Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label

Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These models are applied to extract the useful features with several hidden layers, then a classifier is used to complete the fault diagnosis. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 73; S. 898 - 913
Hauptverfasser: Xu, Fan, Tse, Wai tai Peter, Tse, Yiu Lun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2018
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These models are applied to extract the useful features with several hidden layers, then a classifier is used to complete the fault diagnosis. However, these fault diagnosis classification methods are only suitable for tagged datasets. Actually, many datasets are untagged in practical engineering. The clustering method can classify data without a label. Therefore, a method based on the SDAE and Gath–Geva (GG) clustering algorithm for roller bearing fault diagnosis without a data label is proposed in this study. First, SDAE is selected to extract the useful feature and reduce the dimension of the vibration signal to two or three dimensions direct without principal component analysis (PCA) of the final hidden layer. Then GG is deployed to identify the different faults. To demonstrate that the feature extraction performance of the SDAE is better than that of the SAE and EEMD with the FE model, the PCA is selected to reduce the dimension of eigenvectors obtained from several previously hidden layers, except for the final hidden layer. Compared with SAE and ensemble empirical mode decomposition (EEMD)-fuzzy entropy (FE) models, the results show that as the number of the hidden layers increases, all the fault samples under different conditions are separated better by using SDAE rather than those feature extraction models mentioned. In addition, three evaluation indicators such as PC, CE, and classification accuracy are used to assess the performance of the method presented. Finally, the results show that the clustering effect of the method presented, and its classification accuracy are superior to those of the other combination models, including the SAE-fuzzy C-means (FCM)/Gustafson–Kessel (GK)/GG and EEMD-fuzzy entropy FE-PCA-FCM/GK/GG. •Reduce the dimension of extracted feature using SDAE directly without PCA.•Fulfilling the bearing fault diagnosis by using SDAE and clustering model without data label.•Using the SDAE reduce the high dimension to 2 or 3 directly from frequency domain feature directly after FFT decomposition.
AbstractList Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These models are applied to extract the useful features with several hidden layers, then a classifier is used to complete the fault diagnosis. However, these fault diagnosis classification methods are only suitable for tagged datasets. Actually, many datasets are untagged in practical engineering. The clustering method can classify data without a label. Therefore, a method based on the SDAE and Gath–Geva (GG) clustering algorithm for roller bearing fault diagnosis without a data label is proposed in this study. First, SDAE is selected to extract the useful feature and reduce the dimension of the vibration signal to two or three dimensions direct without principal component analysis (PCA) of the final hidden layer. Then GG is deployed to identify the different faults. To demonstrate that the feature extraction performance of the SDAE is better than that of the SAE and EEMD with the FE model, the PCA is selected to reduce the dimension of eigenvectors obtained from several previously hidden layers, except for the final hidden layer. Compared with SAE and ensemble empirical mode decomposition (EEMD)-fuzzy entropy (FE) models, the results show that as the number of the hidden layers increases, all the fault samples under different conditions are separated better by using SDAE rather than those feature extraction models mentioned. In addition, three evaluation indicators such as PC, CE, and classification accuracy are used to assess the performance of the method presented. Finally, the results show that the clustering effect of the method presented, and its classification accuracy are superior to those of the other combination models, including the SAE-fuzzy C-means (FCM)/Gustafson–Kessel (GK)/GG and EEMD-fuzzy entropy FE-PCA-FCM/GK/GG. •Reduce the dimension of extracted feature using SDAE directly without PCA.•Fulfilling the bearing fault diagnosis by using SDAE and clustering model without data label.•Using the SDAE reduce the high dimension to 2 or 3 directly from frequency domain feature directly after FFT decomposition.
Author Tse, Yiu Lun
Xu, Fan
Tse, Wai tai Peter
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0003-1735-5011
  surname: Xu
  fullname: Xu, Fan
– sequence: 2
  givenname: Wai tai Peter
  surname: Tse
  fullname: Tse, Wai tai Peter
  email: Peter.W.Tse@cityu.edu.hk
– sequence: 3
  givenname: Yiu Lun
  surname: Tse
  fullname: Tse, Yiu Lun
BookMark eNp9kEFuHCEQRVHkSLGdXCArLtBt6KYZWsomspJxJEuRInuNaqB6zISBEdCOvPMdfA2fyicJPc4qC28A_dL7xf9n5CTEgIR85qzljMuLXQs5mrZjXLVsbFm_ekdOuVp1zSgVP6nvQapGjEJ-IGc571iFxk6dkudf0XtMdIOQXNjSCWZfqHWwDTG7TOe8qLmA-Y2WWgzRHRWYS8Rgoq2sC3WAB-qrRzgOg6VrKHcvj09rvAdq_JwLHv3Bb2Ny5W5P_9QzzoUeqm7cATw1cX-osUKpBuAflvWLk4UC1MMG_UfyfgKf8dO_-5zcfv92c3nVXP9c_7j8et2YXqjSKN7LSbLNSkqmhJCTkN04QRUGtLYbBLPGotr0I_ZWwMCtqP9nQzfZcaV4158T9eprUsw54aSNK1BcDCWB85ozvbSud3ppXS-tazbq2npFu__Qmm8P6eFt6MsrhDXUvcOks3G1XbQuoSnaRvcW_hfzWaR9
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106577
crossref_primary_10_1016_j_measurement_2022_111594
crossref_primary_10_1016_j_aei_2022_101708
crossref_primary_10_1016_j_asoc_2022_108912
crossref_primary_10_3390_s20205734
crossref_primary_10_1109_ACCESS_2020_2972859
crossref_primary_10_1007_s00521_023_08949_4
crossref_primary_10_1109_TIM_2024_3472786
crossref_primary_10_1007_s11571_020_09642_1
crossref_primary_10_1007_s11042_023_15325_w
crossref_primary_10_1016_j_jmsy_2020_07_003
crossref_primary_10_1109_ACCESS_2021_3056944
crossref_primary_10_1155_2020_8509142
crossref_primary_10_1109_TII_2024_3476547
crossref_primary_10_1109_TSMC_2021_3130232
crossref_primary_10_1007_s00500_023_09068_x
crossref_primary_10_1093_tse_tdac050
crossref_primary_10_1007_s12206_025_0102_z
crossref_primary_10_1016_j_asoc_2020_106886
crossref_primary_10_1177_14759217231221214
crossref_primary_10_1016_j_asoc_2022_109958
crossref_primary_10_1016_j_neucom_2019_06_073
crossref_primary_10_1080_23307706_2020_1759466
crossref_primary_10_1177_14759217221113323
crossref_primary_10_1007_s10489_021_03004_y
crossref_primary_10_1177_1475921720963951
crossref_primary_10_1109_TII_2025_3568512
crossref_primary_10_1016_j_asoc_2021_107284
crossref_primary_10_1088_1361_6501_ac1461
crossref_primary_10_1155_2020_5013871
crossref_primary_10_1016_j_asoc_2020_106119
crossref_primary_10_1007_s40430_024_04866_2
crossref_primary_10_1016_j_measurement_2019_107371
crossref_primary_10_1109_TIM_2021_3116309
crossref_primary_10_3390_s25072246
crossref_primary_10_1109_TII_2021_3116145
crossref_primary_10_3390_machines10100849
crossref_primary_10_3390_s23031305
crossref_primary_10_1016_j_cie_2020_106427
crossref_primary_10_1177_1475921719893594
crossref_primary_10_1016_j_measurement_2020_107788
crossref_primary_10_1109_ACCESS_2020_3028465
crossref_primary_10_1016_j_measurement_2020_107902
crossref_primary_10_1109_ACCESS_2021_3056767
crossref_primary_10_1016_j_asoc_2019_105975
crossref_primary_10_1109_JSEN_2025_3560460
crossref_primary_10_1109_ACCESS_2019_2963092
crossref_primary_10_1016_j_measurement_2024_116216
crossref_primary_10_1016_j_jfranklin_2020_04_024
crossref_primary_10_1016_j_knosys_2022_109399
crossref_primary_10_1007_s00170_021_08392_6
crossref_primary_10_1016_j_ress_2020_107396
crossref_primary_10_1016_j_measurement_2021_110023
crossref_primary_10_1007_s40430_022_03973_2
crossref_primary_10_1016_j_measurement_2025_117098
crossref_primary_10_1109_ACCESS_2024_3397184
crossref_primary_10_1109_TIM_2021_3063189
crossref_primary_10_1016_j_asoc_2022_109785
crossref_primary_10_1016_j_asoc_2020_106992
Cites_doi 10.1109/CDC.1978.268028
10.1016/j.sigpro.2014.09.005
10.1109/T-C.1975.224317
10.1177/1077546314550221
10.1098/rspa.1998.0193
10.1016/j.energy.2018.08.048
10.1016/j.apenergy.2018.06.092
10.1109/TII.2015.2500098
10.1016/j.medengphy.2008.04.005
10.1109/ICPHM.2011.6024349
10.1007/s10916-009-9340-3
10.1145/1390156.1390294
10.1109/34.192473
10.1073/pnas.88.6.2297
10.1016/j.ymssp.2006.02.009
10.1016/j.sigpro.2015.01.001
10.1016/j.jsv.2011.07.014
10.1016/j.jsv.2009.10.021
10.1142/S1793536909000047
10.1002/cem.2912
10.1109/ACCESS.2017.2728010
10.1016/j.ymssp.2017.03.034
10.1016/j.neucom.2014.08.092
10.1016/j.compmedimag.2016.03.003
10.1631/jzus.A0900360
10.1016/j.ymssp.2013.07.006
10.1016/j.knosys.2017.07.023
10.1016/j.eswa.2010.02.118
10.1016/j.measurement.2015.03.017
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.09.037
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 913
ExternalDocumentID 10_1016_j_asoc_2018_09_037
S1568494618305544
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c348t-8136f60b76608446f4629fa0b75edd2540dcde8b39e3d4a51d4dee052fd978123
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450124900062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:35 EST 2025
Tue Nov 18 22:18:59 EST 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Roller bearing fault diagnosis
Gath–Geva clustering algorithm
Stacked denoising autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-8136f60b76608446f4629fa0b75edd2540dcde8b39e3d4a51d4dee052fd978123
ORCID 0000-0003-1735-5011
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_09_037
crossref_primary_10_1016_j_asoc_2018_09_037
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_09_037
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Liang, Zang (b7) 2015; 69
Tang, Li, Lai (b41) 2018; 228
Wu, Huang (b6) 2009; 1
Resta, Ripamonti, Cazzluani (b2) 2011; 329
Bezdek, Dunn (b32) 1975
Leng, Chen, Mao (b39) 2018; 143
Dolz, Betrouni, Quidet (b40) 2016; 52
Xu, Fang, Zhang (b33) 2016; 22
Xiong, Zhang, Liu (b38) 2010; 11
Huang, Wu, Wang (b1) 2012; 31
D.E. Gustafson, W.C. Kessel, Fuzzy clustering with fuzzy covariance matrix, in: IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, 1979, pp. 761–766.
Bagordo, Cazzluani, Resta (b3) 2011; 330
Yi, Wang, Wei (b10) 2018; 18
Chen, Zhuang, Yu (b37) 2009; 31
Xu, Fang, Kong (b26) 2016; 4
Wang, Li, Zhang (b30) 2013; 24
Wang, Guo, Tse (b11) 2014; 22
Van, Kang (b13) 2016; 12
Tan, Eswaran (b15) 2011; 35
Leng, Guo, Zhang, Zhang (b22) 2015; 112
Zhang, Zhou (b8) 2013; 41
Shao, Jiang, Zhao (b12) 2017; 95
Feng, Lei, Jing (b14) 2016
Qi, Shen, Wang (b17) 2017; 5
Guo, Shen, Chen (b27) 2017; 7
Gath, Geva (b31) 1989; 11
Tang, Shen, Wang (b19) 2018
Li, Struzik, Zhang, Cichocki (b24) 2014; 165
Vincent, Larochelle, Lajoie (b20) 2010; 11
Tang, Wu, Li (b42) 2018; 162
Zhang, Sun, Li (b28) 2013; 34
Q. Miao, D. Wang, M. Pecht, Rolling element bearing fault feature extraction using EMD-based independent component analysis, in: IEEE PHM, 2011, pp. 1–6.
Case Western Reserve University. Bearing data center test seeded fault test data.
.
Huang, Shen, Long (b5) 1998; 454
Liu, Feng, Zhou (b23) 2015; 120
Zhang, Xiong, Liu (b25) 2010; 37
(Accessed 2013).
Yan, Gao (b36) 2007; 21
Lv, Wen, Liu (b16) 2017; 31
P. Vincent, H. Larochelle, Y. Bengio, Extracting and composing robust features with denoising autoencoders, in: International Conference, 2008, pp. 1096–1103.
Wang, Zhao, Pei (b18) 2016; 5
Wang, Tong (b4) 2014; 33
Pincus (b35) 1991; 55
Feng (10.1016/j.asoc.2018.09.037_b14) 2016
Vincent (10.1016/j.asoc.2018.09.037_b20) 2010; 11
10.1016/j.asoc.2018.09.037_b29
Xiong (10.1016/j.asoc.2018.09.037_b38) 2010; 11
Lv (10.1016/j.asoc.2018.09.037_b16) 2017; 31
Tang (10.1016/j.asoc.2018.09.037_b41) 2018; 228
Liu (10.1016/j.asoc.2018.09.037_b23) 2015; 120
Zhang (10.1016/j.asoc.2018.09.037_b28) 2013; 34
Leng (10.1016/j.asoc.2018.09.037_b22) 2015; 112
10.1016/j.asoc.2018.09.037_b21
Yan (10.1016/j.asoc.2018.09.037_b36) 2007; 21
Li (10.1016/j.asoc.2018.09.037_b24) 2014; 165
Gath (10.1016/j.asoc.2018.09.037_b31) 1989; 11
Huang (10.1016/j.asoc.2018.09.037_b5) 1998; 454
Leng (10.1016/j.asoc.2018.09.037_b39) 2018; 143
Xu (10.1016/j.asoc.2018.09.037_b26) 2016; 4
Tang (10.1016/j.asoc.2018.09.037_b19) 2018
Dolz (10.1016/j.asoc.2018.09.037_b40) 2016; 52
Zhang (10.1016/j.asoc.2018.09.037_b7) 2015; 69
Zhang (10.1016/j.asoc.2018.09.037_b25) 2010; 37
Shao (10.1016/j.asoc.2018.09.037_b12) 2017; 95
Resta (10.1016/j.asoc.2018.09.037_b2) 2011; 329
Wang (10.1016/j.asoc.2018.09.037_b11) 2014; 22
10.1016/j.asoc.2018.09.037_b34
Xu (10.1016/j.asoc.2018.09.037_b33) 2016; 22
10.1016/j.asoc.2018.09.037_b9
Tang (10.1016/j.asoc.2018.09.037_b42) 2018; 162
Huang (10.1016/j.asoc.2018.09.037_b1) 2012; 31
Wang (10.1016/j.asoc.2018.09.037_b18) 2016; 5
Bagordo (10.1016/j.asoc.2018.09.037_b3) 2011; 330
Zhang (10.1016/j.asoc.2018.09.037_b8) 2013; 41
Yi (10.1016/j.asoc.2018.09.037_b10) 2018; 18
Pincus (10.1016/j.asoc.2018.09.037_b35) 1991; 55
Wang (10.1016/j.asoc.2018.09.037_b4) 2014; 33
Wang (10.1016/j.asoc.2018.09.037_b30) 2013; 24
Bezdek (10.1016/j.asoc.2018.09.037_b32) 1975
Tan (10.1016/j.asoc.2018.09.037_b15) 2011; 35
Qi (10.1016/j.asoc.2018.09.037_b17) 2017; 5
Wu (10.1016/j.asoc.2018.09.037_b6) 2009; 1
Chen (10.1016/j.asoc.2018.09.037_b37) 2009; 31
Van (10.1016/j.asoc.2018.09.037_b13) 2016; 12
Guo (10.1016/j.asoc.2018.09.037_b27) 2017; 7
References_xml – volume: 18
  start-page: 1
  year: 2018
  end-page: 21
  ident: b10
  article-title: EEMD based steady-state indexes and their applications to condition monitoring and fault diagnosis of railway axle bearings
  publication-title: Sensors
– reference: P. Vincent, H. Larochelle, Y. Bengio, Extracting and composing robust features with denoising autoencoders, in: International Conference, 2008, pp. 1096–1103.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 17
  ident: b27
  article-title: Deep fault recognizer: An integrated model to denoise and extract features for fault diagnosis in rotating machinery
  publication-title: Appl. Sci.-Basel.
– volume: 11
  start-page: 773
  year: 1989
  end-page: 781
  ident: b31
  article-title: Unsupervised optimal fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 1
  year: 2017
  end-page: 16
  ident: b16
  article-title: Weighted time series fault diagnosis based on a stacked sparse autoencoder
  publication-title: J. Chemometrics
– start-page: 835
  year: 1975
  end-page: 838
  ident: b32
  article-title: Optimal fuzzy partitions: A heuristic forb estimating the parameters in a mixture of normal dustrubutions
  publication-title: IEEE Trans. Comput.
– volume: 120
  start-page: 761
  year: 2015
  end-page: 766
  ident: b23
  article-title: Multimodal video classification with stacked contractive autoencoders
  publication-title: Signal Process.
– reference: Q. Miao, D. Wang, M. Pecht, Rolling element bearing fault feature extraction using EMD-based independent component analysis, in: IEEE PHM, 2011, pp. 1–6.
– volume: 24
  start-page: 3036
  year: 2013
  end-page: 3044
  ident: b30
  article-title: Mechanical fault diagnosis method based on EEMD sample entropy and GK fuzzy clustering
  publication-title: Chin. J. Sci. Instrum.
– volume: 69
  start-page: 164
  year: 2015
  end-page: 179
  ident: b7
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Measurement
– volume: 22
  start-page: 2631
  year: 2016
  end-page: 2642
  ident: b33
  article-title: PCA-GG rolling bearing clustering fault diagnosis based on EEMD fuzzy entropy
  publication-title: Comput.-Integr. Manuf. Syst.
– reference: D.E. Gustafson, W.C. Kessel, Fuzzy clustering with fuzzy covariance matrix, in: IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, 1979, pp. 761–766.
– volume: 31
  start-page: 91
  year: 2012
  end-page: 94
  ident: b1
  article-title: Test for active control of boom vibration of a concrete pump truck
  publication-title: J. Vib. Shock
– volume: 143
  start-page: 295
  year: 2018
  end-page: 306
  ident: b39
  article-title: Combining granular computing technique with deep learning forservice planning under social manufacturing contexts
  publication-title: Knowl.-Based Syst.
– volume: 37
  start-page: 6077
  year: 2010
  end-page: 6085
  ident: b25
  article-title: Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 2603
  year: 2014
  end-page: 2618
  ident: b11
  article-title: An enhanced empirical mode decomposition method for blind component separation of a single-channel vibration signal mixture
  publication-title: J. Vib. Control
– volume: 228
  start-page: 254
  year: 2018
  end-page: 264
  ident: b41
  article-title: A novel optimal energymanagement strategy for a maritime hybrid energy system based on largescale global optimization
  publication-title: Appl. Energy
– volume: 34
  start-page: 714
  year: 2013
  end-page: 720
  ident: b28
  article-title: Study on mechanical fault diagnosis method based on LMD approximate entropy and fuzzy C-means clustering
  publication-title: Chin. J. Sci. Instrum.
– volume: 329
  start-page: 961
  year: 2011
  end-page: 972
  ident: b2
  article-title: Independent modal control for nonlinear flexible structures: an experimental test rig
  publication-title: J. Sound Vib.
– volume: 33
  start-page: 63
  year: 2014
  end-page: 70
  ident: b4
  article-title: Nonlinear dynamical behavior analysis on rigid flexible coupling mechanical arm of hydraulic excavator
  publication-title: J. Vib. Shock
– volume: 41
  start-page: 127
  year: 2013
  end-page: 140
  ident: b8
  article-title: Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
  publication-title: Mech. Syst. Signal Process.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b5
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 5
  start-page: 1
  year: 2016
  end-page: 13
  ident: b18
  article-title: ransformer fault diagnosis using continuous sparse autoencoder
  publication-title: Springerplus
– volume: 35
  start-page: 49
  year: 2011
  end-page: 58
  ident: b15
  article-title: Using autoencoders for mammogram compression
  publication-title: J. Med. Syst.
– volume: 330
  start-page: 6061
  year: 2011
  end-page: 6069
  ident: b3
  article-title: A modal disturbance estimator for vibration suppression in nonlinear flexible structures
  publication-title: J. Sound Vib.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b6
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 12
  start-page: 124
  year: 2016
  end-page: 135
  ident: b13
  article-title: Bearing defect classification based on individual wavelet local fisher discriminant analysis with particle swarm optimization
  publication-title: IEEE Trans. Ind. Inf.
– reference: Case Western Reserve University. Bearing data center test seeded fault test data.
– start-page: 1
  year: 2018
  end-page: 14
  ident: b19
  article-title: Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis
  publication-title: Neurocomputing
– volume: 11
  start-page: 270
  year: 2010
  end-page: 279
  ident: b38
  article-title: A comparative study on apen sampen and their fuzzy counterparts in a multiscale framework for feature extraction
  publication-title: J. Zhejiang Univ. Sci. A (Appl. Phys. Eng).
– volume: 95
  start-page: 187
  year: 2017
  end-page: 204
  ident: b12
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 162
  start-page: 697
  year: 2018
  end-page: 714
  ident: b42
  article-title: Optimal operation of photovoltaic/battery/diesel/coldironing hybrid energy system for maritime application
  publication-title: Energy
– start-page: 303
  year: 2016
  end-page: 315
  ident: b14
  article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
– volume: 21
  start-page: 824
  year: 2007
  end-page: 839
  ident: b36
  article-title: Approximate entropy as a diagnostic tool for machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– reference: . (Accessed 2013).
– volume: 5
  start-page: 15066
  year: 2017
  end-page: 15079
  ident: b17
  article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery
  publication-title: IEEE Access
– reference: .
– volume: 31
  start-page: 61
  year: 2009
  end-page: 68
  ident: b37
  article-title: Measuring complexity using FuzzyEn, ApEn, and SampEn
  publication-title: Med. Eng. Phys.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b20
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 165
  start-page: 23
  year: 2014
  end-page: 31
  ident: b24
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
– volume: 55
  start-page: 2297
  year: 1991
  end-page: 2301
  ident: b35
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 4
  start-page: 383
  year: 2016
  end-page: 394
  ident: b26
  article-title: A fault diagnosis method based on MBSE and PSO-SVM for roller bearings
  publication-title: J. Vib. Eng. Technol.
– volume: 112
  start-page: 119
  year: 2015
  end-page: 128
  ident: b22
  article-title: 3D object retrieval with stacked local convolutional autoencoder
  publication-title: Signal Process.
– volume: 52
  start-page: 8
  year: 2016
  end-page: 18
  ident: b40
  article-title: Stacking denoising auto-encoders in a deep network to segment thebrainstem on MRI in brain cancer patients: A clinical study
  publication-title: Comput. Med. Imaging Graph.
– volume: 31
  start-page: 91
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2018.09.037_b1
  article-title: Test for active control of boom vibration of a concrete pump truck
  publication-title: J. Vib. Shock
– ident: 10.1016/j.asoc.2018.09.037_b29
  doi: 10.1109/CDC.1978.268028
– volume: 5
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2018.09.037_b18
  article-title: ransformer fault diagnosis using continuous sparse autoencoder
  publication-title: Springerplus
– volume: 112
  start-page: 119
  year: 2015
  ident: 10.1016/j.asoc.2018.09.037_b22
  article-title: 3D object retrieval with stacked local convolutional autoencoder
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.09.005
– start-page: 835
  year: 1975
  ident: 10.1016/j.asoc.2018.09.037_b32
  article-title: Optimal fuzzy partitions: A heuristic forb estimating the parameters in a mixture of normal dustrubutions
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1975.224317
– volume: 7
  start-page: 1
  issue: 41
  year: 2017
  ident: 10.1016/j.asoc.2018.09.037_b27
  article-title: Deep fault recognizer: An integrated model to denoise and extract features for fault diagnosis in rotating machinery
  publication-title: Appl. Sci.-Basel.
– volume: 22
  start-page: 2603
  issue: 11
  year: 2014
  ident: 10.1016/j.asoc.2018.09.037_b11
  article-title: An enhanced empirical mode decomposition method for blind component separation of a single-channel vibration signal mixture
  publication-title: J. Vib. Control
  doi: 10.1177/1077546314550221
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.asoc.2018.09.037_b5
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 162
  start-page: 697
  year: 2018
  ident: 10.1016/j.asoc.2018.09.037_b42
  article-title: Optimal operation of photovoltaic/battery/diesel/coldironing hybrid energy system for maritime application
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.048
– volume: 34
  start-page: 714
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2018.09.037_b28
  article-title: Study on mechanical fault diagnosis method based on LMD approximate entropy and fuzzy C-means clustering
  publication-title: Chin. J. Sci. Instrum.
– volume: 228
  start-page: 254
  year: 2018
  ident: 10.1016/j.asoc.2018.09.037_b41
  article-title: A novel optimal energymanagement strategy for a maritime hybrid energy system based on largescale global optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.092
– volume: 12
  start-page: 124
  year: 2016
  ident: 10.1016/j.asoc.2018.09.037_b13
  article-title: Bearing defect classification based on individual wavelet local fisher discriminant analysis with particle swarm optimization
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2015.2500098
– volume: 31
  start-page: 61
  year: 2009
  ident: 10.1016/j.asoc.2018.09.037_b37
  article-title: Measuring complexity using FuzzyEn, ApEn, and SampEn
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.04.005
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2018.09.037_b19
  article-title: Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis
  publication-title: Neurocomputing
– volume: 24
  start-page: 3036
  issue: 22
  year: 2013
  ident: 10.1016/j.asoc.2018.09.037_b30
  article-title: Mechanical fault diagnosis method based on EEMD sample entropy and GK fuzzy clustering
  publication-title: Chin. J. Sci. Instrum.
– ident: 10.1016/j.asoc.2018.09.037_b9
  doi: 10.1109/ICPHM.2011.6024349
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.asoc.2018.09.037_b20
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.asoc.2018.09.037_b34
– volume: 35
  start-page: 49
  year: 2011
  ident: 10.1016/j.asoc.2018.09.037_b15
  article-title: Using autoencoders for mammogram compression
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9340-3
– ident: 10.1016/j.asoc.2018.09.037_b21
  doi: 10.1145/1390156.1390294
– volume: 11
  start-page: 773
  issue: 7
  year: 1989
  ident: 10.1016/j.asoc.2018.09.037_b31
  article-title: Unsupervised optimal fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192473
– volume: 55
  start-page: 2297
  year: 1991
  ident: 10.1016/j.asoc.2018.09.037_b35
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.88.6.2297
– volume: 21
  start-page: 824
  year: 2007
  ident: 10.1016/j.asoc.2018.09.037_b36
  article-title: Approximate entropy as a diagnostic tool for machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.02.009
– volume: 120
  start-page: 761
  year: 2015
  ident: 10.1016/j.asoc.2018.09.037_b23
  article-title: Multimodal video classification with stacked contractive autoencoders
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.01.001
– volume: 330
  start-page: 6061
  issue: 25
  year: 2011
  ident: 10.1016/j.asoc.2018.09.037_b3
  article-title: A modal disturbance estimator for vibration suppression in nonlinear flexible structures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2011.07.014
– volume: 329
  start-page: 961
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2018.09.037_b2
  article-title: Independent modal control for nonlinear flexible structures: an experimental test rig
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.10.021
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.asoc.2018.09.037_b6
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 31
  start-page: 1
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2018.09.037_b16
  article-title: Weighted time series fault diagnosis based on a stacked sparse autoencoder
  publication-title: J. Chemometrics
  doi: 10.1002/cem.2912
– start-page: 303
  year: 2016
  ident: 10.1016/j.asoc.2018.09.037_b14
  article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
– volume: 5
  start-page: 15066
  year: 2017
  ident: 10.1016/j.asoc.2018.09.037_b17
  article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728010
– volume: 18
  start-page: 1
  issue: 704
  year: 2018
  ident: 10.1016/j.asoc.2018.09.037_b10
  article-title: EEMD based steady-state indexes and their applications to condition monitoring and fault diagnosis of railway axle bearings
  publication-title: Sensors
– volume: 95
  start-page: 187
  year: 2017
  ident: 10.1016/j.asoc.2018.09.037_b12
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.03.034
– volume: 165
  start-page: 23
  year: 2014
  ident: 10.1016/j.asoc.2018.09.037_b24
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
– volume: 22
  start-page: 2631
  issue: 11
  year: 2016
  ident: 10.1016/j.asoc.2018.09.037_b33
  article-title: PCA-GG rolling bearing clustering fault diagnosis based on EEMD fuzzy entropy
  publication-title: Comput.-Integr. Manuf. Syst.
– volume: 52
  start-page: 8
  year: 2016
  ident: 10.1016/j.asoc.2018.09.037_b40
  article-title: Stacking denoising auto-encoders in a deep network to segment thebrainstem on MRI in brain cancer patients: A clinical study
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2016.03.003
– volume: 11
  start-page: 270
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2018.09.037_b38
  article-title: A comparative study on apen sampen and their fuzzy counterparts in a multiscale framework for feature extraction
  publication-title: J. Zhejiang Univ. Sci. A (Appl. Phys. Eng).
  doi: 10.1631/jzus.A0900360
– volume: 4
  start-page: 383
  year: 2016
  ident: 10.1016/j.asoc.2018.09.037_b26
  article-title: A fault diagnosis method based on MBSE and PSO-SVM for roller bearings
  publication-title: J. Vib. Eng. Technol.
– volume: 41
  start-page: 127
  year: 2013
  ident: 10.1016/j.asoc.2018.09.037_b8
  article-title: Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.07.006
– volume: 143
  start-page: 295
  year: 2018
  ident: 10.1016/j.asoc.2018.09.037_b39
  article-title: Combining granular computing technique with deep learning forservice planning under social manufacturing contexts
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.023
– volume: 37
  start-page: 6077
  year: 2010
  ident: 10.1016/j.asoc.2018.09.037_b25
  article-title: Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.02.118
– volume: 33
  start-page: 63
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2018.09.037_b4
  article-title: Nonlinear dynamical behavior analysis on rigid flexible coupling mechanical arm of hydraulic excavator
  publication-title: J. Vib. Shock
– volume: 69
  start-page: 164
  year: 2015
  ident: 10.1016/j.asoc.2018.09.037_b7
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.017
SSID ssj0016928
Score 2.4872768
Snippet Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 898
SubjectTerms Deep learning
Gath–Geva clustering algorithm
Roller bearing fault diagnosis
Stacked denoising autoencoder
Title Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label
URI https://dx.doi.org/10.1016/j.asoc.2018.09.037
Volume 73
WOSCitedRecordID wos000450124900062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6FlgMX_lHLn_bAzTLyz3q9PlaoFFBVIRFEOFlrew2uUsdK7KhH3oHX4Dl4EJ6Emf1xQosqQOIQK9p415vM55nx5JsZQp6FvGCiKkqfgb_rs0Rmvky49KMU2zrEEmyQThQ-Tk9OxGyWvZ1MvrtcmPU8bVtxfp51_1XUMAbCxtTZvxD3uCgMwHsQOhxB7HD8I8FjmW219Ar4XpolKYd5jyFWZNQ1K29Y2QgC3L6VB1pn0egROfQLLGqJtSU0Q1Z1rqWEyWI8Al_RUSPiI7XGrMoByyzoE-afFsum_3ymA7vIde5MFF-XHznrFq3hstsKKLgeclM9wKDl7LtKuNYrXoF50DOH3hlXgMVs0M72BtFT0xfyg2y8Hl6_sI3tZx-bwTse2u3wRiguUEUu590YNc2FzzIbvFRmTKSRn3HTAMbp9jTeUs7C9Lu2dj4zObCXTIiJZpw-l3B3IPVPmDq46cZgjjTGd7gP3AboxQD8MnaN7EZpkoF23T14fTh7M_6fxTPd5Xfct03fMkzDi1f6vYu05fZMb5Ob9nmFHhic3SET1d4lt1wvEGpNwz3yzcCOWthRDTs6wo5q2FELOzrCjm7BjjYtRdhRBzsKMKEIux9fviLg6AZwdAQctYCjI-DoCDjqAKdXQsBRDbj75P3Lw-mLV77tBOKXMRO9L8KY1zwoUs4DwRivGY-yWsJAoqoqgqeOqqyUKOJMxRWTSVgx2G-QRHWFNd2i-AHZaeHCe4TWZZ0IGURYJYpJLIsrVViEsK6oeRqqfRK6Hz8vbZl87NYyzx0f8jRHgeUosDzIchDYPvHGOZ0pEnPl2YmTaW7dXOO-5gDBK-Y9_Md5j8iNzY31mOz0y0E9IdfLdd-slk8tUn8C_VnUzg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roller+bearing+fault+diagnosis+using+stacked+denoising+autoencoder+in+deep+learning+and+Gath%E2%80%93Geva+clustering+algorithm+without+principal+component+analysis+and+data+label&rft.jtitle=Applied+soft+computing&rft.au=Xu%2C+Fan&rft.au=Tse%2C+Wai+tai+Peter&rft.au=Tse%2C+Yiu+Lun&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=73&rft.spage=898&rft.epage=913&rft_id=info:doi/10.1016%2Fj.asoc.2018.09.037&rft.externalDocID=S1568494618305544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon