Mutual-visibility in distance-hereditary graphs: a linear-time algorithm

The concept of mutual-visibility in graphs has been recently introduced. If X is a subset of vertices of a graph G, then vertices u and v are X-visible if there exists a shortest u, v-path P such that V(P) ∩ X⊆ {u, v}. If every two vertices from X are X-visible, then X is a mutual-visibility set. Th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia computer science Ročník 223; s. 104 - 111
Hlavní autori: Cicerone, Serafino, Stefano, Gabriele Di
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2023
Predmet:
ISSN:1877-0509, 1877-0509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The concept of mutual-visibility in graphs has been recently introduced. If X is a subset of vertices of a graph G, then vertices u and v are X-visible if there exists a shortest u, v-path P such that V(P) ∩ X⊆ {u, v}. If every two vertices from X are X-visible, then X is a mutual-visibility set. The mutual-visibility number of G is the cardinality of a largest mutual-visibility set of G. It is known that computing the mutual-visibility number of a graph is NP-complete, whereas it has been shown that there are exact formulas for special graph classes like paths, cycles, blocks, cographs, and grids. In this paper, we study the mutual-visibility in distance-hereditary graphs and show that the mutual-visibility number can be computed in linear time for this class.
AbstractList The concept of mutual-visibility in graphs has been recently introduced. If X is a subset of vertices of a graph G, then vertices u and v are X-visible if there exists a shortest u, v-path P such that V(P) ∩ X⊆ {u, v}. If every two vertices from X are X-visible, then X is a mutual-visibility set. The mutual-visibility number of G is the cardinality of a largest mutual-visibility set of G. It is known that computing the mutual-visibility number of a graph is NP-complete, whereas it has been shown that there are exact formulas for special graph classes like paths, cycles, blocks, cographs, and grids. In this paper, we study the mutual-visibility in distance-hereditary graphs and show that the mutual-visibility number can be computed in linear time for this class.
Author Stefano, Gabriele Di
Cicerone, Serafino
Author_xml – sequence: 1
  givenname: Serafino
  surname: Cicerone
  fullname: Cicerone, Serafino
  email: serafino.cicerone@univaq.it
– sequence: 2
  givenname: Gabriele Di
  surname: Stefano
  fullname: Stefano, Gabriele Di
  email: gabriele.distefano@univaq.it
BookMark eNqFkLFOwzAQhi1UJErpE7DkBRzs2EkcJAZUQYtUxAKz5diX9qo0qWy3Ut-elDIgBrjlbvl-3f9dk1HXd0DILWcpZ7y426Q739uQZiwTKVNpxqsLMuaqLCnLWTX6cV-RaQgbNoxQquLlmCxe93FvWnrAgDW2GI8JdonDEE1nga7Bg8No_DFZebNbh_vEJC12YDyNuIXEtKveY1xvb8hlY9oA0-89IR_PT--zBV2-zV9mj0tqhVSRqkIUUpmqKlTBQQmZG9dk0jEDTeVqAKNkVubSmiKrMybBWSnqkknZ5EK5WkyIOOda34fgodE7j9vhQc2ZPvnQG_3lQ598aKb04GOgql-UHVpF7LvoDbb_sA9nFoZaBwSvg0UY7Dj0YKN2Pf7JfwKWmoBL
CitedBy_id crossref_primary_10_1007_s00010_025_01197_y
crossref_primary_10_1007_s00025_024_02139_x
crossref_primary_10_1016_j_ejc_2024_103995
crossref_primary_10_1515_math_2025_0193
crossref_primary_10_3390_a17080359
Cites_doi 10.1002/jgt.3190120210
10.1093/qmath/28.4.417
10.7717/peerj-cs.627
10.1016/j.ic.2016.09.005
10.1016/S0166-218X(00)00227-4
10.3233/FI-2018-1748
10.2168/LMCS-2(2:2)2006
10.1016/j.tcs.2020.10.033
10.1016/0095-8956(86)90043-2
10.4153/CJM-1980-057-7
10.1016/j.amc.2021.126850
10.1007/978-3-030-11072-7
10.1006/jagm.2000.1090
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2023.08.219
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 111
ExternalDocumentID 10_1016_j_procs_2023_08_219
S1877050923009924
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ABWVN
ACGFS
ACRPL
ADBBV
ADEZE
ADNMO
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c348t-863648a996861e8345adf24d0aef9dbeea842754ca62b204edc43b7044f538db3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001198844500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-0509
IngestDate Tue Nov 18 21:49:27 EST 2025
Sat Nov 29 06:56:12 EST 2025
Sun Apr 06 06:53:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mutual visibility
Graph classes
Graph invariant
Computational complexity
Graph algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-863648a996861e8345adf24d0aef9dbeea842754ca62b204edc43b7044f538db3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2023.08.219
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_procs_2023_08_219
crossref_citationtrail_10_1016_j_procs_2023_08_219
elsevier_sciencedirect_doi_10_1016_j_procs_2023_08_219
PublicationCentury 2000
PublicationDate 2023
2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brandstädt, Le, Spinrad (bib0008) 1999
B. Courcelle, The monadic second-order logic of graphs XVI: Canonical graph decompositions, Log. Methods Comput. Sci. 2 (2). doi: 10.2168/LMCS-2(2:2)2006.
Cicerone, Di Stefano (bib0007) 2001; 108
Manuel, Klavzar (bib0014) 2018; 163
Poudel, Aljohani, Sharma (bib0012) 2021; 850
Bouchet (bib0009) 1988; 4
Cunningham, Edmonds (bib0015) 1980; 32
P. Flocchini, G. Prencipe, N. Santoro (Eds.), Distributed Computing by Mobile Entities, Current Research in Moving and Computing, Vol. 11340 of LNCS, Springer, 2019. doi:10.1007/978-3-030-11072-7.
Cicerone, Di Stefano, Klavžar (bib0002) 2023; 438
Luna, Flocchini, Chaudhuri, Poloni, Santoro, Viglietta (bib0011) 2017; 254
Cicerone, Di Stefano, Klavžar, Yero (bib0003) 2022
Cicerone, Di Stefano (bib0006) 2021; 7
Cicerone, Di Fonso, Di Stefano, Navarra (bib0013) 2023
Di Stefano (bib0001) 2022; 419
Dahlhaus (bib0016) 2000; 36
Bandelt, Mulder (bib0005) 1986; 41
Howorka (bib0004) 1977; 2
Bouchet (10.1016/j.procs.2023.08.219_bib0009) 1988; 4
Cicerone (10.1016/j.procs.2023.08.219_bib0006) 2021; 7
Cunningham (10.1016/j.procs.2023.08.219_bib0015) 1980; 32
Di Stefano (10.1016/j.procs.2023.08.219_bib0001) 2022; 419
Cicerone (10.1016/j.procs.2023.08.219_bib0007) 2001; 108
Poudel (10.1016/j.procs.2023.08.219_bib0012) 2021; 850
10.1016/j.procs.2023.08.219_bib0017
Cicerone (10.1016/j.procs.2023.08.219_bib0002) 2023; 438
Dahlhaus (10.1016/j.procs.2023.08.219_bib0016) 2000; 36
Bandelt (10.1016/j.procs.2023.08.219_bib0005) 1986; 41
Brandstädt (10.1016/j.procs.2023.08.219_bib0008) 1999
10.1016/j.procs.2023.08.219_bib0010
Cicerone (10.1016/j.procs.2023.08.219_bib0013) 2023
Howorka (10.1016/j.procs.2023.08.219_bib0004) 1977; 2
Manuel (10.1016/j.procs.2023.08.219_bib0014) 2018; 163
Cicerone (10.1016/j.procs.2023.08.219_bib0003) 2022
Luna (10.1016/j.procs.2023.08.219_bib0011) 2017; 254
References_xml – volume: 108
  start-page: 3
  year: 2001
  end-page: 21
  ident: bib0007
  article-title: Graphs with bounded induced distance
  publication-title: Discret. Appl. Math.
– volume: 438
  year: 2023
  ident: bib0002
  article-title: On the mutual visibility in cartesian products and triangle-free graphs
  publication-title: Appl. Math. Comput.
– start-page: 150
  year: 2023
  end-page: 159
  ident: bib0013
  article-title: The geodesic mutual visibility problem for oblivious robots: the case of trees
  publication-title: 24
– volume: 419
  year: 2022
  ident: bib0001
  article-title: Mutual visibility in graphs
  publication-title: Applied Mathematics and Computation
– volume: 7
  start-page: e627
  year: 2021
  ident: bib0006
  article-title: Getting new algorithmic results by extending distance-hereditary graphs via split composition
  publication-title: PeerJ Comput. Sci.
– volume: 850
  start-page: 116
  year: 2021
  end-page: 134
  ident: bib0012
  article-title: Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement
  publication-title: Theor. Comput. Sci.
– volume: 32
  start-page: 734
  year: 1980
  end-page: 765
  ident: bib0015
  article-title: A combinatorial decomposition theory
  publication-title: Canadian Journal of Mathematics
– volume: 41
  start-page: 182
  year: 1986
  end-page: 208
  ident: bib0005
  article-title: Distance-hereditary graphs
  publication-title: J. Comb. Theory Ser. B
– volume: 4
  start-page: 195
  year: 1988
  end-page: 207
  ident: bib0009
  article-title: Transforming trees by successive local complementations
  publication-title: Journal of Graph Theory
– volume: 2
  start-page: 417
  year: 1977
  end-page: 420
  ident: bib0004
  article-title: A characterization of distance-hereditary graphs
  publication-title: Quarterly Journal of Mathematics
– year: 2022
  ident: bib0003
  article-title: Mutual-visibility in strong products of graphs via total mutual-visibility
  publication-title: arXiv: 2210.07835
– year: 1999
  ident: bib0008
  article-title: Graph classes: a survey
– reference: P. Flocchini, G. Prencipe, N. Santoro (Eds.), Distributed Computing by Mobile Entities, Current Research in Moving and Computing, Vol. 11340 of LNCS, Springer, 2019. doi:10.1007/978-3-030-11072-7.
– reference: B. Courcelle, The monadic second-order logic of graphs XVI: Canonical graph decompositions, Log. Methods Comput. Sci. 2 (2). doi: 10.2168/LMCS-2(2:2)2006.
– volume: 36
  start-page: 205
  year: 2000
  end-page: 240
  ident: bib0016
  article-title: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition
  publication-title: J. Algorithms
– volume: 163
  start-page: 339
  year: 2018
  end-page: 350
  ident: bib0014
  article-title: The graph theory general position problem on some interconnection networks
  publication-title: Fundam. Informaticae
– volume: 254
  start-page: 392
  year: 2017
  end-page: 418
  ident: bib0011
  article-title: Mutual visibility by luminous robots without collisions
  publication-title: Inf. Comput.
– volume: 4
  start-page: 195
  year: 1988
  ident: 10.1016/j.procs.2023.08.219_bib0009
  article-title: Transforming trees by successive local complementations
  publication-title: Journal of Graph Theory
  doi: 10.1002/jgt.3190120210
– volume: 2
  start-page: 417
  issue: 28
  year: 1977
  ident: 10.1016/j.procs.2023.08.219_bib0004
  article-title: A characterization of distance-hereditary graphs
  publication-title: Quarterly Journal of Mathematics
  doi: 10.1093/qmath/28.4.417
– volume: 7
  start-page: e627
  year: 2021
  ident: 10.1016/j.procs.2023.08.219_bib0006
  article-title: Getting new algorithmic results by extending distance-hereditary graphs via split composition
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.627
– volume: 254
  start-page: 392
  year: 2017
  ident: 10.1016/j.procs.2023.08.219_bib0011
  article-title: Mutual visibility by luminous robots without collisions
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2016.09.005
– year: 2022
  ident: 10.1016/j.procs.2023.08.219_bib0003
  article-title: Mutual-visibility in strong products of graphs via total mutual-visibility
  publication-title: arXiv: 2210.07835
– volume: 108
  start-page: 3
  issue: 1-2
  year: 2001
  ident: 10.1016/j.procs.2023.08.219_bib0007
  article-title: Graphs with bounded induced distance
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(00)00227-4
– volume: 163
  start-page: 339
  issue: 4
  year: 2018
  ident: 10.1016/j.procs.2023.08.219_bib0014
  article-title: The graph theory general position problem on some interconnection networks
  publication-title: Fundam. Informaticae
  doi: 10.3233/FI-2018-1748
– ident: 10.1016/j.procs.2023.08.219_bib0017
  doi: 10.2168/LMCS-2(2:2)2006
– volume: 850
  start-page: 116
  year: 2021
  ident: 10.1016/j.procs.2023.08.219_bib0012
  article-title: Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2020.10.033
– start-page: 150
  year: 2023
  ident: 10.1016/j.procs.2023.08.219_bib0013
  article-title: The geodesic mutual visibility problem for oblivious robots: the case of trees
– volume: 41
  start-page: 182
  issue: 2
  year: 1986
  ident: 10.1016/j.procs.2023.08.219_bib0005
  article-title: Distance-hereditary graphs
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(86)90043-2
– volume: 32
  start-page: 734
  year: 1980
  ident: 10.1016/j.procs.2023.08.219_bib0015
  article-title: A combinatorial decomposition theory
  publication-title: Canadian Journal of Mathematics
  doi: 10.4153/CJM-1980-057-7
– volume: 419
  year: 2022
  ident: 10.1016/j.procs.2023.08.219_bib0001
  article-title: Mutual visibility in graphs
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2021.126850
– volume: 438
  year: 2023
  ident: 10.1016/j.procs.2023.08.219_bib0002
  article-title: On the mutual visibility in cartesian products and triangle-free graphs
  publication-title: Appl. Math. Comput.
– year: 1999
  ident: 10.1016/j.procs.2023.08.219_bib0008
– ident: 10.1016/j.procs.2023.08.219_bib0010
  doi: 10.1007/978-3-030-11072-7
– volume: 36
  start-page: 205
  issue: 2
  year: 2000
  ident: 10.1016/j.procs.2023.08.219_bib0016
  article-title: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition
  publication-title: J. Algorithms
  doi: 10.1006/jagm.2000.1090
SSID ssj0000388917
Score 2.3524547
Snippet The concept of mutual-visibility in graphs has been recently introduced. If X is a subset of vertices of a graph G, then vertices u and v are X-visible if...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Computational complexity
Graph algorithm
Graph classes
Graph invariant
Mutual visibility
Title Mutual-visibility in distance-hereditary graphs: a linear-time algorithm
URI https://dx.doi.org/10.1016/j.procs.2023.08.219
Volume 223
WOSCitedRecordID wos001198844500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECaMJEOXPtIWTdMEHLq5BGySkqhsRZHH0qBDAmRTKJJqFLhyoChBpv723pGU6sSG0QxdBJswaZv34e54vLuPkM-J5VqVaYmX7obJVBqWi3LKrE1chQbPiEA2kZ2eqouL_MdodNnXwtzPsqZRDw_5zX8VNYyBsLF09hniHhaFAXgNQocniB2e_yT473dYEsKwaNwnvvrCPotuIsiXXSE3Z91hrpzvVX0bqp3R2dQtQ6b5sZ79nLd1d_Vr0XH1BQWAJZ-DjjQQ42g7h0sM0DjtPMRHQQHpqm7mQ_imc5X2HN_jY122WNMOunYx4BCqgaN2VFnGsGFMMB4rxqJK5XFWUIqRYDja16hcl1R3iCJco-Ew2EedC-yt2ivUR42ynxiwIa2wz1i7LvwiBS5STFTBsS_sJs_g8ITJnb__RuGwF07uaZmH_9G3pvJJgEs_ZrX7suCSnL0mL-NZgn4NGHhDRq7ZJq96ng4a1fZbcrIECVo3dAUkaIDEAdV0ARB0AMQ7cn50ePbthEUGDWaEVB1TqUil0nCmVenUKSETbSsu7US7Krelc1pJ2BZpdMpLPpHOGinKbCJlBYbQluI92WgAOh8IxVovIVySm6nFy3pVZU7azILLnOo8ETuE9xtTmNheHllOZsUaqeyQL8Okm9BdZf3H037Hiwjy4PgVAKJ1Ez8-73t2yQt8FyJtn8hG1965PbJl7rv6tt33CPoDDUWI3w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual-visibility+in+distance-hereditary+graphs%3A+a+linear-time+algorithm&rft.jtitle=Procedia+computer+science&rft.au=Cicerone%2C+Serafino&rft.au=Stefano%2C+Gabriele+Di&rft.date=2023&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=223&rft.spage=104&rft.epage=111&rft_id=info:doi/10.1016%2Fj.procs.2023.08.219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2023_08_219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon