoc_2022_108818
crossref_primary_10_1016_j_knosys_2022_108436
crossref_primary_10_1093_jcde_qwac090
crossref_primary_10_1016_j_egyr_2021_06_097
crossref_primary_10_1109_TCYB_2021_3118783
crossref_primary_10_1016_j_eswa_2022_119455
crossref_primary_10_1016_j_knosys_2021_107263
crossref_primary_10_26599_TST_2023_9010015
crossref_primary_10_1016_j_asoc_2023_111105
crossref_primary_10_1016_j_swevo_2022_101178
crossref_primary_10_1016_j_eswa_2023_122025
crossref_primary_10_1049_cth2_12399
crossref_primary_10_1016_j_istruc_2023_04_102
crossref_primary_10_1109_TEVC_2022_3175832
crossref_primary_10_1016_j_eswa_2022_117380
crossref_primary_10_1016_j_engappai_2023_107762
crossref_primary_10_1016_j_cnsns_2024_108433
crossref_primary_10_1016_j_swevo_2022_101209
crossref_primary_10_1016_j_jappgeo_2024_105580
crossref_primary_10_1016_j_ins_2024_120753
crossref_primary_10_1016_j_cie_2022_108033
crossref_primary_10_1109_TEVC_2022_3177605
Cites_doi 10.1155/2013/453812
10.1016/j.camwa.2008.10.005
10.1109/TEVC.2014.2336865
10.1023/A:1008202821328
10.1109/MEC.2011.6025904
10.1145/331499.331504
10.1016/j.asoc.2020.106733
10.1016/j.cherd.2009.11.001
10.1007/BF01097059
10.1007/BF01580076
10.1109/ISCID.2014.222
10.1016/j.swevo.2011.12.001
10.1007/s00500-012-0841-5
10.1016/j.nonrwa.2008.03.006
10.1016/j.swevo.2020.100808
10.1016/j.nonrwa.2009.08.003
10.1016/j.knosys.2019.06.004
10.1016/j.camwa.2014.06.013
10.1007/BF02241652
10.1007/s10543-010-0280-6
10.1016/j.amc.2013.04.041
10.1002/nme.1267
10.1109/ICNN.1995.488968
10.1109/ICACCI.2014.6968423
10.1016/j.fluid.2004.06.063
10.1016/j.swevo.2011.03.001
10.1002/aic.10119
10.1016/j.amc.2007.08.088
10.1109/TEVC.2016.2638437
10.1016/j.amc.2013.05.057
10.1155/2013/757391
10.1016/S0098-1354(99)80231-2
10.1109/4235.996017
10.1016/j.eswa.2020.113261
10.1007/s00521-017-3088-3
10.1287/ijoc.2018.0876
10.1016/j.knosys.2012.04.019
10.1109/CEC.2015.7257223
10.1109/TSMC.2016.2631479
10.1016/S0952-1976(97)00067-5
10.1162/106365603321828970
10.1017/S0962492917000113
10.1109/TSMC.2018.2852798
10.1007/s10898-013-0105-7
10.1109/TCNS.2017.2673540
10.1016/j.knosys.2019.105312
10.1126/science.1242072
10.1007/978-3-319-09129-7_10
10.1016/j.camwa.2013.04.018
10.1109/COGINF.2011.6016173
10.1504/IJSI.2020.106406
10.1109/TEVC.2017.2670779
10.1109/CEC.2015.7257222
10.1371/journal.pone.0121844
10.1109/TSMC.2017.2705160
10.1103/RevModPhys.80.167
10.1093/oso/9780195099713.001.0001
10.1007/BF03025291
10.1016/j.jcde.2018.10.006
10.1016/j.ins.2010.04.008
10.1109/TEVC.2010.2050024
10.1016/S0045-7825(99)00389-8
10.4304/jcp.6.1.36-42
10.1162/EVCO_a_00009
10.1360/SSI-2019-0154
10.1109/CEC.2013.6557555
10.1109/ICSMC.2002.1176019
10.1016/j.chaos.2015.09.027
10.1016/j.cam.2016.12.019
10.1016/j.amc.2006.11.033
10.1007/s11227-016-1660-8
10.1145/2792984
10.1109/TSMC.2018.2828018
10.1109/TEVC.2011.2161873
10.1016/j.camwa.2011.05.031
10.1016/j.ins.2020.06.042
10.1109/TSMC.2019.2957324
10.1109/TSMCA.2008.918599
10.1016/j.asoc.2013.06.018
10.1016/j.swevo.2019.03.010
10.1109/TEVC.2007.892759
10.1109/TEVC.2019.2932624
10.1063/1.4825558
10.1016/j.asoc.2011.05.016
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23919/CSMS.2021.0002
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2096-9929
EndPage 32
ExternalDocumentID oai_doaj_org_article_e97e96035d844f1298e03fd1ca85862f
10_23919_CSMS_2021_0002
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
GROUPED_DOAJ
ID FETCH-LOGICAL-c348t-8f14975ca52c0d657696f50fcc3d6c676392a76de1a34de36b40e4f3fa8536d93
IEDL.DBID DOA
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001543982300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2096-9929
IngestDate Fri Oct 03 12:53:12 EDT 2025
Sat Nov 29 03:38:31 EST 2025
Tue Nov 18 21:55:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8f14975ca52c0d657696f50fcc3d6c676392a76de1a34de36b40e4f3fa8536d93
OpenAccessLink https://doaj.org/article/e97e96035d844f1298e03fd1ca85862f
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_e97e96035d844f1298e03fd1ca85862f
crossref_citationtrail_10_23919_CSMS_2021_0002
crossref_primary_10_23919_CSMS_2021_0002
PublicationCentury 2000
PublicationDate 2021-3-00
2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-3-00
PublicationDecade 2020
PublicationTitle Complex System Modeling and Simulation
PublicationYear 2021
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref57
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
zhou (ref77) 2012; 88
ref17
ref16
ref19
ref18
gao (ref13) 2013
ref93
facchinei (ref3) 2007; 5
ref51
ref50
ref94
ref91
repinšek (ref84) 2013; 45
ref46
ref89
ref45
ref48
ref47
ref42
ref85
ref41
ref88
ref44
ref87
ref43
kuri-morales (ref38) 2003; 2
ref49
ref8
ref7
liao (ref59) 2020; 50
ref9
ref4
ref6
song (ref92) 2020
ref5
ref82
ref81
ref40
ref83
ref80
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref33
ref76
ref32
ref2
ref1
ref39
ref71
ref70
ref73
ref72
zhou (ref58) 2008; 9
mhetre (ref65) 2012; 3
li (ref86) 2010; 14
ref68
ref24
ref67
ref23
ref69
ref25
ref64
ref20
ref63
wu (ref26) 2014; 4
ref66
ref22
ref21
ref28
ref27
ref29
zitzler (ref90) 2002
ref60
ref62
ref61
References_xml – ident: ref79
  doi: 10.1155/2013/453812
– ident: ref69
  doi: 10.1016/j.camwa.2008.10.005
– ident: ref23
  doi: 10.1109/TEVC.2014.2336865
– ident: ref16
  doi: 10.1023/A:1008202821328
– ident: ref66
  doi: 10.1109/MEC.2011.6025904
– ident: ref87
  doi: 10.1145/331499.331504
– ident: ref30
  doi: 10.1016/j.asoc.2020.106733
– ident: ref34
  doi: 10.1016/j.cherd.2009.11.001
– ident: ref40
  doi: 10.1007/BF01097059
– ident: ref12
  doi: 10.1007/BF01580076
– volume: 9
  start-page: 1709
  year: 2008
  ident: ref58
  article-title: New method for solving nolinear equation systems
  publication-title: Journal of Chinese Computer Systems
– volume: 3
  start-page: 114
  year: 2012
  ident: ref65
  article-title: Genetic algorithm for linear and nonlinear equation
  publication-title: International Journal of Advanced Engineering Technology
– ident: ref74
  doi: 10.1109/ISCID.2014.222
– ident: ref35
  doi: 10.1016/j.swevo.2011.12.001
– ident: ref70
  doi: 10.1007/s00500-012-0841-5
– ident: ref33
  doi: 10.1016/j.nonrwa.2008.03.006
– ident: ref94
  doi: 10.1016/j.swevo.2020.100808
– ident: ref52
  doi: 10.1016/j.nonrwa.2009.08.003
– volume: 45
  start-page: 35:1
  year: 2013
  ident: ref84
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput Surv
– ident: ref51
  doi: 10.1016/j.knosys.2019.06.004
– start-page: 95
  year: 2002
  ident: ref90
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc of Evolutionary Methods for Design Optimisation and Control with Application to Industrial Problems (EUROGEN 2001)
– ident: ref18
  doi: 10.1016/j.camwa.2014.06.013
– ident: ref1
  doi: 10.1007/BF02241652
– ident: ref28
  doi: 10.1007/s10543-010-0280-6
– ident: ref67
  doi: 10.1016/j.amc.2013.04.041
– volume: 5
  start-page: 173
  year: 2007
  ident: ref3
  article-title: Generalized nash equilibrium problems
  publication-title: Annals of Operations Research
– ident: ref64
  doi: 10.1002/nme.1267
– ident: ref15
  doi: 10.1109/ICNN.1995.488968
– ident: ref68
  doi: 10.1109/ICACCI.2014.6968423
– ident: ref32
  doi: 10.1016/j.fluid.2004.06.063
– ident: ref89
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref31
  doi: 10.1002/aic.10119
– ident: ref41
  doi: 10.1016/j.amc.2007.08.088
– ident: ref22
  doi: 10.1109/TEVC.2016.2638437
– ident: ref39
  doi: 10.1016/j.amc.2013.05.057
– ident: ref72
  doi: 10.1155/2013/757391
– ident: ref21
  doi: 10.1016/S0098-1354(99)80231-2
– ident: ref42
  doi: 10.1109/4235.996017
– ident: ref50
  doi: 10.1016/j.eswa.2020.113261
– ident: ref82
  doi: 10.1007/s00521-017-3088-3
– ident: ref83
  doi: 10.1287/ijoc.2018.0876
– ident: ref6
  doi: 10.1016/j.knosys.2012.04.019
– ident: ref7
  doi: 10.1109/CEC.2015.7257223
– ident: ref48
  doi: 10.1109/TSMC.2016.2631479
– start-page: 283
  year: 2013
  ident: ref13
  publication-title: Intelligent Optimization Algorithms
– ident: ref27
  doi: 10.1016/S0952-1976(97)00067-5
– ident: ref17
  doi: 10.1162/106365603321828970
– ident: ref9
  doi: 10.1017/S0962492917000113
– ident: ref56
  doi: 10.1109/TSMC.2018.2852798
– ident: ref54
  doi: 10.1007/s10898-013-0105-7
– ident: ref5
  doi: 10.1109/TCNS.2017.2673540
– ident: ref60
  doi: 10.1016/j.knosys.2019.105312
– ident: ref88
  doi: 10.1126/science.1242072
– ident: ref36
  doi: 10.1007/978-3-319-09129-7_10
– volume: 4
  start-page: 173
  year: 2014
  ident: ref26
  article-title: Review of the genetic algorithm for nonlinear equations
  publication-title: Electronic Science and Technology
– volume: 2
  start-page: 44
  year: 2003
  ident: ref38
  article-title: Solution of simultaneous non-linear equations using genetic algorithms
  publication-title: WSEAS Transactions on Systems
– ident: ref81
  doi: 10.1016/j.camwa.2013.04.018
– ident: ref80
  doi: 10.1109/COGINF.2011.6016173
– ident: ref76
  doi: 10.1504/IJSI.2020.106406
– ident: ref47
  doi: 10.1109/TEVC.2017.2670779
– ident: ref46
  doi: 10.1109/CEC.2015.7257222
– ident: ref37
  doi: 10.1371/journal.pone.0121844
– ident: ref4
  doi: 10.1109/TSMC.2017.2705160
– ident: ref2
  doi: 10.1103/RevModPhys.80.167
– ident: ref14
  doi: 10.1093/oso/9780195099713.001.0001
– ident: ref8
  doi: 10.1007/BF03025291
– ident: ref73
  doi: 10.1016/j.jcde.2018.10.006
– ident: ref85
  doi: 10.1016/j.ins.2010.04.008
– volume: 14
  start-page: 150
  year: 2010
  ident: ref86
  article-title: Niching without niching parameters: Particle swarm optimization using a ring topology
  publication-title: IEEE Trans on Evol Comput
  doi: 10.1109/TEVC.2010.2050024
– ident: ref91
  doi: 10.1016/S0045-7825(99)00389-8
– ident: ref11
  doi: 10.4304/jcp.6.1.36-42
– ident: ref61
  doi: 10.1162/EVCO_a_00009
– volume: 50
  start-page: 396
  year: 2020
  ident: ref59
  article-title: A hybrid swarm intelligence with improved ring topology for nonlinear equations
  publication-title: Scientia Sinica Informationis
  doi: 10.1360/SSI-2019-0154
– ident: ref62
  doi: 10.1109/CEC.2013.6557555
– ident: ref57
  doi: 10.1109/ICSMC.2002.1176019
– ident: ref29
  doi: 10.1016/j.chaos.2015.09.027
– volume: 88
  start-page: 101
  year: 2012
  ident: ref77
  article-title: Leader glowworm swarm optimization algorithm for solving nonlinear equations systems
  publication-title: Electrical Review
– ident: ref10
  doi: 10.1016/j.cam.2016.12.019
– ident: ref55
  doi: 10.1016/j.amc.2006.11.033
– ident: ref19
  doi: 10.1007/s11227-016-1660-8
– ident: ref45
  doi: 10.1145/2792984
– ident: ref24
  doi: 10.1109/TSMC.2018.2828018
– ident: ref63
  doi: 10.1109/TEVC.2011.2161873
– ident: ref20
  doi: 10.1016/j.camwa.2011.05.031
– ident: ref49
  doi: 10.1016/j.ins.2020.06.042
– ident: ref25
  doi: 10.1109/TSMC.2019.2957324
– ident: ref44
  doi: 10.1109/TSMCA.2008.918599
– ident: ref78
  doi: 10.1016/j.asoc.2013.06.018
– ident: ref75
  doi: 10.1016/j.swevo.2019.03.010
– year: 2020
  ident: ref92
  publication-title: Integrating variable reduction strategy with evolutionary algorithm for solving nonlinear equations systems
– ident: ref43
  doi: 10.1109/TEVC.2007.892759
– ident: ref93
  doi: 10.1109/TEVC.2019.2932624
– ident: ref71
  doi: 10.1063/1.4825558
– ident: ref53
  doi: 10.1016/j.asoc.2011.05.016
SSID ssib052855636
ssib053565417
Score 2.4736826
Snippet Nonlinear Equations (NEs), which may usually have multiple roots, are ubiquitous in diverse fields. One of the main purposes of solving NEs is to locate as...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 15
SubjectTerms diversity preservation
intelligent optimization algorithms (ioa)
multiple roots location
nonlinear equations (nes)
transformation techniques
Title Nonlinear Equations Solving with Intelligent Optimization Algorithms: A Survey
URI https://doaj.org/article/e97e96035d844f1298e03fd1ca85862f
Volume 1
WOSCitedRecordID wos001543982300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2096-9929
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib053565417
  issn: 2096-9929
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIEC85YGBJTTxI7bZStUKJFqQCqhb5F5shNQHpAWJhd_OOQlVGRALS4bIjqzvrLvvnPN3hJxqBU6ACsWtYCPhhzrSlkNkFRsq6W0CZVXl443q9fRgYO6WWn2FmrBKHrgCruGMcsiyucy1EB6jk3Yx93kCVktk4z5431iZpWQKd5JkOghfLQKt5DL0uw53pxly9sggKah0fhg3iWm0-t0-5oosCXKG7EeIWlLyL0NOZ5Ns1FyRNqs1bpEVN9kmvV4lbmEL2n6tdLpntD8dhYMBGk5V6fVCZXNOb9EjjOurlrQ5epoWOGI8u6BN2n8r3t3HDnnotO9bV1HdFCECLvQ80h5zGiXBSgZxnmK6YFIvYw_A8xRSdBeGWZXmLrFc5I6nQxE74blHvHiaG75LVifTidsjNAHDIdZgkRYIoRBg6RJuIYVEG8fzfXL-jUMGtWJ4aFwxyjBzKIHLAnBZAC78xGb75Gwx4aUSy_h96GUAdjEsqFyXL9D2WW377C_bH_zHRw7JelhVVVd2RFbnxZs7JmvwPn-eFSfltsJn97P9BTVbzh0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Equations+Solving+with+Intelligent+Optimization+Algorithms%3A+A+Survey&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Gong%2C+Wenyin&rft.au=Liao%2C+Zuowen&rft.au=Mi%2C+Xianyan&rft.au=Wang%2C+Ling&rft.date=2021-03-01&rft.issn=2096-9929&rft.eissn=2096-9929&rft.volume=1&rft.issue=1&rft.spage=15&rft.epage=32&rft_id=info:doi/10.23919%2FCSMS.2021.0002&rft.externalDBID=n%2Fa&rft.externalDocID=10_23919_CSMS_2021_0002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon