Automatic Detection of Tooth-Gingiva Trim Lines on Dental Surfaces

Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 42; H. 11; S. 1
Hauptverfasser: Chen, Geng, Qin, Jie, Amor, Boulbaba Ben, Zhou, Weiming, Dai, Hang, Zhou, Tao, Huang, Heyuan, Shao, Ling
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperforms cutting-edge methods in both qualitative and quantitative evaluations.
AbstractList Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperform cutting-edge methods in both qualitative and quantitative evaluations.
Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperforms cutting-edge methods in both qualitative and quantitative evaluations.
Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperform cutting-edge methods in both qualitative and quantitative evaluations.Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperform cutting-edge methods in both qualitative and quantitative evaluations.
Author Qin, Jie
Shao, Ling
Zhou, Tao
Amor, Boulbaba Ben
Zhou, Weiming
Chen, Geng
Dai, Hang
Huang, Heyuan
Author_xml – sequence: 1
  givenname: Geng
  orcidid: 0000-0001-8350-6581
  surname: Chen
  fullname: Chen, Geng
  organization: School of Computer Science and Engineering, National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Northwestern Polytechnical University, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-0306-534X
  surname: Qin
  fullname: Qin, Jie
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Boulbaba Ben
  surname: Amor
  fullname: Amor, Boulbaba Ben
  organization: Inception Institute of Artificial Intelligence, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Weiming
  surname: Zhou
  fullname: Zhou, Weiming
  organization: Guangzhou HeyGears IMC. Inc, Guangzhou, China
– sequence: 5
  givenname: Hang
  orcidid: 0000-0002-7609-0124
  surname: Dai
  fullname: Dai, Hang
  organization: University of Glasgow, United Kingdom
– sequence: 6
  givenname: Tao
  orcidid: 0000-0002-3733-7286
  surname: Zhou
  fullname: Zhou, Tao
  organization: School of Computer Science and Engineering, PCA Lab, the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology, Nanjing, China
– sequence: 7
  givenname: Heyuan
  surname: Huang
  fullname: Huang, Heyuan
  organization: Guangzhou HeyGears IMC. Inc, Guangzhou, China
– sequence: 8
  givenname: Ling
  orcidid: 0000-0002-8264-6117
  surname: Shao
  fullname: Shao, Ling
  organization: UCAS-Terminus AI Lab, University of Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015112$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhq0KBAvl3kNVReqFS5YZex0nR8q3tIhDF4mb5XjHrVE2prGDxL_Hq10qxIHTjDTPO1_vAdvpQ0-MfUOYIkJzsri9mXLgYip4JbDCL2yCUtYll7OHHTYBruoSoOL77CDGRwCcSWj22L5QgBKRT9iv0zGFlUneFueUyCYf-iK4YhFC-lte-f6PfzbFYvCrYu57ikUun1OfTFf8HgdnLMWvbNeZLtLRNh6y-8uLxdl1Ob-7ujk7nZdWzOpUqpYLgY010glprbHCSnB8iRwcojKtA0fW5bxVwjnV1lRX1iybioOVCsUhO970fRrCv5Fi0isfLXWd6SmMUXPVVJjhpsnozw_oYxiHPm-neV1zqaScqUz92FJju6KlfspXmuFFv30nA7AB7BBiHMj9RxD02gCdDdBrA_TWgCypPkisT2b91TQY330m_L4ReiJ6NwdqJRDFK3QzkIE
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110960
crossref_primary_10_3390_bioengineering12090959
crossref_primary_10_1007_s11548_025_03358_5
crossref_primary_10_1016_j_jdent_2025_105755
Cites_doi 10.1007/978-3-030-32254-0_15
10.1007/s10278-019-00227-x
10.1007/978-3-642-35428-1_30
10.1002/ima.22704
10.1007/978-3-030-59713-9_39
10.1109/ACCESS.2020.2975067
10.1145/2185520.2185525
10.1007/978-3-030-59719-1_68
10.1007/978-3-642-04271-3_117
10.1109/CVPR.2018.00262
10.1007/978-3-030-32226-7_93
10.1109/ICCP51029.2020.9266244
10.1109/CVPR.2019.00985
10.1109/TNN.2008.2005605
10.1016/j.compbiomed.2014.10.013
10.1145/3306346.3322959
10.1609/aaai.v32i1.11604
10.1007/978-3-030-00937-3_81
10.1109/ICCV.2015.114
10.3722/cadaps.2010.221-233
10.1109/ICCVW.2015.112
10.1109/CVPR.2016.90
10.1007/978-3-030-59728-3_23
10.1016/j.media.2019.03.006
10.1016/j.gmod.2020.101071
10.1109/CVPR.2018.00745
10.1109/TMI.2004.824235
10.1137/090766401
10.1109/ACCESS.2019.2924262
10.1179/1465313315Y.0000000001
10.1109/ISBI.2019.8759256
10.1609/aaai.v33i01.33013558
10.1109/TVCG.2018.2839685
10.1109/TMI.2020.2971730
10.1002/hbm.460030304
10.1109/MSP.2017.2693418
10.1016/j.ijrobp.2010.07.1062
10.1109/CVPR.2017.576
10.1007/978-3-642-13681-8_61
10.1016/j.media.2020.101947
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2023.3263161
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1
ExternalDocumentID 37015112
10_1109_TMI_2023_3263161
10087311
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 62201465, 62276129, and 62172228
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: No. D5000220213
GroupedDBID ---
-DZ
-~X
0R~
29I
4.4
5GY
5RE
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
.GJ
53G
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c348t-7b23319ca5f35ccac3c50f2d120f117abf0fecff11b73ff7b8e86cad9620c5713
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001099088700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sat Sep 27 19:31:30 EDT 2025
Sun Nov 09 08:17:29 EST 2025
Sun Apr 06 01:21:17 EDT 2025
Tue Nov 18 22:05:36 EST 2025
Sat Nov 29 05:14:10 EST 2025
Wed Aug 27 02:21:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-7b23319ca5f35ccac3c50f2d120f117abf0fecff11b73ff7b8e86cad9620c5713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8350-6581
0000-0002-0306-534X
0000-0002-3733-7286
0000-0002-8264-6117
0000-0002-7609-0124
PMID 37015112
PQID 2882575547
PQPubID 85460
PageCount 1
ParticipantIDs proquest_miscellaneous_2796162099
crossref_primary_10_1109_TMI_2023_3263161
pubmed_primary_37015112
proquest_journals_2882575547
ieee_primary_10087311
crossref_citationtrail_10_1109_TMI_2023_3263161
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
chen (ref39) 2022
ref15
qi (ref41) 2017
ref14
wu (ref34) 2015
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
chen (ref29) 2018
ref51
ref46
ref45
ref48
ref47
ref42
ref44
qi (ref40) 2017
amor (ref43) 2021
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref36
ref31
ref30
ref33
ref32
ref2
ref1
gilmer (ref27) 2017
ref38
kingma (ref50) 2014
boscaini (ref37) 2016
lamecker (ref8) 2012
ref24
ref23
zanjani (ref12) 2019
ref25
ref22
ref21
ronneberger (ref20) 2015
ref28
li (ref26) 2016
References_xml – ident: ref14
  doi: 10.1007/978-3-030-32254-0_15
– year: 2021
  ident: ref43
  article-title: ResNet-LDDMM: Advancing the LDDMM framework using deep residual networks
  publication-title: arXiv 2102 07951
– ident: ref21
  doi: 10.1007/s10278-019-00227-x
– ident: ref9
  doi: 10.1007/978-3-642-35428-1_30
– ident: ref19
  doi: 10.1002/ima.22704
– ident: ref16
  doi: 10.1007/978-3-030-59713-9_39
– ident: ref24
  doi: 10.1109/ACCESS.2020.2975067
– ident: ref47
  doi: 10.1145/2185520.2185525
– start-page: 557
  year: 2019
  ident: ref12
  article-title: Deep learning approach to semantic segmentation in (3D) point cloud intra-oral scans of teeth
  publication-title: Proc Int Conf Med Imag Deep Learn
– ident: ref18
  doi: 10.1007/978-3-030-59719-1_68
– ident: ref5
  doi: 10.1007/978-3-642-04271-3_117
– start-page: 1
  year: 2016
  ident: ref26
  article-title: Gated graph sequence neural networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref48
  doi: 10.1109/CVPR.2018.00262
– ident: ref2
  doi: 10.1007/978-3-030-32226-7_93
– ident: ref3
  doi: 10.1109/ICCP51029.2020.9266244
– ident: ref42
  doi: 10.1109/CVPR.2019.00985
– ident: ref25
  doi: 10.1109/TNN.2008.2005605
– ident: ref7
  doi: 10.1016/j.compbiomed.2014.10.013
– ident: ref22
  doi: 10.1145/3306346.3322959
– ident: ref30
  doi: 10.1609/aaai.v32i1.11604
– ident: ref10
  doi: 10.1007/978-3-030-00937-3_81
– ident: ref35
  doi: 10.1109/ICCV.2015.114
– ident: ref53
  doi: 10.3722/cadaps.2010.221-233
– start-page: 1263
  year: 2017
  ident: ref27
  article-title: Neural message passing for quantum chemistry
  publication-title: Proc Int Conf Mach Learn
– ident: ref36
  doi: 10.1109/ICCVW.2015.112
– ident: ref44
  doi: 10.1109/CVPR.2016.90
– ident: ref32
  doi: 10.1007/978-3-030-59728-3_23
– ident: ref46
  doi: 10.1016/j.media.2019.03.006
– ident: ref17
  doi: 10.1016/j.gmod.2020.101071
– ident: ref45
  doi: 10.1109/CVPR.2018.00745
– ident: ref1
  doi: 10.1109/TMI.2004.824235
– start-page: 5099
  year: 2017
  ident: ref41
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref49
  doi: 10.1137/090766401
– ident: ref13
  doi: 10.1109/ACCESS.2019.2924262
– ident: ref4
  doi: 10.1179/1465313315Y.0000000001
– ident: ref33
  doi: 10.1109/ISBI.2019.8759256
– year: 2014
  ident: ref50
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref28
  doi: 10.1609/aaai.v33i01.33013558
– start-page: 652
  year: 2017
  ident: ref40
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
  publication-title: Proc Conf Comput Vis Pattern Recognit
– start-page: 3189
  year: 2016
  ident: ref37
  article-title: Learning shape correspondence with anisotropic convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref11
  doi: 10.1109/TVCG.2018.2839685
– ident: ref15
  doi: 10.1109/TMI.2020.2971730
– start-page: 609
  year: 2012
  ident: ref8
  article-title: Automatic detection and classification of teeth in CT data
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref52
  doi: 10.1002/hbm.460030304
– ident: ref23
  doi: 10.1109/MSP.2017.2693418
– ident: ref51
  doi: 10.1016/j.ijrobp.2010.07.1062
– ident: ref38
  doi: 10.1109/CVPR.2017.576
– year: 2022
  ident: ref39
  article-title: Automatic Schelling points detection from meshes
  publication-title: IEEE Trans Vis Comput Graphics
– start-page: 1
  year: 2018
  ident: ref29
  article-title: FastGCN: Fast learning with graph convolutional networks via importance sampling
  publication-title: Proc Int Conf Learn Represent
– start-page: 234
  year: 2015
  ident: ref20
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref6
  doi: 10.1007/978-3-642-13681-8_61
– start-page: 1912
  year: 2015
  ident: ref34
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
  publication-title: Proc Conf Comput Vis Pattern Recognit
– ident: ref31
  doi: 10.1016/j.media.2020.101947
SSID ssj0014509
Score 2.457487
Snippet Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Deep learning
Dental Surface
Finite element method
Geometric Deep Learning
Gingiva
High resolution
Image Processing, Computer-Assisted
LDDMM
Modules
Printing, Three-Dimensional
Segmentation
Teeth
Template Fitting
Three dimensional printing
Tooth-Gingiva Trim Line
Title Automatic Detection of Tooth-Gingiva Trim Lines on Dental Surfaces
URI https://ieeexplore.ieee.org/document/10087311
https://www.ncbi.nlm.nih.gov/pubmed/37015112
https://www.proquest.com/docview/2882575547
https://www.proquest.com/docview/2796162099
Volume 42
WOSCitedRecordID wos001099088700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SEEp7SNI0aZ0XKvTSg3fll2Qd826hCYVuYW9GkkcQSOyysfP7M5K9S3pIITeBZFvok6xPmvlmAL7qHEWKuoydEWWcJ7WIDRGFWOTa1vRPpj2pDskm5M1NOZ-rX6NYPWhhEDE4n-HEF4Mtv25t76_Kpj4Qjcy8kveNlGIQa61MBnkx-HOkPmQsF-nSJsnVdHb9Y-LThE-Iq2SJSP7Zg0JSlZf5ZdhnLrde2cNt2BwJJTsZZsAHWMNmB94_CzO4A2-vRwP6Rzg96bs2RGll59gFN6yGtY7NWkIsvvLZix41my1u79lP7xDPqPo8KCbZ737hvP_WLvy5vJidfY_HNAqxzfKyi6VJM1poVhcuKwgwm9mCu7ROUu6SRGrjuEPrqGxk5pw0JZbC6lqJlNuCDrF7sN60DX4G5jRahWhLXtscHVfGaqNRGSmLutAqgulyYCs7xhj3qS7uqnDW4KoiKCoPRTVCEcG31RN_h_ga_2m760f8WbthsCM4XIJXjSvwoUrp6EBUtMhlBF9W1bR2vEFEN9j21EYqkQgvHo7g0wD66uWZJKJEZHT_hY8ewDvft0GWeAjr3aLHI9iwj93tw-KYJui8PA4T9AmjzuFA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hFvFxKFAKpBQwEhcO2XUcfyTHQimt2F0hEaTeItsZS5UgQdukv7-2k12VQ5G4WbKTWH52_OyZNwPwQXOUDHWROiOLlGeNTI0nCqnk2jb-n-z3pCYmm1CrVXFxUX6fxOpRC4OI0fkMZ6EYbflNZ4dwVTYPgWhUHpS8u4JzRke51tZowMXo0cFC0Fgq2cYqSct5tTyfhUThM89W8kxmf-1CMa3K3Qwz7jSnT_6zj09hb6KU5HicA8_gHrb78PhWoMF9eLCcTOjP4dPx0HcxTis5wT46YrWkc6TqPGbp15C_6FqTan35myyCSzzx1SdRM0l-DGsXPLgO4Ofpl-rzWTolUkhtzos-VYblfqlZLVwuPGQ2t4I61mSMuixT2jjq0DpfNip3TpkCC2l1U0pGrfDH2Bew03YtvgLiNNoS0Ra0sRwdLY3VRmNplBKN0GUC883A1naKMh6SXfyq42mDlrWHog5Q1BMUCXzcPvFnjLDxj7YHYcRvtRsHO4GjDXj1tAavauYPD56MCq4SeL-t9qsnmER0i93g26hSZjLIhxN4OYK-fXmuPFXydPTwjo--g4dn1XJRL85X317Do9DPUaR4BDv9esA3cN9e95dX67dxmt4AMrnjnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Detection+of+Tooth-Gingiva+Trim+Lines+on+Dental+Surfaces&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chen%2C+Geng&rft.au=Qin%2C+Jie&rft.au=Amor%2C+Boulbaba+Ben&rft.au=Zhou%2C+Weiming&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0278-0062&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTMI.2023.3263161&rft.externalDocID=10087311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon