Markov chain analysis of genetic algorithms applied to fitness functions perturbed concurrently by additive and multiplicative noise

We analyze the transition and convergence properties of genetic algorithms (GAs) applied to fitness functions perturbed concurrently by additive and multiplicative noise. Both additive noise and multiplicative noise are assumed to take on finitely many values. We explicitly construct a Markov chain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications Jg. 51; H. 2; S. 601 - 622
1. Verfasser: Nakama, Takehiko
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.03.2012
Springer Nature B.V
Schlagworte:
ISSN:0926-6003, 1573-2894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We analyze the transition and convergence properties of genetic algorithms (GAs) applied to fitness functions perturbed concurrently by additive and multiplicative noise. Both additive noise and multiplicative noise are assumed to take on finitely many values. We explicitly construct a Markov chain that models the evolution of GAs in this noisy environment and analyze it to investigate the algorithms. Our analysis shows that this Markov chain is indecomposable; it has only one positive recurrent communication class. Using this property, we establish a condition that is both necessary and sufficient for GAs to eventually (i.e., as the number of iterations goes to infinity) find a globally optimal solution with probability 1. Similarly, we identify a condition that is both necessary and sufficient for the algorithms to eventually with probability 1 fail to find any globally optimal solution. Our analysis also shows that the chain has a stationary distribution that is also its steady-state distribution. Based on this property and the transition probabilities of the chain, we compute the exact probability that a GA is guaranteed to select a globally optimal solution upon completion of each iteration.
AbstractList We analyze the transition and convergence properties of genetic algorithms (GAs) applied to fitness functions perturbed concurrently by additive and multiplicative noise. Both additive noise and multiplicative noise are assumed to take on finitely many values. We explicitly construct a Markov chain that models the evolution of GAs in this noisy environment and analyze it to investigate the algorithms. Our analysis shows that this Markov chain is indecomposable; it has only one positive recurrent communication class. Using this property, we establish a condition that is both necessary and sufficient for GAs to eventually (i.e., as the number of iterations goes to infinity) find a globally optimal solution with probability 1. Similarly, we identify a condition that is both necessary and sufficient for the algorithms to eventually with probability 1 fail to find any globally optimal solution. Our analysis also shows that the chain has a stationary distribution that is also its steady-state distribution. Based on this property and the transition probabilities of the chain, we compute the exact probability that a GA is guaranteed to select a globally optimal solution upon completion of each iteration.
We analyze the transition and convergence properties of genetic algorithms (GAs) applied to fitness functions perturbed concurrently by additive and multiplicative noise. Both additive noise and multiplicative noise are assumed to take on finitely many values. We explicitly construct a Markov chain that models the evolution of GAs in this noisy environment and analyze it to investigate the algorithms. Our analysis shows that this Markov chain is indecomposable; it has only one positive recurrent communication class. Using this property, we establish a condition that is both necessary and sufficient for GAs to eventually (i.e., as the number of iterations goes to infinity) find a globally optimal solution with probability 1. Similarly, we identify a condition that is both necessary and sufficient for the algorithms to eventually with probability 1 fail to find any globally optimal solution. Our analysis also shows that the chain has a stationary distribution that is also its steady-state distribution. Based on this property and the transition probabilities of the chain, we compute the exact probability that a GA is guaranteed to select a globally optimal solution upon completion of each iteration.
We analyze the transition and convergence properties of genetic algorithms (GAs) applied to fitness functions perturbed concurrently by additive and multiplicative noise. Both additive noise and multiplicative noise are assumed to take on finitely many values. We explicitly construct a Markov chain that models the evolution of GAs in this noisy environment and analyze it to investigate the algorithms. Our analysis shows that this Markov chain is indecomposable; it has only one positive recurrent communication class. Using this property, we establish a condition that is both necessary and sufficient for GAs to eventually (i.e., as the number of iterations goes to infinity) find a globally optimal solution with probability 1. Similarly, we identify a condition that is both necessary and sufficient for the algorithms to eventually with probability 1 fail to find any globally optimal solution. Our analysis also shows that the chain has a stationary distribution that is also its steady-state distribution. Based on this property and the transition probabilities of the chain, we compute the exact probability that a GA is guaranteed to select a globally optimal solution upon completion of each iteration.[PUBLICATION ABSTRACT]
Author Nakama, Takehiko
Author_xml – sequence: 1
  givenname: Takehiko
  surname: Nakama
  fullname: Nakama, Takehiko
  email: nakama@jhu.edu
  organization: Department of Applied Mathematics and Statistics, The Johns Hopkins University
BookMark eNp9kc1qFTEYhoO04GnrBbgLrtxM-2Uyf1lK0VaouNF1yCRfTlNzkjHJFM4F9D68Fq_MHI8gFHQVSJ7nJbzvGTkJMSAhrxlcMoDxKjPoJ9EAg0bwkTXsBdmwfuRNO4nuhGxAtEMzAPCX5CznBwAQI2835OmTSt_iI9X3ygWqgvL77DKNlm4xYHGaKr-NyZX7XaZqWbxDQ0v8-cO6EjBnategi4sh0wVTWdNc33UMek0JQ_F7Ou-pMsYV94g139Dd6ourOVr9vgrRZbwgp1b5jK_-nOfk64f3X65vm7vPNx-v3901mndTaSbTI7ZMWDFamHtueAtq5mAGNWljlYEBR44aYe6MsXNvsJ_YzEB1RsM483Py9pi7pPh9xVzkzmWN3quAcc2SARND3zFoK_rmGfoQ11T7ybJWybkYxVSh8QjpFHNOaKV2RR3qKEk5X_PkYR15XEfWdeRhHcmqyZ6ZS3I7lfb_ddqjkysbtpj-funf0i-xwKj6
CitedBy_id crossref_primary_10_1016_S1874_1029_13_60037_3
crossref_primary_10_1007_s10479_024_06112_3
crossref_primary_10_1155_2020_8451639
Cites_doi 10.1109/TEVC.2005.846356
10.1109/4235.735433
10.1109/4235.910461
10.1145/1389095.1389283
10.1109/21.370197
10.1016/S0045-7825(99)00386-2
10.1109/72.265964
10.1007/s11081-006-9970-y
10.1007/BF01530778
10.1109/ACC.2007.4282251
10.1162/evco.1993.1.3.269
10.1137/0325087
10.1162/evco.1996.4.2.113
10.1007/978-3-540-70560-4_11
10.7551/mitpress/6229.001.0001
10.1007/978-1-4615-1105-2
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2010
Springer Science+Business Media, LLC 2012
Copyright_xml – notice: Springer Science+Business Media, LLC 2010
– notice: Springer Science+Business Media, LLC 2012
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-010-9371-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central (NC Live)
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 622
ExternalDocumentID 2602584181
10_1007_s10589_010_9371_1
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c348t-8d5ee219f97f0b53d320ab30d6a8cdfad06e73ece0b4ddfb5de581b10a4dc07b3
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301180900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Sun Nov 09 10:36:59 EST 2025
Wed Nov 26 13:41:24 EST 2025
Sat Nov 29 01:51:25 EST 2025
Tue Nov 18 22:01:38 EST 2025
Fri Feb 21 02:30:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Markov chain analysis
Evolutionary computation
Perturbed fitness functions
Additive and multiplicative noise
Noisy environments
Genetic algorithms
Convergence analysis
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8d5ee219f97f0b53d320ab30d6a8cdfad06e73ece0b4ddfb5de581b10a4dc07b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 926339798
PQPubID 30811
PageCount 22
ParticipantIDs proquest_miscellaneous_1019654102
proquest_journals_926339798
crossref_citationtrail_10_1007_s10589_010_9371_1
crossref_primary_10_1007_s10589_010_9371_1
springer_journals_10_1007_s10589_010_9371_1
PublicationCentury 2000
PublicationDate 20120300
2012-3-00
20120301
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 3
  year: 2012
  text: 20120300
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2012
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References VoseM.D.LiepinsG.E.Punctuated equilibria in genetic searchComplex Syst.19915314411164200764.68149
ChenA.SubprasomK.JiZ.A simulation-based multi-objective genetic algorithm (SMOGA) procedure for BOT network design problemOptim. Eng.2006722524722701521138.9046610.1007/s11081-006-9970-y
NissenV.PropachJ.On the robustness of population-based versus point-based optimization in the presence of noiseIEEE Trans. Evol. Comput.1998210711910.1109/4235.735433
RudinL.I.OsherS.Total variation based image restoration with free local constraintsProceedings of the 2004 International Conference on Image Processing20043135
SuzukiJ.A Markov chain analysis on simple genetic algorithmsIEEE Trans. Syst. Man Cybern.19952565565910.1109/21.370197
JebaliaM.AugerA.On multiplicative noise models for stochastic searchProceedings of the 2008 International Conference on Parallel Problem Solving from Nature20085261
RudolphG.Convergence analysis of canonical genetic algorithmsIEEE Trans. Neural Netw.199459610110.1109/72.265964
LeungK.S.DuanQ.H.XuZ.B.WongC.K.A new model of simulated evolutionary computation—convergence analysis and specificationsIEEE Trans. Evol. Comput.2001531610.1109/4235.910461
HopkinsW.E.Optimal stabilization of families of linear stochastic differential equations with jump coefficients and multiplicative noiseSIAM J. Control Optim.198725158716009124570636.9307710.1137/0325087
KarlinS.TaylorH.M.A First Course in Stochastic Processes1975New YorkAcademic Press0315.60016
GoldbergD.E.RudnickM.W.Genetic algorithms and the variance of fitnessComplex Syst.199152652780729.68075
JinY.BrankeJ.Evolutionary optimization in uncertain environments—a surveyIEEE Trans. Evol. Comput.2005330331710.1109/TEVC.2005.846356
RudolphG.Partial order approach to noisy fitness functionsProceedings of the 2001 IEEE Congress on Evolutionary Computation2001318325
BeyerH.G.Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practiceComput. Methods Appl. Mech. Eng.20001862392671064.9057410.1016/S0045-7825(99)00386-2
KarlinS.TaylorH.M.A Second Course in Stochastic Processes1981New YorkAcademic Press0469.60001
VoseM.D.The Simple Genetic Algorithm1999CambridgeMIT Press0952.65048
MillerB.L.GoldbergD.E.Genetic algorithms, selection schemes, and the varying effects of noiseEvol. Comput.1996411313110.1162/evco.1996.4.2.113
ArnoldD.V.Noisy Optimization with Evolution Strategies2002BostonKluwer Academic1103.9000510.1007/978-1-4615-1105-2
PrimbsJ.A.Portfolio optimization applications of stochastic receding horizon controlProceedings of the 2007 American Control Conference20071811181610.1109/ACC.2007.4282251
DavisT.E.PrincipeJ.A Markov chain framework for the simple genetic algorithmEvol. Comput.1993126928810.1162/evco.1993.1.3.269
NakamaT.Markov chain analysis of genetic algorithms applied to fitness functions perturbed by multiple sources of additive noiseStud. Comput. Intell.200814912313610.1007/978-3-540-70560-4_11
Di PietroA.WhiteL.BaroneL.Applying evolutionary algorithms to problems with noisy, time-consuming fitness functionsProceedings of the 2004 Congress on Evolutionary Computation200412541261
NixA.VoseM.D.Modeling genetic algorithm with Markov chainsAnn. Math. Artif. Intell.199252734127941710.1007/BF01530781
NakamaT.Theoretical analysis of genetic algorithms in noisy environments based on a Markov modelProceedings of the 2008 Genetic and Evolutionary Computation Conference20081001100810.1145/1389095.1389283
H.G. Beyer (9371_CR2) 2000; 186
D.E. Goldberg (9371_CR6) 1991; 5
S. Karlin (9371_CR11) 1981
A. Pietro Di (9371_CR5) 2004
G. Rudolph (9371_CR20) 1994; 5
T. Nakama (9371_CR15) 2008
M.D. Vose (9371_CR24) 1991; 5
T. Nakama (9371_CR14) 2008; 149
L.I. Rudin (9371_CR19) 2004
T.E. Davis (9371_CR4) 1993; 1
W.E. Hopkins (9371_CR7) 1987; 25
J.A. Primbs (9371_CR18) 2007
G. Rudolph (9371_CR21) 2001
M.D. Vose (9371_CR23) 1999
K.S. Leung (9371_CR12) 2001; 5
D.V. Arnold (9371_CR1) 2002
J. Suzuki (9371_CR22) 1995; 25
B.L. Miller (9371_CR13) 1996; 4
A. Nix (9371_CR17) 1992; 5
S. Karlin (9371_CR10) 1975
M. Jebalia (9371_CR8) 2008
Y. Jin (9371_CR9) 2005; 3
V. Nissen (9371_CR16) 1998; 2
A. Chen (9371_CR3) 2006; 7
References_xml – reference: VoseM.D.LiepinsG.E.Punctuated equilibria in genetic searchComplex Syst.19915314411164200764.68149
– reference: GoldbergD.E.RudnickM.W.Genetic algorithms and the variance of fitnessComplex Syst.199152652780729.68075
– reference: ChenA.SubprasomK.JiZ.A simulation-based multi-objective genetic algorithm (SMOGA) procedure for BOT network design problemOptim. Eng.2006722524722701521138.9046610.1007/s11081-006-9970-y
– reference: JebaliaM.AugerA.On multiplicative noise models for stochastic searchProceedings of the 2008 International Conference on Parallel Problem Solving from Nature20085261
– reference: KarlinS.TaylorH.M.A First Course in Stochastic Processes1975New YorkAcademic Press0315.60016
– reference: NakamaT.Markov chain analysis of genetic algorithms applied to fitness functions perturbed by multiple sources of additive noiseStud. Comput. Intell.200814912313610.1007/978-3-540-70560-4_11
– reference: DavisT.E.PrincipeJ.A Markov chain framework for the simple genetic algorithmEvol. Comput.1993126928810.1162/evco.1993.1.3.269
– reference: Di PietroA.WhiteL.BaroneL.Applying evolutionary algorithms to problems with noisy, time-consuming fitness functionsProceedings of the 2004 Congress on Evolutionary Computation200412541261
– reference: ArnoldD.V.Noisy Optimization with Evolution Strategies2002BostonKluwer Academic1103.9000510.1007/978-1-4615-1105-2
– reference: BeyerH.G.Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practiceComput. Methods Appl. Mech. Eng.20001862392671064.9057410.1016/S0045-7825(99)00386-2
– reference: NakamaT.Theoretical analysis of genetic algorithms in noisy environments based on a Markov modelProceedings of the 2008 Genetic and Evolutionary Computation Conference20081001100810.1145/1389095.1389283
– reference: VoseM.D.The Simple Genetic Algorithm1999CambridgeMIT Press0952.65048
– reference: LeungK.S.DuanQ.H.XuZ.B.WongC.K.A new model of simulated evolutionary computation—convergence analysis and specificationsIEEE Trans. Evol. Comput.2001531610.1109/4235.910461
– reference: PrimbsJ.A.Portfolio optimization applications of stochastic receding horizon controlProceedings of the 2007 American Control Conference20071811181610.1109/ACC.2007.4282251
– reference: RudolphG.Partial order approach to noisy fitness functionsProceedings of the 2001 IEEE Congress on Evolutionary Computation2001318325
– reference: NixA.VoseM.D.Modeling genetic algorithm with Markov chainsAnn. Math. Artif. Intell.199252734127941710.1007/BF01530781
– reference: SuzukiJ.A Markov chain analysis on simple genetic algorithmsIEEE Trans. Syst. Man Cybern.19952565565910.1109/21.370197
– reference: NissenV.PropachJ.On the robustness of population-based versus point-based optimization in the presence of noiseIEEE Trans. Evol. Comput.1998210711910.1109/4235.735433
– reference: HopkinsW.E.Optimal stabilization of families of linear stochastic differential equations with jump coefficients and multiplicative noiseSIAM J. Control Optim.198725158716009124570636.9307710.1137/0325087
– reference: MillerB.L.GoldbergD.E.Genetic algorithms, selection schemes, and the varying effects of noiseEvol. Comput.1996411313110.1162/evco.1996.4.2.113
– reference: RudolphG.Convergence analysis of canonical genetic algorithmsIEEE Trans. Neural Netw.199459610110.1109/72.265964
– reference: RudinL.I.OsherS.Total variation based image restoration with free local constraintsProceedings of the 2004 International Conference on Image Processing20043135
– reference: JinY.BrankeJ.Evolutionary optimization in uncertain environments—a surveyIEEE Trans. Evol. Comput.2005330331710.1109/TEVC.2005.846356
– reference: KarlinS.TaylorH.M.A Second Course in Stochastic Processes1981New YorkAcademic Press0469.60001
– volume: 5
  start-page: 31
  year: 1991
  ident: 9371_CR24
  publication-title: Complex Syst.
– volume-title: A Second Course in Stochastic Processes
  year: 1981
  ident: 9371_CR11
– volume: 3
  start-page: 303
  year: 2005
  ident: 9371_CR9
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.846356
– start-page: 318
  volume-title: Proceedings of the 2001 IEEE Congress on Evolutionary Computation
  year: 2001
  ident: 9371_CR21
– volume-title: A First Course in Stochastic Processes
  year: 1975
  ident: 9371_CR10
– volume: 2
  start-page: 107
  year: 1998
  ident: 9371_CR16
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.735433
– start-page: 52
  volume-title: Proceedings of the 2008 International Conference on Parallel Problem Solving from Nature
  year: 2008
  ident: 9371_CR8
– volume: 5
  start-page: 3
  year: 2001
  ident: 9371_CR12
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.910461
– start-page: 1001
  volume-title: Proceedings of the 2008 Genetic and Evolutionary Computation Conference
  year: 2008
  ident: 9371_CR15
  doi: 10.1145/1389095.1389283
– volume: 25
  start-page: 655
  year: 1995
  ident: 9371_CR22
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.370197
– volume: 186
  start-page: 239
  year: 2000
  ident: 9371_CR2
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00386-2
– volume: 5
  start-page: 96
  year: 1994
  ident: 9371_CR20
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.265964
– start-page: 31
  volume-title: Proceedings of the 2004 International Conference on Image Processing
  year: 2004
  ident: 9371_CR19
– volume: 7
  start-page: 225
  year: 2006
  ident: 9371_CR3
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-006-9970-y
– volume: 5
  start-page: 27
  year: 1992
  ident: 9371_CR17
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/BF01530778
– start-page: 1811
  volume-title: Proceedings of the 2007 American Control Conference
  year: 2007
  ident: 9371_CR18
  doi: 10.1109/ACC.2007.4282251
– volume: 1
  start-page: 269
  year: 1993
  ident: 9371_CR4
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1993.1.3.269
– volume: 25
  start-page: 1587
  year: 1987
  ident: 9371_CR7
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0325087
– volume: 4
  start-page: 113
  year: 1996
  ident: 9371_CR13
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1996.4.2.113
– volume: 149
  start-page: 123
  year: 2008
  ident: 9371_CR14
  publication-title: Stud. Comput. Intell.
  doi: 10.1007/978-3-540-70560-4_11
– volume: 5
  start-page: 265
  year: 1991
  ident: 9371_CR6
  publication-title: Complex Syst.
– volume-title: The Simple Genetic Algorithm
  year: 1999
  ident: 9371_CR23
  doi: 10.7551/mitpress/6229.001.0001
– volume-title: Noisy Optimization with Evolution Strategies
  year: 2002
  ident: 9371_CR1
  doi: 10.1007/978-1-4615-1105-2
– start-page: 1254
  volume-title: Proceedings of the 2004 Congress on Evolutionary Computation
  year: 2004
  ident: 9371_CR5
SSID ssj0009732
Score 1.9575677
Snippet We analyze the transition and convergence properties of genetic algorithms (GAs) applied to fitness functions perturbed concurrently by additive and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms Additives
Algorithms
Chains
Chromosomes
Convex and Discrete Geometry
Elitism
Expected values
Genetic algorithms
Investigations
Management Science
Markov analysis
Markov chains
Mathematical models
Mathematics
Mathematics and Statistics
Mutation
Noise
Operations Research
Operations Research/Decision Theory
Optimization
Population
Probability
Statistics
Studies
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTtxAEC1FkAM5AIFEDJs6Uk4gSz1ur0eEQFxAURIQN6uXchhpsEdjg8QH8B98C19GlZcZggApOdput1vdtbqqXgF8J6UmfeOjZ5WzXqBs6iUJ8aPR5Lk5chg0uqbZRHx2llxepj-6Ou6qz3bvQ5KNpH5W7BZyeg_JDcZw88jlWSRtF3Me389fF3Ok3bjpSiZTP_JIm6s-lPnaFH8ro7mF-SIo2uia45X_WuUqLHempThoaeEzfMBiDT49Axykq9MZSmu1BktsabZAzetwz1U75a2wV3pUCN1hlYgyF0RiXOko9PhPOR3VV9eV0K3tKury8SEf1SwuBWvIhojFBKekyAw9J2fbtgBQ4zth7gRnL7F8pfmd6HIZm5-GdKsoRxV-gfPjo9-HJ17Xo4EON0hqL3EhIkm9PI1zaULllC-1UdJFOrEu105GGCu0KE3gXG5ChyFZykOpA2dlbNRXWCjKAjdApP7QoR8bF5GPE6Q2IefUDTXaENMoDOwAZH9Yme0AzLmPxjibQy_z5me0-RlvfjYcwN7slUmL3vHe4K2eArKOkauMqEhx6DMZwLfZU-JADqvoAsubipPkeH1kqQ1gvyeK-Qxvfm_zn0ZvwRLZan6b_rYNC_X0Bnfgo70lOpnuNizwBB77BWY
  priority: 102
  providerName: Springer Nature
Title Markov chain analysis of genetic algorithms applied to fitness functions perturbed concurrently by additive and multiplicative noise
URI https://link.springer.com/article/10.1007/s10589-010-9371-1
https://www.proquest.com/docview/926339798
https://www.proquest.com/docview/1019654102
Volume 51
WOSCitedRecordID wos000301180900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: 7WY
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/Inform Global
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M0C
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: P5Z
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: K7-
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M7S
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M2P
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcyrNiW1gZiRPIwnk6OaG2aoWEWK1aHoVL5FfoSkuy3aSVeu8PZyZxdgGJXrhYSpzYlmY8D8_4G4BXqNREqEPHTWQNjyOT8yzD_agVem4WHQblbFdsQk4m2dlZPvW5OY1PqxxkYieobW3ojPxtHqYRxaCyd4sLTkWjKLjqK2hswBaBJFDlhmnyfY25K7v6ZAJ_5ajXoyGo2d-cSyhXCIUQAcLx4E-1tLY1_wqPdlrn-MF_rvchbHtzk-33_PEI7rjqMdz_DYTwCdzQdZ36iplzNauY8iAlrC4Z8hZdcWRq_gOHbs9_Nkz1Ritra1bOWhKTjDRjx7xs4ZaowDR2o5NteuCn-TXT14yylkiu4vCW-RzG7rAQX1X1rHFP4fPx0afD99zXZkCixlnLM5s4h9KuzGUpdBLZKBRKR8KmKjO2VFakTkbOOKFja0udWJeghRwIFVsjpI52YLOqK_cMWB4G1oVS2xR9mzg3GTqlNlDOJC5Pk9iMQAykKYwHLqf6GfNiDblM1CyQmgVRswhG8Hr1y6JH7bjt472BgoXfwE2xIt8IXq56cedROEVVrr5sKDmO1ocW2gjeDGyyHuGf8-3eOt8e3EObLOzT3J7DZru8dC_grrlqZ81yDBvy67cxbB0cTaYn-PRBcmw_ikNqwym18nTcbQNsT06__AJSKQzg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQk4lLViKIuR4AKKcOwszqFCCKhaTRlxKFJvwVvakYZkmKRFc-fv8B95L8sMINFbD1zjxHGc721-G8BzFGpcGOEDK50NImmzQCmkR6PRcnNoMGjv2mYT6WSijo-zTxvwc8iFobDKgSe2jNpVls7IX2cikeSDUm_m3wJqGkXO1aGDRoeKsV9-R4ut3j14j7_3hRB7H47e7Qd9UwFcTaSaQLnYeyTTIksLbmLppODaSO4SrawrtOOJT6W3npvIucLEzseo2oVcR87y1Eic9wpcjaRKKIJsnAbrGr9p2w-N41ID1CPk4ETtMvViik1CpkcF6ILwTzG41m3_cse2Um7v1n-2P7dhq1en2dsO_3dgw5d34eZvRRbvwQ9KR6rOmT3V05LpvggLqwqGtEMpnEzPTvBTmtOvNdOdUs6aihXThsQAI8nfEieb-wUKaIPDtiptV9hqtmRmySgqi-QGTu9YH6PZHobipbKa1v4-fL6UbdiGzbIq_QNgmQidF6lxCdpuUWYVGt0u1N7GPkviyI6AD1DIbV-YnfqDzPJ1SWlCT47oyQk9eTiCl6tH5l1Vkotu3hkQk_cMqs5XcBnBs9UochZyF-nSV2c1Bf_R-lADHcGrAZbrGf75vocXvu8pXN8_-niYHx5MxjtwA_VP0YX0PYLNZnHmH8M1e95M68WTlrgYfLlstP4CojVmFw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBSE4sBZ1KIuR4AKy6thZDwghyohq0KgHkHoL3kJHGpLpJC2aO3-Kf8d7WWYAid564BonjuN8b_PbAJ6jUBPSSM-tcpaHymY8TZEejUbLzaHBoL1rm00k02l6fJwdbcHPIReGwioHntgyaldZOiPfz2SsyAeV7hd9VMTRwfjN4pRTAylytA7dNDqETPzqO1pv9evDA_zVL6Qcv__07gPvGwzgysK04amLvEeSLbKkECZSTkmhjRIu1ql1hXYi9ony1gsTOleYyPkI1bxA6NBZkRiF816BqyiEQ7L7Jgnf1PtN2t5oApfNUadQg0O1y9qLKE4JGSAVo-PBnyJxo-f-5ZptJd749n-8V3fgVq9ms7cdXdyFLV_eg5u_FV-8Dz8oTak6Z_ZEz0qm--IsrCoY0hSldjI9_4qf0px8q5nulHXWVKyYNSQeGGkELdGyhV-i4DY4bKvSdgWv5itmVoyitUie4PSO9bGb7SEpXiqrWe134POlbMMD2C6r0u8Cy2TgvEyMi9GmCzObojHuAu1t5LM4Cu0IxACL3PYF26lvyDzflJomJOWIpJyQlAcjeLl-ZNFVK7no5r0BPXnPuOp8DZ0RPFuPIschN5IufXVWU1AgrQ810xG8GiC6meGf73t44fuewnUEaf7xcDrZgxuolsou0u8RbDfLM_8YrtnzZlYvn7R0xuDLZYP1Fw42btE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Markov+chain+analysis+of+genetic+algorithms+applied+to+fitness+functions+perturbed+concurrently+by+additive+and+multiplicative+noise&rft.jtitle=Computational+optimization+and+applications&rft.au=Nakama%2C+Takehiko&rft.date=2012-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=51&rft.issue=2&rft.spage=601&rft_id=info:doi/10.1007%2Fs10589-010-9371-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2602584181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon