Lyapunov–Krasovskii functional for uniform stability of coupled differential-functional equations
This article discusses the Lyapunov–Krasovskii functional approach for the stability problem of coupled differential-functional equations. Such systems include, as special cases, many types of time-delay systems, including the lossless propagation model, some neutral time-delay systems and singular...
Uloženo v:
| Vydáno v: | Automatica (Oxford) Ročník 45; číslo 3; s. 798 - 804 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.03.2009
Elsevier |
| Témata: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This article discusses the Lyapunov–Krasovskii functional approach for the stability problem of coupled differential-functional equations. Such systems include, as special cases, many types of time-delay systems, including the lossless propagation model, some neutral time-delay systems and singular time-delay systems. After the general stability theory, the special case of coupled differential-difference equations is discussed, and the necessity for the existence of quadratic Lyapunov–Krasovskii functional is established. Discretization is used to render the stability criterion to an LMI form. |
|---|---|
| ISSN: | 0005-1098 1873-2836 |
| DOI: | 10.1016/j.automatica.2008.10.024 |