Spatial–temporal travel pattern mining using massive taxi trajectory data

Deep understanding of residents’ travel patterns would provide helpful insights into the mechanisms of many socioeconomic phenomena. With the rapid development of location-aware computing technologies, researchers have easy access to large quantities of travel data. As an important data source, taxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A Jg. 501; S. 24 - 41
Hauptverfasser: Zheng, Linjiang, Xia, Dong, Zhao, Xin, Tan, Longyou, Li, Hang, Chen, Li, Liu, Weining
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2018
Schlagworte:
ISSN:0378-4371, 1873-2119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep understanding of residents’ travel patterns would provide helpful insights into the mechanisms of many socioeconomic phenomena. With the rapid development of location-aware computing technologies, researchers have easy access to large quantities of travel data. As an important data source, taxi trajectory data are featured by their high quality, good continuity and wide distribution, making it suitable for travel pattern mining. In this paper, we use taxi trajectory data to study spatial–temporal characterization of urban residents’ travel patterns from two aspects: attractive areas and hot paths. Firstly, a framework of trajectory preprocessing, including data cleaning and extracting the taxi passenger pick-up/drop-off points, is presented to reduce the noise and redundancy in raw trajectory data. Then, a grid density based clustering algorithm is proposed to discover travel attractive areas in different periods of a day. On this basis, we put forward a spatial–temporal trajectory clustering method to discover hot paths among travel attractive areas. Compared with previous algorithms, which only consider the spatial constraint between trajectories, temporal constraint is also considered in our method. Through the experiments, we discuss how to determine the optimal parameters of the two clustering algorithms and verify the effectiveness of the algorithms using real data. Furthermore, we analyze spatial–temporal characterization of Chongqing residents’ travel pattern. •We use taxi GPS data to analyze spatial–temporal feature of travel patterns.•A grid clustering algorithm is proposed to discover travel attractive areas.•A method of trajectory clustering is used to discover urban hot paths.•Temporal factor is taken into consideration in spatial-temporal clustering.
AbstractList Deep understanding of residents’ travel patterns would provide helpful insights into the mechanisms of many socioeconomic phenomena. With the rapid development of location-aware computing technologies, researchers have easy access to large quantities of travel data. As an important data source, taxi trajectory data are featured by their high quality, good continuity and wide distribution, making it suitable for travel pattern mining. In this paper, we use taxi trajectory data to study spatial–temporal characterization of urban residents’ travel patterns from two aspects: attractive areas and hot paths. Firstly, a framework of trajectory preprocessing, including data cleaning and extracting the taxi passenger pick-up/drop-off points, is presented to reduce the noise and redundancy in raw trajectory data. Then, a grid density based clustering algorithm is proposed to discover travel attractive areas in different periods of a day. On this basis, we put forward a spatial–temporal trajectory clustering method to discover hot paths among travel attractive areas. Compared with previous algorithms, which only consider the spatial constraint between trajectories, temporal constraint is also considered in our method. Through the experiments, we discuss how to determine the optimal parameters of the two clustering algorithms and verify the effectiveness of the algorithms using real data. Furthermore, we analyze spatial–temporal characterization of Chongqing residents’ travel pattern. •We use taxi GPS data to analyze spatial–temporal feature of travel patterns.•A grid clustering algorithm is proposed to discover travel attractive areas.•A method of trajectory clustering is used to discover urban hot paths.•Temporal factor is taken into consideration in spatial-temporal clustering.
Author Li, Hang
Tan, Longyou
Liu, Weining
Zheng, Linjiang
Zhao, Xin
Chen, Li
Xia, Dong
Author_xml – sequence: 1
  givenname: Linjiang
  surname: Zheng
  fullname: Zheng, Linjiang
  email: zlj_cqu@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Dong
  surname: Xia
  fullname: Xia, Dong
  organization: College of Computer Science, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: College of Computer Science, Chongqing University, Chongqing 400044, China
– sequence: 4
  givenname: Longyou
  surname: Tan
  fullname: Tan, Longyou
  organization: Chongqing Integrated Transport Hub Development Investment Co., Ltd, Chongqing 401121, China
– sequence: 5
  givenname: Hang
  surname: Li
  fullname: Li, Hang
  organization: Chongqing Integrated Transport Hub Development Investment Co., Ltd, Chongqing 401121, China
– sequence: 6
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  organization: College of Computer Science, Chongqing University, Chongqing 400044, China
– sequence: 7
  givenname: Weining
  surname: Liu
  fullname: Liu, Weining
  organization: College of Computer Science, Chongqing University, Chongqing 400044, China
BookMark eNqFkEtOwzAQhi1UJNrCCdjkAgnj2LWdBQtU8RKVWABry3Um4CiPyjYV3XEHbshJSCgrFrCZWcx8o_m_GZl0fYeEnFLIKFBxVmebl10wWQ5UZZBnIPgBmVIlWZpTWkzIFJhUKWeSHpFZCDUAUMnyKbl72JjoTPP5_hGx3fTeNEn0ZotNMgwi-i5pXee65-Q1jLU1IbgtJtG8uXGxRht7v0tKE80xOaxME_Dkp8_J09Xl4_ImXd1f3y4vVqllXMVUCcEpMlkBzwErrKQFzpjiWIl1pWDN11xJZQtTKlxQtmCSCyMWhRCq5EKwOSn2d63vQ_BYaevikKLvhodcoyno0Yqu9bcVPVrRkOvBysCyX-zGu9b43T_U-Z7CIdbWodfBOuwsls4PAnTZuz_5L3gZgSw
CitedBy_id crossref_primary_10_1016_j_ins_2024_120516
crossref_primary_10_1016_j_tbs_2022_09_001
crossref_primary_10_1016_j_cities_2022_103939
crossref_primary_10_1155_2021_5295784
crossref_primary_10_1016_j_dche_2025_100251
crossref_primary_10_3390_app131911020
crossref_primary_10_1016_j_rtbm_2025_101351
crossref_primary_10_1049_iet_its_2019_0785
crossref_primary_10_3390_ijgi8120526
crossref_primary_10_1155_2020_6939328
crossref_primary_10_1177_03611981231182710
crossref_primary_10_1016_j_physa_2021_126645
crossref_primary_10_3390_app14198583
crossref_primary_10_1016_j_physa_2021_126324
crossref_primary_10_1109_ACCESS_2022_3168993
crossref_primary_10_1016_j_isprsjprs_2019_05_002
crossref_primary_10_1016_j_scs_2022_103724
crossref_primary_10_1109_TITS_2021_3117130
crossref_primary_10_1007_s00354_025_00300_w
crossref_primary_10_1016_j_ins_2022_03_074
crossref_primary_10_3390_s20185078
crossref_primary_10_1109_TITS_2021_3116963
crossref_primary_10_1155_2021_6647273
crossref_primary_10_1016_j_jtrangeo_2024_104032
crossref_primary_10_1155_2021_6651718
crossref_primary_10_1177_0739456X20967433
crossref_primary_10_3390_ijgi9010007
crossref_primary_10_1109_TVT_2023_3306158
crossref_primary_10_1186_s40537_019_0203_6
crossref_primary_10_1177_03611981211058429
crossref_primary_10_3390_su16020866
crossref_primary_10_1016_j_physa_2020_125301
crossref_primary_10_1016_j_physa_2021_126056
crossref_primary_10_1016_j_eswa_2023_122055
crossref_primary_10_1088_1742_6596_1584_1_012051
crossref_primary_10_3390_ijgi12060225
crossref_primary_10_1080_17538947_2024_2356160
crossref_primary_10_1016_j_physa_2023_128843
crossref_primary_10_3390_app9102054
crossref_primary_10_3390_su12051714
crossref_primary_10_1016_j_tbs_2020_04_007
crossref_primary_10_1109_TII_2019_2911697
crossref_primary_10_1016_j_future_2019_07_068
crossref_primary_10_3390_math12081255
crossref_primary_10_1109_MITS_2021_3098627
crossref_primary_10_1016_j_cities_2022_104127
crossref_primary_10_1080_15472450_2023_2289123
crossref_primary_10_3390_info15010051
crossref_primary_10_1007_s10661_024_13190_0
crossref_primary_10_1016_j_eswa_2019_112846
crossref_primary_10_3390_bdcc7020088
crossref_primary_10_1080_10941665_2025_2511784
crossref_primary_10_1111_tgis_12994
crossref_primary_10_1631_FITEE_2200621
crossref_primary_10_3390_ijgi14080285
crossref_primary_10_3390_ijgi10070473
crossref_primary_10_3390_ijgi8110468
crossref_primary_10_1155_2020_1375426
crossref_primary_10_1109_ACCESS_2019_2949049
crossref_primary_10_3390_math12233681
crossref_primary_10_3390_app112210784
crossref_primary_10_1080_13658816_2020_1712401
crossref_primary_10_3390_land13060840
crossref_primary_10_1109_TITS_2020_3001188
crossref_primary_10_1177_23998083231224013
crossref_primary_10_1016_j_neucom_2025_130785
crossref_primary_10_3390_ijgi10030161
crossref_primary_10_1038_s41598_021_04037_6
crossref_primary_10_3390_su11236870
crossref_primary_10_1080_19427867_2021_1988439
crossref_primary_10_1109_TITS_2019_2940724
Cites_doi 10.1016/j.physa.2017.04.182
10.1109/TKDE.2011.200
10.1016/j.trc.2013.04.001
10.1007/s12650-016-0357-7
10.1109/TITS.2015.2498180
10.1080/15230406.2015.1014424
10.1016/j.physa.2014.10.085
10.1145/1247480.1247546
10.1109/TITS.2012.2209201
10.1016/j.trpro.2015.07.010
10.1109/GLOCOM.2014.7037223
10.1109/CGC.2012.34
10.1145/304182.304187
10.1007/s12650-015-0278-x
10.1016/j.physa.2016.03.047
10.1145/2030112.2030126
10.1109/GEOINFORMATICS.2009.5293469
10.1109/ICSDM.2015.7298022
10.1145/1409635.1409678
10.1016/j.physa.2017.08.105
10.1016/j.physa.2015.06.032
10.1007/978-3-540-74825-0_7
10.1145/2543581.2543584
10.1016/j.jtrangeo.2015.01.016
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2018.02.064
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 41
ExternalDocumentID 10_1016_j_physa_2018_02_064
S0378437118301419
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c348t-86641e37f0420efef7c043384ef6bf80b4b4878c9ad8e51353746a659668d4663
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430027500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Sat Nov 29 02:47:37 EST 2025
Tue Nov 18 20:36:02 EST 2025
Fri Feb 23 02:35:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hot path
Spatial–temporal
Attractive area
Trajectory clustering
Grid-based clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-86641e37f0420efef7c043384ef6bf80b4b4878c9ad8e51353746a659668d4663
OpenAccessLink https://repositorio.unal.edu.co/handle/unal/83188
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2018_02_064
crossref_primary_10_1016_j_physa_2018_02_064
elsevier_sciencedirect_doi_10_1016_j_physa_2018_02_064
PublicationCentury 2000
PublicationDate 2018-07-01
2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhan, Hasan, Ukkusuri, Kamga (b23) 2013; 33
Y. Yue, Y. Zhuang, Q. Li, Q. Mao, Mining time-dependent attractive areas and movement patterns from taxi trajectory data, in: 2009 17th Int Conf. Geoinformatics, Geoinformatics, 2009, 2009.
M. Ester, H.P. Kriegel, J. Sander, X. Xu, A Density-based algorithm for discovering clusters in large spatial databases with noise, in: Proc. 2nd Int. Conf. Knowl. Discov. Data Min. 1996, pp. 226–231.
Wang, Hu, Zhu, Qin, Jia (b11) 2018; 491
B.D. Ziebart, A.L. Maas, A.K. Dey, J.A. Bagnell, Navigate like a cabbie: Probabilistic reasoning from observed context-aware behavior, in: 10Th Int. Conf. Ubiquitous Comput. 2008, pp. 322–331.
Yuan, Zheng, Xie, Sun (b2) 2013; 25
M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, Optics: Ordering points to identify the clustering structure, in: ACM Sigmod Rec. 1999, pp. 49–60.
Yuan, Deng, Taleb, Wan, Bi (b4) 2016; 17
Wang, Pan, Yuan, Zhang, Liu (b8) 2015; 420
Cai, Zhan, Zhu, Jia, Chiu, Xu (b9) 2016; 457
Zheng, Capra, Wolfson, Yang (b7) 2014; 5
Jiang, Guan, Zhang, Chen, Yang (b10) 2017; 483
A. Hinneburg, H. Gabriel, DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation, in: Int. Conf. Intell.Data Anal., 2007, pp. 70–80.
C. Liu, K. Qin, C. Kang, Exploring time-dependent traffic congestion patterns from taxi trajectory data, in: ICSDM 2015 - Proc. 2015 2nd IEEE Int. Conf. Spat. Data Min. Geogr. Knowl. Serv., 2015, pp. 39–44.
Pan, Qi, Wu, Zhang, Li (b6) 2013; 14
Lu, Liang, Wang, Yuan (b13) 2016; 19
Tang, Liu, Wang, Wang (b20) 2015; 438
J. Lee, J. Han, K.-Y. Whang, Trajectory clustering: a partition-and-group framework, in: Proc. 2007 ACM SIGMOD Int. Conf. Manag. Data - SIGMOD ’07, 2007, p. 593.
Castro, Zhang, Chen, Li, Pan (b12) 2013; 46
Qing, Qin, Chen, Li (b15) 2016; 32
.
Jiang, Zheng, Tian, Liang (b14) 2015; 18
X. Niu, Y. Zhu, X. Zhang, DeepSense: A novel learning mechanism for traffic prediction with taxi GPS traces, in: 2014 IEEE Glob. Commun. Conf. GLOBECOM 2014, 2014, pp. 2745–2750.
Lian, Zhu, Xie, Chen (b3) 2014
Y. Zheng, Y. Liu, J. Yuan, X. Xie, Urban computing with taxicabs, in: Proc. 13th Int. Conf. Ubiquitous Comput. - UbiComp ’11, 2011, p. 89.
Liu, Gong, Gong, Liu (b19) 2015; 43
M. Zhang, J. Liu, Y. Liu, Z. Hu, L. Yi, Recommending pick-up points for taxi-drivers based on spatio-temporal clustering, in: Proc. - 2nd Int. Conf. Cloud Green Comput. 2nd Int. Conf. Soc. Comput. Its Appl. CGC/SCA 2012, 2012, pp. 67–72.
Gong, Liu, Wu, Liu (b18) 2016; 43
Kim, Mahmassani (b24) 2015; 9
Yuan (10.1016/j.physa.2018.02.064_b4) 2016; 17
Pan (10.1016/j.physa.2018.02.064_b6) 2013; 14
Cai (10.1016/j.physa.2018.02.064_b9) 2016; 457
10.1016/j.physa.2018.02.064_b28
10.1016/j.physa.2018.02.064_b27
Kim (10.1016/j.physa.2018.02.064_b24) 2015; 9
Wang (10.1016/j.physa.2018.02.064_b8) 2015; 420
10.1016/j.physa.2018.02.064_b26
Liu (10.1016/j.physa.2018.02.064_b19) 2015; 43
10.1016/j.physa.2018.02.064_b25
10.1016/j.physa.2018.02.064_b22
10.1016/j.physa.2018.02.064_b21
Yuan (10.1016/j.physa.2018.02.064_b2) 2013; 25
Castro (10.1016/j.physa.2018.02.064_b12) 2013; 46
Gong (10.1016/j.physa.2018.02.064_b18) 2016; 43
Lian (10.1016/j.physa.2018.02.064_b3) 2014
Jiang (10.1016/j.physa.2018.02.064_b14) 2015; 18
10.1016/j.physa.2018.02.064_b5
Qing (10.1016/j.physa.2018.02.064_b15) 2016; 32
10.1016/j.physa.2018.02.064_b1
Wang (10.1016/j.physa.2018.02.064_b11) 2018; 491
10.1016/j.physa.2018.02.064_b17
10.1016/j.physa.2018.02.064_b16
Jiang (10.1016/j.physa.2018.02.064_b10) 2017; 483
Zheng (10.1016/j.physa.2018.02.064_b7) 2014; 5
Zhan (10.1016/j.physa.2018.02.064_b23) 2013; 33
Lu (10.1016/j.physa.2018.02.064_b13) 2016; 19
Tang (10.1016/j.physa.2018.02.064_b20) 2015; 438
References_xml – reference: Y. Yue, Y. Zhuang, Q. Li, Q. Mao, Mining time-dependent attractive areas and movement patterns from taxi trajectory data, in: 2009 17th Int Conf. Geoinformatics, Geoinformatics, 2009, 2009.
– volume: 483
  start-page: 227
  year: 2017
  end-page: 238
  ident: b10
  article-title: Human mobility in space from three modes of public transportation
  publication-title: Physica A
– volume: 457
  start-page: 590
  year: 2016
  end-page: 597
  ident: b9
  article-title: Understanding taxi travel patterns
  publication-title: Physica A
– volume: 43
  start-page: 103
  year: 2016
  end-page: 114
  ident: b18
  article-title: Inferring trip purposes and uncovering travel patterns from taxi trajectory data
  publication-title: Cartogr. Geogr. Inf. Sci.
– volume: 18
  start-page: 185
  year: 2015
  end-page: 200
  ident: b14
  article-title: Large-scale taxi O/D visual analytics for understanding metropolitan human movement patterns
  publication-title: J. Vis.
– start-page: 102
  year: 2014
  end-page: 113
  ident: b3
  article-title: Analyzing location predictability on location-based social networks
  publication-title: Pacific-Asia Conf. Knowl. Discov. Data Mining
– volume: 438
  start-page: 140
  year: 2015
  end-page: 153
  ident: b20
  article-title: Uncovering urban human mobility from large scale taxi GPS data
  publication-title: Physica A
– reference: M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, Optics: Ordering points to identify the clustering structure, in: ACM Sigmod Rec. 1999, pp. 49–60.
– volume: 14
  start-page: 113
  year: 2013
  end-page: 123
  ident: b6
  article-title: Land-use classification using taxi GPS traces
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 17
  start-page: 1703
  year: 2016
  end-page: 1713
  ident: b4
  article-title: An unlicensed taxi identification model based on big data analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: M. Zhang, J. Liu, Y. Liu, Z. Hu, L. Yi, Recommending pick-up points for taxi-drivers based on spatio-temporal clustering, in: Proc. - 2nd Int. Conf. Cloud Green Comput. 2nd Int. Conf. Soc. Comput. Its Appl. CGC/SCA 2012, 2012, pp. 67–72.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 55
  ident: b7
  article-title: Urban computing: Concepts methodologies, and applications
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 9
  start-page: 164
  year: 2015
  end-page: 184
  ident: b24
  article-title: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories
  publication-title: Transp. Res. Procedia
– reference: C. Liu, K. Qin, C. Kang, Exploring time-dependent traffic congestion patterns from taxi trajectory data, in: ICSDM 2015 - Proc. 2015 2nd IEEE Int. Conf. Spat. Data Min. Geogr. Knowl. Serv., 2015, pp. 39–44.
– reference: A. Hinneburg, H. Gabriel, DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation, in: Int. Conf. Intell.Data Anal., 2007, pp. 70–80.
– reference: B.D. Ziebart, A.L. Maas, A.K. Dey, J.A. Bagnell, Navigate like a cabbie: Probabilistic reasoning from observed context-aware behavior, in: 10Th Int. Conf. Ubiquitous Comput. 2008, pp. 322–331.
– volume: 491
  start-page: 471
  year: 2018
  end-page: 479
  ident: b11
  article-title: Ring aggregation pattern of metro passenger trips: A study using smart card data
  publication-title: Physica A
– reference: J. Lee, J. Han, K.-Y. Whang, Trajectory clustering: a partition-and-group framework, in: Proc. 2007 ACM SIGMOD Int. Conf. Manag. Data - SIGMOD ’07, 2007, p. 593.
– reference: .
– reference: Y. Zheng, Y. Liu, J. Yuan, X. Xie, Urban computing with taxicabs, in: Proc. 13th Int. Conf. Ubiquitous Comput. - UbiComp ’11, 2011, p. 89.
– volume: 19
  start-page: 811
  year: 2016
  end-page: 821
  ident: b13
  article-title: Exploring OD patterns of interested region based on taxi trajectories
  publication-title: J. Vis.
– reference: M. Ester, H.P. Kriegel, J. Sander, X. Xu, A Density-based algorithm for discovering clusters in large spatial databases with noise, in: Proc. 2nd Int. Conf. Knowl. Discov. Data Min. 1996, pp. 226–231.
– volume: 33
  start-page: 37
  year: 2013
  end-page: 49
  ident: b23
  article-title: Urban link travel time estimation using large-scale taxi data with partial information
  publication-title: Transp. Res. C
– reference: X. Niu, Y. Zhu, X. Zhang, DeepSense: A novel learning mechanism for traffic prediction with taxi GPS traces, in: 2014 IEEE Glob. Commun. Conf. GLOBECOM 2014, 2014, pp. 2745–2750.
– volume: 46
  start-page: 1
  year: 2013
  end-page: 34
  ident: b12
  article-title: From taxi GPS traces to social and community dynamics
  publication-title: ACM Comput. Surv.
– volume: 32
  start-page: 51
  year: 2016
  end-page: 56
  ident: b15
  article-title: Hotspots detection from taxi trajectory data based on data field clustering
  publication-title: Geogr. Geo-Information Sci.
– volume: 25
  start-page: 220
  year: 2013
  end-page: 232
  ident: b2
  article-title: T-drive: Enhancing driving directions with taxi drivers’ intelligence
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 420
  start-page: 134
  year: 2015
  end-page: 147
  ident: b8
  article-title: A comparative analysis of intra-city human mobility by taxi
  publication-title: Physica A
– volume: 43
  start-page: 78
  year: 2015
  end-page: 90
  ident: b19
  article-title: Revealing travel patterns and city structure with taxi trip data
  publication-title: J. Transp. Geogr.
– volume: 483
  start-page: 227
  year: 2017
  ident: 10.1016/j.physa.2018.02.064_b10
  article-title: Human mobility in space from three modes of public transportation
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.04.182
– volume: 25
  start-page: 220
  year: 2013
  ident: 10.1016/j.physa.2018.02.064_b2
  article-title: T-drive: Enhancing driving directions with taxi drivers’ intelligence
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.200
– volume: 33
  start-page: 37
  year: 2013
  ident: 10.1016/j.physa.2018.02.064_b23
  article-title: Urban link travel time estimation using large-scale taxi data with partial information
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2013.04.001
– volume: 19
  start-page: 811
  year: 2016
  ident: 10.1016/j.physa.2018.02.064_b13
  article-title: Exploring OD patterns of interested region based on taxi trajectories
  publication-title: J. Vis.
  doi: 10.1007/s12650-016-0357-7
– volume: 17
  start-page: 1703
  year: 2016
  ident: 10.1016/j.physa.2018.02.064_b4
  article-title: An unlicensed taxi identification model based on big data analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2498180
– volume: 43
  start-page: 103
  year: 2016
  ident: 10.1016/j.physa.2018.02.064_b18
  article-title: Inferring trip purposes and uncovering travel patterns from taxi trajectory data
  publication-title: Cartogr. Geogr. Inf. Sci.
  doi: 10.1080/15230406.2015.1014424
– volume: 420
  start-page: 134
  year: 2015
  ident: 10.1016/j.physa.2018.02.064_b8
  article-title: A comparative analysis of intra-city human mobility by taxi
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.10.085
– ident: 10.1016/j.physa.2018.02.064_b28
  doi: 10.1145/1247480.1247546
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.physa.2018.02.064_b7
  article-title: Urban computing: Concepts methodologies, and applications
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 14
  start-page: 113
  year: 2013
  ident: 10.1016/j.physa.2018.02.064_b6
  article-title: Land-use classification using taxi GPS traces
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2209201
– volume: 9
  start-page: 164
  year: 2015
  ident: 10.1016/j.physa.2018.02.064_b24
  article-title: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2015.07.010
– start-page: 102
  year: 2014
  ident: 10.1016/j.physa.2018.02.064_b3
  article-title: Analyzing location predictability on location-based social networks
– ident: 10.1016/j.physa.2018.02.064_b22
  doi: 10.1109/GLOCOM.2014.7037223
– ident: 10.1016/j.physa.2018.02.064_b16
  doi: 10.1109/CGC.2012.34
– ident: 10.1016/j.physa.2018.02.064_b26
  doi: 10.1145/304182.304187
– volume: 18
  start-page: 185
  year: 2015
  ident: 10.1016/j.physa.2018.02.064_b14
  article-title: Large-scale taxi O/D visual analytics for understanding metropolitan human movement patterns
  publication-title: J. Vis.
  doi: 10.1007/s12650-015-0278-x
– ident: 10.1016/j.physa.2018.02.064_b25
– volume: 457
  start-page: 590
  year: 2016
  ident: 10.1016/j.physa.2018.02.064_b9
  article-title: Understanding taxi travel patterns
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.03.047
– ident: 10.1016/j.physa.2018.02.064_b5
  doi: 10.1145/2030112.2030126
– ident: 10.1016/j.physa.2018.02.064_b17
  doi: 10.1109/GEOINFORMATICS.2009.5293469
– ident: 10.1016/j.physa.2018.02.064_b21
  doi: 10.1109/ICSDM.2015.7298022
– ident: 10.1016/j.physa.2018.02.064_b1
  doi: 10.1145/1409635.1409678
– volume: 32
  start-page: 51
  year: 2016
  ident: 10.1016/j.physa.2018.02.064_b15
  article-title: Hotspots detection from taxi trajectory data based on data field clustering
  publication-title: Geogr. Geo-Information Sci.
– volume: 491
  start-page: 471
  year: 2018
  ident: 10.1016/j.physa.2018.02.064_b11
  article-title: Ring aggregation pattern of metro passenger trips: A study using smart card data
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.08.105
– volume: 438
  start-page: 140
  year: 2015
  ident: 10.1016/j.physa.2018.02.064_b20
  article-title: Uncovering urban human mobility from large scale taxi GPS data
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.06.032
– ident: 10.1016/j.physa.2018.02.064_b27
  doi: 10.1007/978-3-540-74825-0_7
– volume: 46
  start-page: 1
  year: 2013
  ident: 10.1016/j.physa.2018.02.064_b12
  article-title: From taxi GPS traces to social and community dynamics
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2543581.2543584
– volume: 43
  start-page: 78
  year: 2015
  ident: 10.1016/j.physa.2018.02.064_b19
  article-title: Revealing travel patterns and city structure with taxi trip data
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2015.01.016
SSID ssj0001732
Score 2.5535295
Snippet Deep understanding of residents’ travel patterns would provide helpful insights into the mechanisms of many socioeconomic phenomena. With the rapid development...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Attractive area
Grid-based clustering
Hot path
Spatial–temporal
Trajectory clustering
Title Spatial–temporal travel pattern mining using massive taxi trajectory data
URI https://dx.doi.org/10.1016/j.physa.2018.02.064
Volume 501
WOSCitedRecordID wos000430027500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTuNAEG1BGCQuCGYRu_owt4xHXtq9HBGL2IQ4ALK4WI7pHhKBg0iCwo1_4A_5Eqo3OxpQNBzmYkWddjlxPXVXVb-qQugnmNgkVgUPylAUAUlDFYiOSIKSCpawMoqZOT2_PGGnpzzLxJkjZA5MOwFWVXw8Fvf_VdUwBsrWqbOfUHctFAbgMygdrqB2uP6T4nWTYXiKZzEkrviU5pQXj_JWV1LVQcD2nWkN0R6ZYMEd2NCaQzQsxl09sWeC-U9tl7pW269nVq1NBPTqRtrVApzaHkDtj_8isyzc3X4zdHVTmMBs1m3Yvy71AWY99UeTIYiI13TVOvUKXFGS2F4qfllN3Qy3MJKJLdaWunq3eNs4Qu-3junoklARN-VUKWn2Kn8-_9cWVhMLPWetlxshuRaSh3EOQmbRXMxSwVtobvtwLzuq9-uIJfasyf0JX5vKsADf_ZaP7ZcJm-R8CS06ZwJvWxAsoxlZfUXzVkeDb-jYQeH1-cWDAFsQYAcCbEGADQiwAwHWIMANCLAGwXd0sb93vnMQuOYZQZkQPgw4pSSSCVOwKodSScVKXauOE6loR_GwQzrgq_JSFNdcprr7CSO0oCm4v_yagB36A7WqfiVXEGYUBBQkZUpnvjEieCRVKEAeEWDPhqso9q8kL11led3g5Dafoo5V9Ku-6d4WVpk-nfp3nTvb0Np8OaBn2o1rn3vOOlpoEL6BWsOHkdxEX8rHYXfwsOWg8wY43YU4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial%E2%80%93temporal+travel+pattern+mining+using+massive+taxi+trajectory+data&rft.jtitle=Physica+A&rft.au=Zheng%2C+Linjiang&rft.au=Xia%2C+Dong&rft.au=Zhao%2C+Xin&rft.au=Tan%2C+Longyou&rft.date=2018-07-01&rft.issn=0378-4371&rft.volume=501&rft.spage=24&rft.epage=41&rft_id=info:doi/10.1016%2Fj.physa.2018.02.064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2018_02_064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon