Height estimation from single aerial images using a deep convolutional encoder-decoder network

Extracting 3D information from aerial images is an important and still challenging topic in photogrammetry and remote sensing. Height estimation from only a single aerial image is an ambiguous and ill-posed problem. To address this challenging problem, in this paper, an architecture based on a deep...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS journal of photogrammetry and remote sensing Vol. 149; pp. 50 - 66
Main Authors: Amirkolaee, Hamed Amini, Arefi, Hossein
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2019
Subjects:
ISSN:0924-2716, 1872-8235
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Extracting 3D information from aerial images is an important and still challenging topic in photogrammetry and remote sensing. Height estimation from only a single aerial image is an ambiguous and ill-posed problem. To address this challenging problem, in this paper, an architecture based on a deep convolutional neural network (CNN) is proposed in order to estimate the height values from a single aerial image. Methodologies for data preprocessing, selection of training data as well as data augmentation are presented. Subsequently, a deep CNN architecture is proposed consisting of encoding and decoding steps. In the encoding part, a deep residual learning is employed for extracting the local and global features. An up-sampling approach is proposed in the decoding part for increasing the output resolution and skip connections are employed in each scale to modify the estimated height values at the object boundaries. Finally, a post-processing approach is proposed to merge the predicted height image patches and generate a seamless continuous height map. The quantitative evaluation of the proposed approaches on the ISPRS datasets indicates relative and root mean square errors of approximately 0.9 m and 3.2 m, respectively.
AbstractList Extracting 3D information from aerial images is an important and still challenging topic in photogrammetry and remote sensing. Height estimation from only a single aerial image is an ambiguous and ill-posed problem. To address this challenging problem, in this paper, an architecture based on a deep convolutional neural network (CNN) is proposed in order to estimate the height values from a single aerial image. Methodologies for data preprocessing, selection of training data as well as data augmentation are presented. Subsequently, a deep CNN architecture is proposed consisting of encoding and decoding steps. In the encoding part, a deep residual learning is employed for extracting the local and global features. An up-sampling approach is proposed in the decoding part for increasing the output resolution and skip connections are employed in each scale to modify the estimated height values at the object boundaries. Finally, a post-processing approach is proposed to merge the predicted height image patches and generate a seamless continuous height map. The quantitative evaluation of the proposed approaches on the ISPRS datasets indicates relative and root mean square errors of approximately 0.9 m and 3.2 m, respectively.
Author Amirkolaee, Hamed Amini
Arefi, Hossein
Author_xml – sequence: 1
  givenname: Hamed Amini
  surname: Amirkolaee
  fullname: Amirkolaee, Hamed Amini
– sequence: 2
  givenname: Hossein
  surname: Arefi
  fullname: Arefi, Hossein
  email: hossein.arefi@ut.ac.ir
BookMark eNqNkD1PwzAQhi1UJNrCb8AjS4I_ktgZGKoKKFIlFlixUvtSHNI42GkR_x63RQwsIJ11lv0-J90zQaPOdYDQJSUpJbS4blIbeh-aeFJGaJkSGoufoDGVgiWS8XyExqRkWcIELc7QJISGEELzQo7RywLs-nXAEAa7qQbrOlx7t8HBdusWcAXeVi2OX2sIeLt_xRU2AD3Wrtu5drtHYgI67Qz4xMCh4w6GD-ffztFpXbUBLr77FD3f3T7NF8ny8f5hPlsmmmdySERFNa8N4yvDZJ6VmTCCslUhqJa6yFeCFKYkuZYZXZXATZbFq6gZ54Zm3JR8iq6Oc3vv3rdxGbWxQUPbVh24bVCMMUpyTqSMUXGMau9C8FCr3sf9_KeiRO2Nqkb9GFV7o4rQWDySN79IbYeDs8FXtv0HPzvyEE3sLHgVtI3iwFgPelDG2T9nfAH2jJv2
CitedBy_id crossref_primary_10_1109_LGRS_2024_3461791
crossref_primary_10_3390_rs15153786
crossref_primary_10_1016_j_inffus_2024_102358
crossref_primary_10_1109_TGRS_2023_3321255
crossref_primary_10_3390_rs14092252
crossref_primary_10_1109_TRO_2025_3562048
crossref_primary_10_1093_nsr_nwz058
crossref_primary_10_1109_LGRS_2022_3222457
crossref_primary_10_1016_j_rineng_2024_103436
crossref_primary_10_1109_TGRS_2023_3311764
crossref_primary_10_3390_ijgi13030062
crossref_primary_10_1109_TGRS_2025_3591180
crossref_primary_10_1016_j_isprsjprs_2023_01_003
crossref_primary_10_3390_rs16060958
crossref_primary_10_1016_j_isprsjprs_2021_11_012
crossref_primary_10_1016_j_isprsjprs_2022_11_014
crossref_primary_10_1109_ACCESS_2021_3122894
crossref_primary_10_1109_JSTARS_2023_3297710
crossref_primary_10_3390_ijgi11070385
crossref_primary_10_3390_rs11192219
crossref_primary_10_3390_rs14143450
crossref_primary_10_1109_LGRS_2021_3090470
crossref_primary_10_1080_01431161_2022_2135410
crossref_primary_10_1016_j_agrformet_2020_108234
crossref_primary_10_1109_TGRS_2023_3290232
crossref_primary_10_1016_j_radi_2021_07_024
crossref_primary_10_1186_s13007_024_01171_w
crossref_primary_10_3390_rs17030496
crossref_primary_10_1109_TGRS_2023_3295802
crossref_primary_10_1109_JSTARS_2025_3602630
crossref_primary_10_3390_rs12172719
crossref_primary_10_1016_j_jag_2023_103311
crossref_primary_10_1016_j_jag_2023_103399
crossref_primary_10_1016_j_jag_2025_104443
crossref_primary_10_1016_j_jdeveco_2024_103322
crossref_primary_10_3390_rs13122417
crossref_primary_10_3390_rs17111915
crossref_primary_10_1016_j_isprsjprs_2021_03_024
crossref_primary_10_1016_j_scs_2024_105733
crossref_primary_10_1016_j_inffus_2025_103307
crossref_primary_10_1109_TGRS_2023_3266477
crossref_primary_10_1016_j_asoc_2022_108870
crossref_primary_10_1016_j_jag_2024_103809
crossref_primary_10_1109_ACCESS_2025_3570629
crossref_primary_10_1109_LGRS_2021_3126767
crossref_primary_10_1016_j_isprsjprs_2025_06_010
crossref_primary_10_1080_2150704X_2021_1880659
crossref_primary_10_1109_LGRS_2019_2947783
crossref_primary_10_1109_TGRS_2022_3197409
crossref_primary_10_1109_JSTARS_2020_3043442
crossref_primary_10_1016_j_aei_2020_101169
crossref_primary_10_3390_s21072272
crossref_primary_10_3390_rs17071297
crossref_primary_10_1109_TGRS_2022_3176670
crossref_primary_10_1080_2150704X_2023_2283901
crossref_primary_10_1016_j_uclim_2023_101736
crossref_primary_10_1109_TGRS_2022_3177796
crossref_primary_10_3390_rs16020295
crossref_primary_10_1109_LGRS_2020_2976485
crossref_primary_10_1016_j_landurbplan_2022_104624
crossref_primary_10_1109_JSTARS_2025_3582823
crossref_primary_10_3390_rs17142529
crossref_primary_10_1016_j_rse_2021_112590
crossref_primary_10_1016_j_isprsjprs_2025_07_010
crossref_primary_10_3390_rs14071567
crossref_primary_10_1016_j_isprsjprs_2025_06_022
crossref_primary_10_1109_JSTARS_2025_3567064
crossref_primary_10_1093_pnasnexus_pgad076
crossref_primary_10_3390_s23198162
crossref_primary_10_1016_j_isprsjprs_2021_03_008
crossref_primary_10_3390_s23136186
crossref_primary_10_3390_rs12223833
crossref_primary_10_1109_TGRS_2024_3358397
crossref_primary_10_1109_LGRS_2024_3374526
crossref_primary_10_1016_j_isprsjprs_2020_06_004
crossref_primary_10_1016_j_isprsjprs_2024_03_023
crossref_primary_10_1109_TIM_2025_3593596
crossref_primary_10_1109_LGRS_2020_3019252
crossref_primary_10_1080_01431161_2020_1742944
crossref_primary_10_1016_j_cities_2019_102481
crossref_primary_10_1134_S0001433820120427
crossref_primary_10_3390_rs13214434
crossref_primary_10_1080_01431161_2020_1767821
crossref_primary_10_1080_01431161_2023_2251185
crossref_primary_10_3390_rs14215392
crossref_primary_10_1109_TGRS_2022_3171407
crossref_primary_10_1016_j_rse_2022_113014
Cites_doi 10.3758/BF03211716
10.1177/0278364914549607
10.3390/rs8040329
10.1109/34.308479
10.1109/3DV.2016.32
10.1109/LGRS.2018.2806945
10.1007/978-3-319-24574-4_28
10.3390/s90100568
10.1109/CVPR.2017.699
10.1109/CVPR.2015.7298761
10.1109/CVPR.2017.238
10.1007/s11263-007-0071-y
10.1109/IDAACS.2017.8095172
10.1023/B:SUPE.0000020178.66165.f3
10.1111/j.1477-9730.2006.00383.x
10.1155/2017/3296874
10.1109/TPAMI.2015.2505283
10.1109/ICCV.2007.4408828
10.1016/j.geomorph.2012.08.021
10.1109/LGRS.2012.2195471
10.1109/TGRS.2016.2616585
10.1007/s11263-015-0816-y
ContentType Journal Article
Copyright 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2019.01.013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 66
ExternalDocumentID 10_1016_j_isprsjprs_2019_01_013
S0924271619300139
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c348t-7a1c3fd23bd2854947d712b671c8c65b706d905c841b9e3d44c847f233d143d93
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461535600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-2716
IngestDate Wed Oct 01 14:33:50 EDT 2025
Sat Nov 29 05:55:02 EST 2025
Tue Nov 18 22:37:00 EST 2025
Fri Feb 23 02:28:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Height image
Digital aerial image
Decoder
Convolutional neural network
Encoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-7a1c3fd23bd2854947d712b671c8c65b706d905c841b9e3d44c847f233d143d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2221053088
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_2221053088
crossref_primary_10_1016_j_isprsjprs_2019_01_013
crossref_citationtrail_10_1016_j_isprsjprs_2019_01_013
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_01_013
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saxena, A., Schulte, J., Ng, A.Y., 2007a. Depth Estimation Using Monocular and Stereo Cues, IJCAI.
Pfister, Charles, Zisserman (b0155) 2015
Wang, Shen, Lin, Cohen, Price, Yuille (b0240) 2015
Saxena, Chung, Ng (b0195) 2008; 76
Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N., 2016. Deeper depth prediction with fully convolutional residual networks. In: 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, pp. 239–248.
Batra, D., Saxena, A., 2012. Learning the right model: Efficient max-margin learning in laplacian crfs. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, pp. 2136–2143.
Eigen, Fergus (b0035) 2015
He, Zhang, Ren, Sun (b0065) 2016
Ladicky, Shi, Pollefeys (b0095) 2014
Vedaldi, Lenc (b0230) 2015
Arefi, Hahn (b0005) 2005; 36
Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P., 2017. A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens.
Saxena, A., Sun, M., Ng, A.Y., 2007b. Learning 3-d scene structure from a single still image. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. IEEE, pp. 1–8.
Lenz, Lee, Saxena (b0110) 2015; 34
Godard, C., Mac Aodha, O., Brostow, G.J., 2016. Unsupervised monocular depth estimation with left-right consistency. In: CVPR, vol. 2, No. 6, p. 7.
Kuznietsov, Y., Stückler, J., Leibe, B., 2017. Semi-Supervised Deep Learning for Monocular Depth Map Prediction. arXiv preprint arXiv:1702.02706.
de Vries, Kappers, Koenderink (b0025) 1993; 53
Liu, Shen, Lin, Reid (b0120) 2016; 38
Mou, L., Zhu, X. X., 2018. IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network, 2018, arXiv preprint arXiv:1802.10249.
Huang, Liu, Maaten, Weinberger (b0060) 2017; 2017
Volpi, Tuia (b0235) 2017; 55
Nayar, Nakagawa (b0145) 1994; 16
Simonyan, Zisserman (b0210) 2015
Roy, Todorovic (b0175) 2016
Krizhevsky, A., Hinton, G., 2009. Learning multiple layers of features from tiny images, vol. 1, No. 4, p. 7. Technical report, University of Toronto.
Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In: Paper presented at International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, pp. 234–241.
Westoby, Brasington, Glasser, Hambrey, Reynolds (b0245) 2012; 179
Chen, Qin, Lin, Liu, Zhan (b0020) 2013; 10
Xu, C., Yang, J., Lai, H., Gao, J., Shen, L., Yan, S., 2017. UP-CNN: un-pooling augmented convolutional neural network. Pattern Recognition Letters.
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0220) 2015
Ghamisi, Yokoya (b0050) 2018; 15
Liu, Salzmann, He (b0125) 2014
Sansoni, Trebeschi, Docchio (b0185) 2009; 9
Eigen, Puhrsch, Fergus (b0040) 2014
Turchenko, V., Chalmers, E., Luczak, A., 2017. A Deep Convolutional Auto-Encoder with Pooling-Unpooling Layers in Caffe. arXiv preprint arXiv:1701.04949.
Srivastava, Volpi, Tuia (b0215) 2017
Rajabi, Blais (b0160) 2004; 28
Zhu, J., Ma, R., 2016. Real-Time Depth Estimation from 2D Images, available at: <http://cs231n.stanford.edu/reports/2016/pdfs/407_Report.pdf>.
Niemeyer, Rottensteiner, Soergel (b0150) 2013
Kim, Park, Sohn, Lin (b0075) 2016
Remondino, El-Hakim (b0165) 2006; 21
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b0180) 2015; 115
Garg, Carneiro, Reid (b0045) 2016
Karsch, Liu, Kang (b0070) 2012
Long, Shelhamer, Darrell (b0130) 2015
Mikolov, Sutskever, Chen, Corrado, Dean (b0135) 2013
Li, Shen, Dai, van den Hengel, He (b0115) 2015
Saxena, Chung, Ng (b0190) 2006
Krizhevsky, Sutskever, Hinton (b0085) 2012
Längkvist, Kiselev, Alirezaie, Loutfi (b0105) 2016; 8
Dosovitskiy, A., Springenberg, J.T., Brox, T., 2015. Learning to generate chairs with convolutional neural networks. In: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE, pp. 1538–1546.
Zhuo, Salzmann, He, Liu (b0265) 2015
Yu, F., Koltun, V., 2015. “Multi-scale context aggregation by dilated convolutions”. arXiv preprint arXiv:1511.07122.
Kim (10.1016/j.isprsjprs.2019.01.013_b0075) 2016
Westoby (10.1016/j.isprsjprs.2019.01.013_b0245) 2012; 179
Chen (10.1016/j.isprsjprs.2019.01.013_b0020) 2013; 10
Wang (10.1016/j.isprsjprs.2019.01.013_b0240) 2015
Garg (10.1016/j.isprsjprs.2019.01.013_b0045) 2016
10.1016/j.isprsjprs.2019.01.013_b0200
10.1016/j.isprsjprs.2019.01.013_b0205
Russakovsky (10.1016/j.isprsjprs.2019.01.013_b0180) 2015; 115
10.1016/j.isprsjprs.2019.01.013_b0080
Krizhevsky (10.1016/j.isprsjprs.2019.01.013_b0085) 2012
Liu (10.1016/j.isprsjprs.2019.01.013_b0120) 2016; 38
Remondino (10.1016/j.isprsjprs.2019.01.013_b0165) 2006; 21
Pfister (10.1016/j.isprsjprs.2019.01.013_b0155) 2015
Saxena (10.1016/j.isprsjprs.2019.01.013_b0195) 2008; 76
Ladicky (10.1016/j.isprsjprs.2019.01.013_b0095) 2014
Eigen (10.1016/j.isprsjprs.2019.01.013_b0040) 2014
Rajabi (10.1016/j.isprsjprs.2019.01.013_b0160) 2004; 28
10.1016/j.isprsjprs.2019.01.013_b0055
10.1016/j.isprsjprs.2019.01.013_b0255
Zhuo (10.1016/j.isprsjprs.2019.01.013_b0265) 2015
10.1016/j.isprsjprs.2019.01.013_b0015
Sansoni (10.1016/j.isprsjprs.2019.01.013_b0185) 2009; 9
10.1016/j.isprsjprs.2019.01.013_b0170
10.1016/j.isprsjprs.2019.01.013_b0250
10.1016/j.isprsjprs.2019.01.013_b0010
Eigen (10.1016/j.isprsjprs.2019.01.013_b0035) 2015
Niemeyer (10.1016/j.isprsjprs.2019.01.013_b0150) 2013
10.1016/j.isprsjprs.2019.01.013_b0090
Simonyan (10.1016/j.isprsjprs.2019.01.013_b0210) 2015
Ghamisi (10.1016/j.isprsjprs.2019.01.013_b0050) 2018; 15
Lenz (10.1016/j.isprsjprs.2019.01.013_b0110) 2015; 34
Long (10.1016/j.isprsjprs.2019.01.013_b0130) 2015
Mikolov (10.1016/j.isprsjprs.2019.01.013_b0135) 2013
10.1016/j.isprsjprs.2019.01.013_b0100
10.1016/j.isprsjprs.2019.01.013_b0225
He (10.1016/j.isprsjprs.2019.01.013_b0065) 2016
Längkvist (10.1016/j.isprsjprs.2019.01.013_b0105) 2016; 8
Li (10.1016/j.isprsjprs.2019.01.013_b0115) 2015
10.1016/j.isprsjprs.2019.01.013_b0140
10.1016/j.isprsjprs.2019.01.013_b0260
Vedaldi (10.1016/j.isprsjprs.2019.01.013_b0230) 2015
Arefi (10.1016/j.isprsjprs.2019.01.013_b0005) 2005; 36
Volpi (10.1016/j.isprsjprs.2019.01.013_b0235) 2017; 55
Karsch (10.1016/j.isprsjprs.2019.01.013_b0070) 2012
Szegedy (10.1016/j.isprsjprs.2019.01.013_b0220) 2015
de Vries (10.1016/j.isprsjprs.2019.01.013_b0025) 1993; 53
Huang (10.1016/j.isprsjprs.2019.01.013_b0060) 2017; 2017
Nayar (10.1016/j.isprsjprs.2019.01.013_b0145) 1994; 16
Srivastava (10.1016/j.isprsjprs.2019.01.013_b0215) 2017
10.1016/j.isprsjprs.2019.01.013_b0030
Saxena (10.1016/j.isprsjprs.2019.01.013_b0190) 2006
Liu (10.1016/j.isprsjprs.2019.01.013_b0125) 2014
Roy (10.1016/j.isprsjprs.2019.01.013_b0175) 2016
References_xml – reference: Krizhevsky, A., Hinton, G., 2009. Learning multiple layers of features from tiny images, vol. 1, No. 4, p. 7. Technical report, University of Toronto.
– volume: 36
  start-page: 120
  year: 2005
  end-page: 125
  ident: b0005
  article-title: A morphological reconstruction algorithm for separating off-terrain points from terrain points in laser scanning data
  publication-title: Int. Arch. Photogram., Remote Sens. Spatial Inform. Sci.
– reference: Turchenko, V., Chalmers, E., Luczak, A., 2017. A Deep Convolutional Auto-Encoder with Pooling-Unpooling Layers in Caffe. arXiv preprint arXiv:1701.04949.
– reference: Saxena, A., Sun, M., Ng, A.Y., 2007b. Learning 3-d scene structure from a single still image. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. IEEE, pp. 1–8.
– volume: 55
  start-page: 881
  year: 2017
  end-page: 893
  ident: b0235
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Batra, D., Saxena, A., 2012. Learning the right model: Efficient max-margin learning in laplacian crfs. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, pp. 2136–2143.
– volume: 10
  start-page: 145
  year: 2013
  end-page: 149
  ident: b0020
  article-title: DEM densification using perspective shape from shading through multispectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 5173
  year: 2017
  end-page: 5176
  ident: b0215
  article-title: Joint height estimation and semantic labeling of monocular aerial images with CNNS
  publication-title: IEEE Int. Geosci. Remote Sens. Symp. (IGARSS)
– volume: 2017
  start-page: 2261
  year: 2017
  end-page: 2269
  ident: b0060
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conf. Comput. Vision Pattern Recogn. (CVPR)
– reference: Kuznietsov, Y., Stückler, J., Leibe, B., 2017. Semi-Supervised Deep Learning for Monocular Depth Map Prediction. arXiv preprint arXiv:1702.02706.
– volume: 28
  start-page: 193
  year: 2004
  end-page: 213
  ident: b0160
  article-title: Optimization of DTM interpolation using SFS with single satellite imagery
  publication-title: J. Supercomput.
– start-page: 689
  year: 2015
  end-page: 692
  ident: b0230
  article-title: Matconvnet: convolutional neural networks for matlab
  publication-title: Proceedings of the 23rd ACM International Conference on Multimedia
– reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In: Paper presented at International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, pp. 234–241.
– volume: 8
  start-page: 329
  year: 2016
  ident: b0105
  article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks
  publication-title: Remote Sens.
– start-page: 5506
  year: 2016
  end-page: 5514
  ident: b0175
  article-title: Monocular depth estimation using neural regression forest
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 76
  start-page: 53
  year: 2008
  end-page: 69
  ident: b0195
  article-title: 3-d depth reconstruction from a single still image
  publication-title: Int. J. Comput. Vision
– reference: Saxena, A., Schulte, J., Ng, A.Y., 2007a. Depth Estimation Using Monocular and Stereo Cues, IJCAI.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0065
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 716
  year: 2014
  end-page: 723
  ident: b0125
  article-title: Discrete-continuous depth estimation from a single image
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 824
  year: 1994
  end-page: 831
  ident: b0145
  article-title: Shape from focus
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0220
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 34
  start-page: 705
  year: 2015
  end-page: 724
  ident: b0110
  article-title: Deep learning for detecting robotic grasps
  publication-title: Int. J. Robot. Res.
– start-page: 740
  year: 2016
  end-page: 756
  ident: b0045
  article-title: Unsupervised CNN for single view depth estimation: geometry to the rescue
  publication-title: Eur. Conf. Comput. Vision. Springer
– start-page: 143
  year: 2016
  end-page: 159
  ident: b0075
  article-title: Unified depth prediction and intrinsic image decomposition from a single image via joint convolutional neural fields
  publication-title: Eur. Conf. Comput. Vision. Springer
– reference: Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P., 2017. A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens.
– reference: Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N., 2016. Deeper depth prediction with fully convolutional residual networks. In: 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, pp. 239–248.
– reference: Mou, L., Zhu, X. X., 2018. IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network, 2018, arXiv preprint arXiv:1802.10249.
– start-page: 1119
  year: 2015
  end-page: 1127
  ident: b0115
  article-title: Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 139
  year: 2013
  end-page: 142
  ident: b0150
  article-title: Classification of urban LiDAR data using conditional random field and random forests
  publication-title: Urban Remote Sens. Event (JURSE)
– volume: 53
  start-page: 71
  year: 1993
  end-page: 80
  ident: b0025
  article-title: Shape from stereo: a systematic approach using quadratic surfaces
  publication-title: Attention, Percept., Psychophys.
– start-page: 614
  year: 2015
  end-page: 622
  ident: b0265
  article-title: Indoor scene structure analysis for single image depth estimation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 775
  year: 2012
  end-page: 788
  ident: b0070
  article-title: Depth extraction from video using non-parametric sampling
  publication-title: Eur. Conf. Comput. Vision. Springer
– volume: 21
  start-page: 269
  year: 2006
  end-page: 291
  ident: b0165
  article-title: Image-based 3D modelling: a review
  publication-title: Photogram. Rec.
– reference: Yu, F., Koltun, V., 2015. “Multi-scale context aggregation by dilated convolutions”. arXiv preprint arXiv:1511.07122.
– reference: Xu, C., Yang, J., Lai, H., Gao, J., Shen, L., Yan, S., 2017. UP-CNN: un-pooling augmented convolutional neural network. Pattern Recognition Letters.
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: b0135
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: b0130
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 2800
  year: 2015
  end-page: 2809
  ident: b0240
  article-title: Towards unified depth and semantic prediction from a single image
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1913
  year: 2015
  end-page: 1921
  ident: b0155
  article-title: Flowing convnets for human pose estimation in videos
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b0180
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
– start-page: (ICLR'15).
  year: 2015
  ident: b0210
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations
– volume: 38
  start-page: 2024
  year: 2016
  end-page: 2039
  ident: b0120
  article-title: Learning depth from single monocular images using deep convolutional neural fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 179
  start-page: 300
  year: 2012
  end-page: 314
  ident: b0245
  article-title: ‘Structure-from-Motion’photogrammetry: a low-cost, effective tool for geoscience applications
  publication-title: Geomorphology
– reference: Dosovitskiy, A., Springenberg, J.T., Brox, T., 2015. Learning to generate chairs with convolutional neural networks. In: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE, pp. 1538–1546.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0085
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 2366
  year: 2014
  end-page: 2374
  ident: b0040
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Adv. Neural Inform. Process. Syst.
– reference: Godard, C., Mac Aodha, O., Brostow, G.J., 2016. Unsupervised monocular depth estimation with left-right consistency. In: CVPR, vol. 2, No. 6, p. 7.
– start-page: 2650
  year: 2015
  end-page: 2658
  ident: b0035
  article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 9
  start-page: 568
  year: 2009
  end-page: 601
  ident: b0185
  article-title: State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation
  publication-title: Sensors
– start-page: 1161
  year: 2006
  end-page: 1168
  ident: b0190
  article-title: Learning depth from single monocular images
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 89
  year: 2014
  end-page: 96
  ident: b0095
  article-title: Pulling things out of perspective
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Zhu, J., Ma, R., 2016. Real-Time Depth Estimation from 2D Images, available at: <http://cs231n.stanford.edu/reports/2016/pdfs/407_Report.pdf>.
– volume: 15
  start-page: 794
  year: 2018
  end-page: 798
  ident: b0050
  article-title: IMG2DSM: Height Simulation From Single Imagery Using Conditional Generative Adversarial Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 3111
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.01.013_b0135
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 53
  start-page: 71
  year: 1993
  ident: 10.1016/j.isprsjprs.2019.01.013_b0025
  article-title: Shape from stereo: a systematic approach using quadratic surfaces
  publication-title: Attention, Percept., Psychophys.
  doi: 10.3758/BF03211716
– start-page: 689
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0230
  article-title: Matconvnet: convolutional neural networks for matlab
– start-page: 775
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.01.013_b0070
  article-title: Depth extraction from video using non-parametric sampling
  publication-title: Eur. Conf. Comput. Vision. Springer
– volume: 34
  start-page: 705
  issue: 4–5
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0110
  article-title: Deep learning for detecting robotic grasps
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914549607
– volume: 8
  start-page: 329
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.01.013_b0105
  article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs8040329
– start-page: 1119
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0115
  article-title: Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs
– volume: 16
  start-page: 824
  year: 1994
  ident: 10.1016/j.isprsjprs.2019.01.013_b0145
  article-title: Shape from focus
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.308479
– ident: 10.1016/j.isprsjprs.2019.01.013_b0010
– ident: 10.1016/j.isprsjprs.2019.01.013_b0100
  doi: 10.1109/3DV.2016.32
– volume: 15
  start-page: 794
  issue: 5
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.01.013_b0050
  article-title: IMG2DSM: Height Simulation From Single Imagery Using Conditional Generative Adversarial Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2806945
– start-page: 770
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.01.013_b0065
  article-title: Deep residual learning for image recognition
– ident: 10.1016/j.isprsjprs.2019.01.013_b0170
  doi: 10.1007/978-3-319-24574-4_28
– volume: 9
  start-page: 568
  year: 2009
  ident: 10.1016/j.isprsjprs.2019.01.013_b0185
  article-title: State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation
  publication-title: Sensors
  doi: 10.3390/s90100568
– ident: 10.1016/j.isprsjprs.2019.01.013_b0255
– ident: 10.1016/j.isprsjprs.2019.01.013_b0055
  doi: 10.1109/CVPR.2017.699
– start-page: 740
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.01.013_b0045
  article-title: Unsupervised CNN for single view depth estimation: geometry to the rescue
  publication-title: Eur. Conf. Comput. Vision. Springer
– start-page: 2650
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0035
  article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
– ident: 10.1016/j.isprsjprs.2019.01.013_b0080
– ident: 10.1016/j.isprsjprs.2019.01.013_b0030
  doi: 10.1109/CVPR.2015.7298761
– ident: 10.1016/j.isprsjprs.2019.01.013_b0250
– ident: 10.1016/j.isprsjprs.2019.01.013_b0090
  doi: 10.1109/CVPR.2017.238
– volume: 76
  start-page: 53
  year: 2008
  ident: 10.1016/j.isprsjprs.2019.01.013_b0195
  article-title: 3-d depth reconstruction from a single still image
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-007-0071-y
– start-page: 1161
  year: 2006
  ident: 10.1016/j.isprsjprs.2019.01.013_b0190
  article-title: Learning depth from single monocular images
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 139
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.01.013_b0150
  article-title: Classification of urban LiDAR data using conditional random field and random forests
  publication-title: Urban Remote Sens. Event (JURSE)
– ident: 10.1016/j.isprsjprs.2019.01.013_b0260
– start-page: 1097
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.01.013_b0085
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– ident: 10.1016/j.isprsjprs.2019.01.013_b0225
  doi: 10.1109/IDAACS.2017.8095172
– start-page: 3431
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0130
  article-title: Fully convolutional networks for semantic segmentation
– ident: 10.1016/j.isprsjprs.2019.01.013_b0140
– start-page: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0220
  article-title: Going deeper with convolutions
– start-page: 2800
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0240
  article-title: Towards unified depth and semantic prediction from a single image
– start-page: 2366
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.01.013_b0040
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 28
  start-page: 193
  year: 2004
  ident: 10.1016/j.isprsjprs.2019.01.013_b0160
  article-title: Optimization of DTM interpolation using SFS with single satellite imagery
  publication-title: J. Supercomput.
  doi: 10.1023/B:SUPE.0000020178.66165.f3
– start-page: 143
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.01.013_b0075
  article-title: Unified depth prediction and intrinsic image decomposition from a single image via joint convolutional neural fields
  publication-title: Eur. Conf. Comput. Vision. Springer
– start-page: (ICLR'15).
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0210
  article-title: Very deep convolutional networks for large-scale image recognition
– start-page: 5173
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.01.013_b0215
  article-title: Joint height estimation and semantic labeling of monocular aerial images with CNNS
  publication-title: IEEE Int. Geosci. Remote Sens. Symp. (IGARSS)
– volume: 21
  start-page: 269
  year: 2006
  ident: 10.1016/j.isprsjprs.2019.01.013_b0165
  article-title: Image-based 3D modelling: a review
  publication-title: Photogram. Rec.
  doi: 10.1111/j.1477-9730.2006.00383.x
– ident: 10.1016/j.isprsjprs.2019.01.013_b0015
  doi: 10.1155/2017/3296874
– volume: 38
  start-page: 2024
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.01.013_b0120
  article-title: Learning depth from single monocular images using deep convolutional neural fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2505283
– start-page: 5506
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.01.013_b0175
  article-title: Monocular depth estimation using neural regression forest
– start-page: 716
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.01.013_b0125
  article-title: Discrete-continuous depth estimation from a single image
– ident: 10.1016/j.isprsjprs.2019.01.013_b0205
  doi: 10.1109/ICCV.2007.4408828
– start-page: 1913
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0155
  article-title: Flowing convnets for human pose estimation in videos
– start-page: 89
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.01.013_b0095
  article-title: Pulling things out of perspective
– ident: 10.1016/j.isprsjprs.2019.01.013_b0200
– volume: 179
  start-page: 300
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.01.013_b0245
  article-title: ‘Structure-from-Motion’photogrammetry: a low-cost, effective tool for geoscience applications
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.08.021
– volume: 2017
  start-page: 2261
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.01.013_b0060
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conf. Comput. Vision Pattern Recogn. (CVPR)
– volume: 10
  start-page: 145
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.01.013_b0020
  article-title: DEM densification using perspective shape from shading through multispectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2195471
– volume: 55
  start-page: 881
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.01.013_b0235
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2616585
– start-page: 614
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0265
  article-title: Indoor scene structure analysis for single image depth estimation
– volume: 36
  start-page: 120
  year: 2005
  ident: 10.1016/j.isprsjprs.2019.01.013_b0005
  article-title: A morphological reconstruction algorithm for separating off-terrain points from terrain points in laser scanning data
  publication-title: Int. Arch. Photogram., Remote Sens. Spatial Inform. Sci.
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.01.013_b0180
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-015-0816-y
SSID ssj0001568
Score 2.543919
Snippet Extracting 3D information from aerial images is an important and still challenging topic in photogrammetry and remote sensing. Height estimation from only a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms aerial photography
Convolutional neural network
data collection
Decoder
Digital aerial image
Encoder
Height image
image analysis
neural networks
photogrammetry
quantitative analysis
remote sensing
Title Height estimation from single aerial images using a deep convolutional encoder-decoder network
URI https://dx.doi.org/10.1016/j.isprsjprs.2019.01.013
https://www.proquest.com/docview/2221053088
Volume 149
WOSCitedRecordID wos000461535600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhwQ8IBggxi8ZibcoUmKncbK3Cg06HqaJDqlPRIl9FevatErbaX8Cf_bOOSftOtBACKlNozSuLd-Xu_P17jNjH5RBrRhA4Rv0HXzUfuAnMgEfdAw6yi3h0bjebEKdnCSjUXra6fxsamEup6osk6urdPFfRY3XUNi2dPYvxN3-KF7AcxQ6HlHsePwjwQ_qYKdn2TNmLpPQlpDYmMAUvBxom45Zbskd1nWkIPcMwKJOQHcjwzsswaWByjdQf3ol5YtvO7PHw9Ovw23uicWP-apO95rBqiJipwoQC-AtbZ68M5IWXrPz6gIX1ZQFNMjRJHt9y3KywR-MaT9tNOLg2MFdcMLWQ8nt4MTtqhkKPYrIFyp0FNikeBOFmlkQdUmrmYnN1OlWIqh1Vpq2arml_ykUMcF-FtVygm-bvJfWxKxU8rpDrj20Y7FDQT-29obvsT2hemnSZXv946PRl9aqh1RW2Y79Rq7gL7v7naezY_NrR-bsCXvsViC8T8h5yjpQ7rNHW7yU--zBZ3BM5s_Yd8IT3-CJWzxxwhMnPHHCE6_xxHNu8cRv4Inv4Ik7PD1n3z4dnX0c-G5TDl_LKFn5Kg-1HBshC2OLb9NIGRWKIlahTnTcK1QQmzTo6SQKixSkiSI8VWMhpUHX3KTyBeuW8xJeMi7w-3BchAK0Qb8ySrUsQKIBKlQhjY4PWNxMYKYdY73dOGWaNamJk6yd-czOfBaE-JIHLGgbLoi05e4mh42EMud7kk-ZIbTubvy-kWmG2tn-5ZaXMF_jTULgAkaiKX_1Lx28Zg83T9cb1l1Va3jL7uvL1fmyeuegeg2J1b76
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Height+estimation+from+single+aerial+images+using+a+deep+convolutional+encoder-decoder+network&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Amirkolaee%2C+Hamed+Amini&rft.au=Arefi%2C+Hossein&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=149&rft.spage=50&rft.epage=66&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.01.013&rft.externalDocID=S0924271619300139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon