Identification of Cancer Mediating Biomarkers using Stacked Denoising Autoencoder Model - An Application on Human Lung Data

In this work, we form stacked denoising auto encoder model which is recognized few feasible genes mediating human lung adenocarcinoma. At first we have trained the data for feature selection by using Stacked Denoising Auto-encoder (SDAE) and for backpropagation we have used Multilayer Perceptron (ML...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia computer science Ročník 167; s. 686 - 695
Hlavní autori: Sheet, Sougata, Ghosh, Anupam, Ghosh, Ranjan, Chakrabarti, Amlan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2020
Predmet:
ISSN:1877-0509, 1877-0509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this work, we form stacked denoising auto encoder model which is recognized few feasible genes mediating human lung adenocarcinoma. At first we have trained the data for feature selection by using Stacked Denoising Auto-encoder (SDAE) and for backpropagation we have used Multilayer Perceptron (MLP) procedure. We said this model is MLP-SDAE. The process include classification of genes according to correlation coefficient value and select few feasible genes. The superiority of the method has been established some present gene selection procedures like Support Vector Machine (SVM), Significance Analysis of Microarry (SAM), Bayesian Regularization (BR), Neighborhood Analysis (NA), and Gaussian Mixture Model (GMM). The MLP-SDAE model has been effectively used to one human lung microarray gene expression data. The result are appropriately verify by preliminary analysis, t-test, and gene expression profile plots. In this method, we have established more number of true positive genes then another present procedures.
AbstractList In this work, we form stacked denoising auto encoder model which is recognized few feasible genes mediating human lung adenocarcinoma. At first we have trained the data for feature selection by using Stacked Denoising Auto-encoder (SDAE) and for backpropagation we have used Multilayer Perceptron (MLP) procedure. We said this model is MLP-SDAE. The process include classification of genes according to correlation coefficient value and select few feasible genes. The superiority of the method has been established some present gene selection procedures like Support Vector Machine (SVM), Significance Analysis of Microarry (SAM), Bayesian Regularization (BR), Neighborhood Analysis (NA), and Gaussian Mixture Model (GMM). The MLP-SDAE model has been effectively used to one human lung microarray gene expression data. The result are appropriately verify by preliminary analysis, t-test, and gene expression profile plots. In this method, we have established more number of true positive genes then another present procedures.
Author Ghosh, Anupam
Chakrabarti, Amlan
Ghosh, Ranjan
Sheet, Sougata
Author_xml – sequence: 1
  givenname: Sougata
  surname: Sheet
  fullname: Sheet, Sougata
  email: sougata.sheet@gmail.com
  organization: A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata-700106, India
– sequence: 2
  givenname: Anupam
  surname: Ghosh
  fullname: Ghosh, Anupam
  organization: Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata-700152, India
– sequence: 3
  givenname: Ranjan
  surname: Ghosh
  fullname: Ghosh, Ranjan
  organization: A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata-700106, India
– sequence: 4
  givenname: Amlan
  surname: Chakrabarti
  fullname: Chakrabarti, Amlan
  organization: A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata-700106, India
BookMark eNqFkM9OAyEQh4mpibX2CbzwArsO-6fLHjzUVm2TGg_qmbDAGtotNEBNjC8v2xpjPCgHmPzCN5n5ztHAWKMQuiSQEiCTq3W6c1b4NIMMUsjTvCAnaEhoVSVQQj34UZ-hsfdriCentCbVEH0spTJBt1rwoK3BtsUzboRy-EFJHTPzim-03XK3Uc7jve-Dp8DFRkk8V8bqQzLdB6uMsLIH493hBE8Nnu523Xdngxf7LTd4tY_AnAd-gU5b3nk1_npH6OXu9nm2SFaP98vZdJWIvKAhoRk0UDV11SiArG5owaGRGa1lIUtCJWnKsm2bllS0hYaXkwkAgYJIFX8QEPkI1ce-wlnvnWqZ0OEwVHBcd4wA60WyNTuIZL1IBjmLIiOb_2J3Tkcb7_9Q10dKxbXetHLMCx39RKVOicCk1X_yn8p4kR8
CitedBy_id crossref_primary_10_1016_j_sasc_2024_200079
crossref_primary_10_1016_j_compbiomed_2025_110174
crossref_primary_10_3390_diagnostics13071353
crossref_primary_10_3390_cancers13092013
crossref_primary_10_1007_s11277_024_11600_7
Cites_doi 10.1016/j.eswa.2019.04.052
10.1016/j.rinp.2018.08.023
10.1016/j.neunet.2018.04.016
10.1109/ICASSP.2013.6639345
10.1016/j.dsp.2017.10.011
10.1016/j.future.2018.06.052
10.1016/j.aeue.2019.02.011
10.1016/j.compmedimag.2016.03.003
10.1162/neco.1992.4.4.473
10.1016/j.jpdc.2017.06.007
10.1016/j.eswa.2019.04.044
10.1016/j.amc.2019.02.071
10.1109/TLA.2017.7932697
10.1016/j.procs.2017.05.009
10.1016/j.procs.2019.02.089
10.1016/j.asoc.2015.09.057
10.1016/j.neucom.2013.11.023
10.1109/ICASSP.2013.6639349
10.25046/aj030202
10.1002/(SICI)1097-0142(19991101)86:9<1867::AID-CNCR31>3.0.CO;2-9
10.1016/j.neucom.2016.12.038
10.1162/neco.2006.18.7.1527
10.1016/S0046-8177(85)80106-4
10.1016/j.neunet.2018.07.016
10.1016/j.compind.2019.02.015
10.1016/j.cej.2018.04.087
10.1016/j.patcog.2018.12.015
10.1109/ICASSP.2013.6639344
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2020.03.341
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 695
ExternalDocumentID 10_1016_j_procs_2020_03_341
S1877050920308073
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c348t-820b07b97be0029b84a0bd289d4d518d1b55ffbf178f0ba566001041de9d410c3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582710700072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-0509
IngestDate Sat Nov 29 06:58:20 EST 2025
Tue Nov 18 22:10:24 EST 2025
Sat Apr 13 16:40:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multilayer perceptron
t-test
Deep neural network
Auto-encoder
p-value
Gene expression
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-820b07b97be0029b84a0bd289d4d518d1b55ffbf178f0ba566001041de9d410c3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2020.03.341
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2020_03_341
crossref_primary_10_1016_j_procs_2020_03_341
elsevier_sciencedirect_doi_10_1016_j_procs_2020_03_341
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hinton, Osindero, Teh (bib00019) 2006; 18
Kaisermann, Trajman, Madi (bib0003) 2001; 8
Deng, Li, Geoffrey Hinton, and Brian Kingsbury. (2013) “New types of deep neural network learning for speech recognition and related applications: an overview.” 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 8599–8603.
Bengio (bib00022) 2012
Roggli, Victor, Robin, Vollmer, MD, Greenberg, Malcolm, McGavran, Harlan, Spjut, Raymond Yesner (bib0004) 1985; 16
Tong, Li, Lang, Kong, Niu, Rodrigues (bib00020) 2018; 117
Ghosh, De (bib00021) 2016; 38
Amosov, Amosova, Ivanov, Zhiganov (bib00012) 2019; 150
Morise, Oyama, Kurihara (bib00026) 2019; 131
Sheet, Ghosh, Bikash Mandal (bib00035) 2018; 3
Nguyen, Cam, Lee, Kim, Ko, Comuzzi (bib00030) 2019; 131
Krizhevsky, Sutskever, Hinton (bib0007) 2012; 25
Fry, Linn Phlillips, Menck (bib0002) 1999; 86
Aa, Chakroun, Haber (bib00025) 2017; 108
Ustun, Toktas, Akdagli (bib0009) 2019; 102
Fan (bib00015) 2019; 88
Nowlan, Hinton (bib00017) 1992; 4
Fang, Jia, Chen, Xu, Yuan, Wu (bib00014) 2018; 11
Yu (bib00027) 2019; 108
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib00011) 2017; 234
Simonyan, Zisserman (bib0008) 2015
Silva, Vitor Arantes Monteiro, Augusto, Moura, Rocio Mandrano, Albertini, Augusto Tamashiro, Caixeta Guimaraes (bib00024) 2017; 15
Majumdar (bib00029) 2018; 106
Jemal, Siegel, Ward, Murray, Xu, Smigal, Thun (bib0001) 2006; 56
Deng, Li, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael Seltzer, Geoff Zweig, Xiaodong He, Jason Williams, Yifan Gong, and Alex Acero. (2013) “Recent Advances in Deep Learning for Speech Research at Microsoft.” 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 8604–8608.
Dolz, Betrouni, Quidet, Kharroubi, Leroy, Reyns, Massoptier, Vermandel (bib00032) 2016; 52
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib00018) 2014; 15
Grgel, Simsek (bib00013) 2019; 355
Shi, Xu (bib00031) 2018; 347
Lin, Chiang, Li, Hung, Chao (bib00033) 2018; 8
Montavon, Samek, Mller (bib00010) 2018; 73
Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. (2013) “Advances in optimizing recurrent networks.” IEEE International Conference on Acoustics, Speech and Signal Processing 8624–8628.
Ferles, Papanikolaou, Naidoo (bib00028) 2018; 105
Coates, Adam, Andrew Y. Ng, and HHonglak Lee. (2011) “An Analysis of Single-Layer Networks in Unsupervised Feature Learning.” Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics 15 215–223.
Ghosh, Chandra Dhara, De (bib00034) 2014; 133
Hinton (10.1016/j.procs.2020.03.341_bib00019) 2006; 18
Aa (10.1016/j.procs.2020.03.341_bib00025) 2017; 108
Lin (10.1016/j.procs.2020.03.341_bib00033) 2018; 8
Roggli (10.1016/j.procs.2020.03.341_bib0004) 1985; 16
Dolz (10.1016/j.procs.2020.03.341_bib00032) 2016; 52
Montavon (10.1016/j.procs.2020.03.341_bib00010) 2018; 73
10.1016/j.procs.2020.03.341_bib00023
Srivastava (10.1016/j.procs.2020.03.341_bib00018) 2014; 15
Krizhevsky (10.1016/j.procs.2020.03.341_bib0007) 2012; 25
Nowlan (10.1016/j.procs.2020.03.341_bib00017) 1992; 4
Silva (10.1016/j.procs.2020.03.341_bib00024) 2017; 15
Nguyen (10.1016/j.procs.2020.03.341_bib00030) 2019; 131
Fang (10.1016/j.procs.2020.03.341_bib00014) 2018; 11
Grgel (10.1016/j.procs.2020.03.341_bib00013) 2019; 355
Jemal (10.1016/j.procs.2020.03.341_bib0001) 2006; 56
Fry (10.1016/j.procs.2020.03.341_bib0002) 1999; 86
Tong (10.1016/j.procs.2020.03.341_bib00020) 2018; 117
Simonyan (10.1016/j.procs.2020.03.341_bib0008) 2015
Ustun (10.1016/j.procs.2020.03.341_bib0009) 2019; 102
Yu (10.1016/j.procs.2020.03.341_bib00027) 2019; 108
Fan (10.1016/j.procs.2020.03.341_bib00015) 2019; 88
Kaisermann (10.1016/j.procs.2020.03.341_bib0003) 2001; 8
Majumdar (10.1016/j.procs.2020.03.341_bib00029) 2018; 106
Ferles (10.1016/j.procs.2020.03.341_bib00028) 2018; 105
Liu (10.1016/j.procs.2020.03.341_bib00011) 2017; 234
Amosov (10.1016/j.procs.2020.03.341_bib00012) 2019; 150
Shi (10.1016/j.procs.2020.03.341_bib00031) 2018; 347
Bengio (10.1016/j.procs.2020.03.341_bib00022) 2012
10.1016/j.procs.2020.03.341_bib0005
Sheet (10.1016/j.procs.2020.03.341_bib00035) 2018; 3
10.1016/j.procs.2020.03.341_bib00016
10.1016/j.procs.2020.03.341_bib0006
Ghosh (10.1016/j.procs.2020.03.341_bib00021) 2016; 38
Morise (10.1016/j.procs.2020.03.341_bib00026) 2019; 131
Ghosh (10.1016/j.procs.2020.03.341_bib00034) 2014; 133
References_xml – volume: 3
  start-page: 08
  year: 2018
  end-page: 20
  ident: bib00035
  article-title: Cancer Mediating Genes Recognition using Multilayer Perceptron Model- An Application on Human Leukemia.
  publication-title: Advances in Science, Technology and Engineering Systems Journal
– volume: 15
  start-page: 1091
  year: 2017
  end-page: 1100
  ident: bib00024
  article-title: Performance Analysis of Neural Network Training Algorithms and Support Vector Machine for Power Generation Forecast of Photovoltaic Panel.
  publication-title: IEEE Latin America Transactions
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib00019
  article-title: A Fast Learning Algorithm for Deep Belief Nets.
  publication-title: Neural Computation
– reference: Deng, Li, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael Seltzer, Geoff Zweig, Xiaodong He, Jason Williams, Yifan Gong, and Alex Acero. (2013) “Recent Advances in Deep Learning for Speech Research at Microsoft.” 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 8604–8608.
– volume: 8
  start-page: 446
  year: 2018
  end-page: 454
  ident: bib00033
  article-title: Dynamic fine-tuning stacked auto-encoder neural network for weather forecast.
  publication-title: Future Generation Computer Systems
– volume: 88
  start-page: 643
  year: 2019
  end-page: 653
  ident: bib00015
  article-title: Autoencoder node saliency: Selecting relevant latent representations.
  publication-title: Pattern Recognition
– volume: 16
  start-page: 569
  year: 1985
  end-page: 579
  ident: bib0004
  article-title: Lung cancer heterogeneity: A blinded and randomized study of 100 consecutive cases.
  publication-title: Human Pathology
– volume: 52
  start-page: 8
  year: 2016
  end-page: 18
  ident: bib00032
  article-title: Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study.
  publication-title: Computerized Medical Imaging and Graphics
– volume: 131
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib00026
  article-title: Bayesian probabilistic tensor factorization for recommendation and rating aggregation with multicriteria evaluation data.
  publication-title: Expert Systems with Applications
– volume: 108
  start-page: 62
  year: 2019
  end-page: 72
  ident: bib00027
  article-title: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis.
  publication-title: Computers in Industry
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: bib00011
  article-title: A survey of deep neural network architectures and their applications.
  publication-title: Neurocomputing
– volume: 56
  start-page: 106
  year: 2006
  end-page: 130
  ident: bib0001
  article-title: Cancer statistics.
  publication-title: CA Cancer J. Clin
– reference: Deng, Li, Geoffrey Hinton, and Brian Kingsbury. (2013) “New types of deep neural network learning for speech recognition and related applications: an overview.” 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 8599–8603.
– volume: 102
  start-page: 54
  year: 2019
  end-page: 61
  ident: bib0009
  article-title: Deep neural networkbased soft computing the resonant frequency of Eshaped patch antennas.”
  publication-title: AEU - International Journal of Electronics and Communications
– volume: 108
  start-page: 1030
  year: 2017
  end-page: 1039
  ident: bib00025
  article-title: Distributed Bayesian Probabilistic Matrix Factorization.
  publication-title: Procedia Computer Science
– volume: 25
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib0007
  article-title: ImageNet Classification with Deep Convolutional Neural Networks.
  publication-title: Advances in neural information processing systems
– volume: 117
  start-page: 267
  year: 2018
  end-page: 273
  ident: bib00020
  article-title: An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders.
  publication-title: Journal of Parallel and Distributed Computing
– start-page: 437
  year: 2012
  end-page: 478
  ident: bib00022
  article-title: Practical Recommendations for Gradient-Based Training of Deep Architectures.
  publication-title: Neural Networks: Tricks of the Trade: Second Edition
– volume: 86
  start-page: 1867
  year: 1999
  end-page: 1876
  ident: bib0002
  article-title: Ten-year survey of lung cancer treatments and survival in hospitals in united states.
  publication-title: Cancer
– volume: 355
  start-page: 325
  year: 2019
  end-page: 342
  ident: bib00013
  article-title: Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA).
  publication-title: Applied Mathematics and Computation
– volume: 106
  start-page: 271
  year: 2018
  end-page: 280
  ident: bib00029
  article-title: Graph structured autoencoder.
  publication-title: Neural Networks
– volume: 73
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib00010
  article-title: Methods for interpreting and understanding deep neural networks.
  publication-title: Digital Signal Processing
– volume: 38
  start-page: 587
  year: 2016
  end-page: 605
  ident: bib00021
  article-title: Fuzzy correlated association mining: Selecting altered associations among the genes, and some possible marker genes mediating certain cancers.
  publication-title: Applied Soft Computing
– reference: Coates, Adam, Andrew Y. Ng, and HHonglak Lee. (2011) “An Analysis of Single-Layer Networks in Unsupervised Feature Learning.” Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics 15 215–223.
– volume: 347
  start-page: 280
  year: 2018
  end-page: 290
  ident: bib00031
  article-title: Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network.
  publication-title: Chemical Engineering Journal
– volume: 4
  start-page: 473
  year: 1992
  end-page: 493
  ident: bib00017
  article-title: Simplifying Neural Networks by Soft Weight-Sharing.
  publication-title: Neural Computation
– volume: 11
  start-page: 96
  year: 2018
  end-page: 104
  ident: bib00014
  article-title: Laser stripe image denoising using convolutional autoencoder.
  publication-title: Results in Physics
– volume: 133
  start-page: 122
  year: 2014
  end-page: 140
  ident: bib00034
  article-title: Selection of genes mediating certain cancers, using neuro-fuzzy approach.
  publication-title: Neurocomputing
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib00018
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
  publication-title: Journal of Machine Learning Research
– volume: 150
  start-page: 532
  year: 2019
  end-page: 539
  ident: bib00012
  article-title: Using the Ensemble of Deep Neural Networks for Normal and Abnormal Situations Detection and Recognition in the Continuous Video Stream of the Security System.
  publication-title: Procedia Computer Science
– volume: 131
  start-page: 132
  year: 2019
  end-page: 147
  ident: bib00030
  article-title: Autoencoders for improving quality of process event logs.
  publication-title: Expert Systems with Applications
– year: 2015
  ident: bib0008
  publication-title: Very Deep Convolutional Networks for Large-Scale Image Recognition.
– reference: Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. (2013) “Advances in optimizing recurrent networks.” IEEE International Conference on Acoustics, Speech and Signal Processing 8624–8628.
– volume: 105
  start-page: 112
  year: 2018
  end-page: 131
  ident: bib00028
  article-title: Denoising Autoencoder Self-Organizing Map (DASOM).
  publication-title: Neural Networks
– volume: 8
  start-page: 189
  year: 2001
  end-page: 192
  ident: bib0003
  article-title: Evolving features of lung adenocarcinoma Rio de Janeiro, Brazil.
  publication-title: Oncology reports
– volume: 131
  start-page: 132
  year: 2019
  ident: 10.1016/j.procs.2020.03.341_bib00030
  article-title: Autoencoders for improving quality of process event logs.
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.04.052
– volume: 11
  start-page: 96
  year: 2018
  ident: 10.1016/j.procs.2020.03.341_bib00014
  article-title: Laser stripe image denoising using convolutional autoencoder.
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2018.08.023
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.procs.2020.03.341_bib00018
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
  publication-title: Journal of Machine Learning Research
– volume: 105
  start-page: 112
  year: 2018
  ident: 10.1016/j.procs.2020.03.341_bib00028
  article-title: Denoising Autoencoder Self-Organizing Map (DASOM).
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.04.016
– ident: 10.1016/j.procs.2020.03.341_bib0006
  doi: 10.1109/ICASSP.2013.6639345
– volume: 73
  start-page: 1
  year: 2018
  ident: 10.1016/j.procs.2020.03.341_bib00010
  article-title: Methods for interpreting and understanding deep neural networks.
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2017.10.011
– ident: 10.1016/j.procs.2020.03.341_bib00023
– volume: 8
  start-page: 446
  year: 2018
  ident: 10.1016/j.procs.2020.03.341_bib00033
  article-title: Dynamic fine-tuning stacked auto-encoder neural network for weather forecast.
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.06.052
– volume: 102
  start-page: 54
  year: 2019
  ident: 10.1016/j.procs.2020.03.341_bib0009
  article-title: Deep neural networkbased soft computing the resonant frequency of Eshaped patch antennas.”
  publication-title: AEU - International Journal of Electronics and Communications
  doi: 10.1016/j.aeue.2019.02.011
– volume: 52
  start-page: 8
  year: 2016
  ident: 10.1016/j.procs.2020.03.341_bib00032
  article-title: Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study.
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2016.03.003
– volume: 4
  start-page: 473
  issue: 4
  year: 1992
  ident: 10.1016/j.procs.2020.03.341_bib00017
  article-title: Simplifying Neural Networks by Soft Weight-Sharing.
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.4.473
– volume: 117
  start-page: 267
  year: 2018
  ident: 10.1016/j.procs.2020.03.341_bib00020
  article-title: An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders.
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2017.06.007
– volume: 131
  start-page: 1
  year: 2019
  ident: 10.1016/j.procs.2020.03.341_bib00026
  article-title: Bayesian probabilistic tensor factorization for recommendation and rating aggregation with multicriteria evaluation data.
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.04.044
– year: 2015
  ident: 10.1016/j.procs.2020.03.341_bib0008
– volume: 56
  start-page: 106
  year: 2006
  ident: 10.1016/j.procs.2020.03.341_bib0001
  article-title: Cancer statistics.
  publication-title: CA Cancer J. Clin
– volume: 355
  start-page: 325
  year: 2019
  ident: 10.1016/j.procs.2020.03.341_bib00013
  article-title: Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA).
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2019.02.071
– volume: 15
  start-page: 1091
  issue: 6
  year: 2017
  ident: 10.1016/j.procs.2020.03.341_bib00024
  article-title: Performance Analysis of Neural Network Training Algorithms and Support Vector Machine for Power Generation Forecast of Photovoltaic Panel.
  publication-title: IEEE Latin America Transactions
  doi: 10.1109/TLA.2017.7932697
– start-page: 437
  year: 2012
  ident: 10.1016/j.procs.2020.03.341_bib00022
  article-title: Practical Recommendations for Gradient-Based Training of Deep Architectures.
– volume: 108
  start-page: 1030
  year: 2017
  ident: 10.1016/j.procs.2020.03.341_bib00025
  article-title: Distributed Bayesian Probabilistic Matrix Factorization.
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.05.009
– volume: 150
  start-page: 532
  year: 2019
  ident: 10.1016/j.procs.2020.03.341_bib00012
  article-title: Using the Ensemble of Deep Neural Networks for Normal and Abnormal Situations Detection and Recognition in the Continuous Video Stream of the Security System.
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.02.089
– volume: 38
  start-page: 587
  year: 2016
  ident: 10.1016/j.procs.2020.03.341_bib00021
  article-title: Fuzzy correlated association mining: Selecting altered associations among the genes, and some possible marker genes mediating certain cancers.
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.09.057
– volume: 133
  start-page: 122
  year: 2014
  ident: 10.1016/j.procs.2020.03.341_bib00034
  article-title: Selection of genes mediating certain cancers, using neuro-fuzzy approach.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.023
– ident: 10.1016/j.procs.2020.03.341_bib00016
  doi: 10.1109/ICASSP.2013.6639349
– volume: 3
  start-page: 08
  issue: 2
  year: 2018
  ident: 10.1016/j.procs.2020.03.341_bib00035
  article-title: Cancer Mediating Genes Recognition using Multilayer Perceptron Model- An Application on Human Leukemia.
  publication-title: Advances in Science, Technology and Engineering Systems Journal
  doi: 10.25046/aj030202
– volume: 86
  start-page: 1867
  year: 1999
  ident: 10.1016/j.procs.2020.03.341_bib0002
  article-title: Ten-year survey of lung cancer treatments and survival in hospitals in united states.
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19991101)86:9<1867::AID-CNCR31>3.0.CO;2-9
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.procs.2020.03.341_bib00011
  article-title: A survey of deep neural network architectures and their applications.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.procs.2020.03.341_bib00019
  article-title: A Fast Learning Algorithm for Deep Belief Nets.
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 16
  start-page: 569
  issue: 6
  year: 1985
  ident: 10.1016/j.procs.2020.03.341_bib0004
  article-title: Lung cancer heterogeneity: A blinded and randomized study of 100 consecutive cases.
  publication-title: Human Pathology
  doi: 10.1016/S0046-8177(85)80106-4
– volume: 106
  start-page: 271
  year: 2018
  ident: 10.1016/j.procs.2020.03.341_bib00029
  article-title: Graph structured autoencoder.
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.07.016
– volume: 25
  start-page: 1
  issue: 2
  year: 2012
  ident: 10.1016/j.procs.2020.03.341_bib0007
  article-title: ImageNet Classification with Deep Convolutional Neural Networks.
  publication-title: Advances in neural information processing systems
– volume: 108
  start-page: 62
  year: 2019
  ident: 10.1016/j.procs.2020.03.341_bib00027
  article-title: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis.
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2019.02.015
– volume: 347
  start-page: 280
  year: 2018
  ident: 10.1016/j.procs.2020.03.341_bib00031
  article-title: Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network.
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2018.04.087
– volume: 88
  start-page: 643
  year: 2019
  ident: 10.1016/j.procs.2020.03.341_bib00015
  article-title: Autoencoder node saliency: Selecting relevant latent representations.
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.12.015
– volume: 8
  start-page: 189
  issue: 1
  year: 2001
  ident: 10.1016/j.procs.2020.03.341_bib0003
  article-title: Evolving features of lung adenocarcinoma Rio de Janeiro, Brazil.
  publication-title: Oncology reports
– ident: 10.1016/j.procs.2020.03.341_bib0005
  doi: 10.1109/ICASSP.2013.6639344
SSID ssj0000388917
Score 2.1915312
Snippet In this work, we form stacked denoising auto encoder model which is recognized few feasible genes mediating human lung adenocarcinoma. At first we have trained...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 686
SubjectTerms Auto-encoder
Deep neural network
Gene expression
Multilayer perceptron
p-value
t-test
Title Identification of Cancer Mediating Biomarkers using Stacked Denoising Autoencoder Model - An Application on Human Lung Data
URI https://dx.doi.org/10.1016/j.procs.2020.03.341
Volume 167
WOSCitedRecordID wos000582710700072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZt4e9rPtkbbehh71lAn_LevRKxx66MtYO-mYk2yIJiR0SpxQG-4_6P-5Oku2sKWUbDIKJZSsKvp-lu9Pd7wh5L8BmkLKUTFfoukmUz1LNE8aLsKgKqePASvqUn52ll5fi62h00-XCXM15XafX12L5X0UNbSBsTJ39C3H3PwoN8B2EDkcQOxz_SPA29VY7X5zNvwLJrsyejDRRzh-nzQLDclbr8WZtKbklvM0Yk1w3U9OSbdoGOS6RagLrpc3HDB2I2bDfjdsMdgvgFCYMgE8rtzVdk4EAA5qgdawbMXaLbe_TmVR2I-QcdPiuM0YCTZr1xMZabpZysdP8TdazAdK3whKyxdxdc56MwBscazvJNWYuTjlnSE9jl6o72roJ3Bb0cFNw0lFr2zNbwnNnobA-ixkuUwWytgcect2GloTrFgP3OY6KgwZI7gNz4gPyMOCxwFINX34OLj0k1hGmxnP_NzueKxNRuDPW3brQln5z8ZQ8cYYJzSygnpFRVT8n-13RD-rWgBfkx-_4oo2mFl-0xxcd8EUNvqjDF-3xRbfwRQ2-KKNZTbfwReFj8EURXxTx9ZJ8_3RycfyZuQoerAijtGWgXiqPK8FVhdu_Ko2kp0qw8cuojP209FUca620z1PtKQmmheGL8ssK7vC9InxF9uqmrl4TGgofLAUlUhWIKAlL0KLikIM5EmkdJFwekKB7lnnh6O2xyso87-IYZ7kRQI4CyL0wBwEckA99p6Vld7n_9qQTUu7eGat45gCr-zoe_mvHI_IYz6zP7w3Za1eb6i15VFy10_XqnYHfLzM7uC4
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Cancer+Mediating+Biomarkers+using+Stacked+Denoising+Autoencoder+Model+-+An+Application+on+Human+Lung+Data&rft.jtitle=Procedia+computer+science&rft.au=Sheet%2C+Sougata&rft.au=Ghosh%2C+Anupam&rft.au=Ghosh%2C+Ranjan&rft.au=Chakrabarti%2C+Amlan&rft.date=2020&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=167&rft.spage=686&rft.epage=695&rft_id=info:doi/10.1016%2Fj.procs.2020.03.341&rft.externalDocID=S1877050920308073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon