Lyapunov–Krasovskii functional for uniform stability of coupled differential-functional equations

This article discusses the Lyapunov–Krasovskii functional approach for the stability problem of coupled differential-functional equations. Such systems include, as special cases, many types of time-delay systems, including the lossless propagation model, some neutral time-delay systems and singular...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 45; číslo 3; s. 798 - 804
Hlavní autoři: Gu, Keqin, Liu, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.03.2009
Elsevier
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article discusses the Lyapunov–Krasovskii functional approach for the stability problem of coupled differential-functional equations. Such systems include, as special cases, many types of time-delay systems, including the lossless propagation model, some neutral time-delay systems and singular time-delay systems. After the general stability theory, the special case of coupled differential-difference equations is discussed, and the necessity for the existence of quadratic Lyapunov–Krasovskii functional is established. Discretization is used to render the stability criterion to an LMI form.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2008.10.024