Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label
Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These models are applied to extract the useful features with several hidden layers, then a classifier is used to complete the fault diagnosis. However,...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 73; S. 898 - 913 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2018
|
| Schlagworte: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!