Subjective and Objective Audio-Visual Quality Assessment for User Generated Content

In recent years, User Generated Content (UGC) has grown dramatically in video sharing applications. It is necessary for service-providers to use video quality assessment (VQA) to monitor and control users' Quality of Experience when watching UGC videos. However, most existing UGC VQA studies on...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 32; p. 1
Main Authors: Cao, Yuqin, Min, Xiongkuo, Sun, Wei, Zhai, Guangtao
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, User Generated Content (UGC) has grown dramatically in video sharing applications. It is necessary for service-providers to use video quality assessment (VQA) to monitor and control users' Quality of Experience when watching UGC videos. However, most existing UGC VQA studies only focus on the visual distortions of videos, ignoring that the perceptual quality also depends on the accompanying audio signals. In this paper, we conduct a comprehensive study on UGC audio-visual quality assessment (AVQA) from both subjective and objective perspectives. Specially, we construct the first UGC AVQA database named SJTU-UAV database, which includes 520 in-the-wild UGC audio and video (A/V) sequences collected from the YFCC100m database. A subjective AVQA experiment is conducted on the database to obtain the mean opinion scores (MOSs) of the A/V sequences. To demonstrate the content diversity of the SJTU-UAV database, we give a detailed analysis of the SJTU-UAV database as well as other two synthetically-distorted AVQA databases and one authentically-distorted VQA database, from both the audio and video aspects. Then, to facilitate the development of AVQA fields, we construct a benchmark of AVQA models on the proposed SJTU-UAV database and other two AVQA databases, of which the benchmark models consist of AVQA models designed for synthetically distorted A/V sequences and AVQA models built through combining the popular VQA methods and audio features via support vector regressor (SVR). Finally, considering benchmark AVQA models perform poorly in assessing in-the-wild UGC videos, we further propose an effective AVQA model via jointly learning quality-aware audio and visual feature representations in the temporal domain, which is seldom investigated by existing AVQA models. Our proposed model outperforms the aforementioned benchmark AVQA models on the SJTU-UAV database and two synthetically distorted AVQA databases. The SJTU-UAV database and the code of the proposed model will be released to facilitate further research.
AbstractList In recent years, User Generated Content (UGC) has grown dramatically in video sharing applications. It is necessary for service-providers to use video quality assessment (VQA) to monitor and control users' Quality of Experience when watching UGC videos. However, most existing UGC VQA studies only focus on the visual distortions of videos, ignoring that the perceptual quality also depends on the accompanying audio signals. In this paper, we conduct a comprehensive study on UGC audio-visual quality assessment (AVQA) from both subjective and objective perspectives. Specially, we construct the first UGC AVQA database named SJTU-UAV database, which includes 520 in-the-wild UGC audio and video (A/V) sequences collected from the YFCC100m database. A subjective AVQA experiment is conducted on the database to obtain the mean opinion scores (MOSs) of the A/V sequences. To demonstrate the content diversity of the SJTU-UAV database, we give a detailed analysis of the SJTU-UAV database as well as other two synthetically-distorted AVQA databases and one authentically-distorted VQA database, from both the audio and video aspects. Then, to facilitate the development of AVQA fields, we construct a benchmark of AVQA models on the proposed SJTU-UAV database and other two AVQA databases, of which the benchmark models consist of AVQA models designed for synthetically distorted A/V sequences and AVQA models built through combining the popular VQA methods and audio features via support vector regressor (SVR). Finally, considering benchmark AVQA models perform poorly in assessing in-the-wild UGC videos, we further propose an effective AVQA model via jointly learning quality-aware audio and visual feature representations in the temporal domain, which is seldom investigated by existing AVQA models. Our proposed model outperforms the aforementioned benchmark AVQA models on the SJTU-UAV database and two synthetically distorted AVQA databases. The SJTU-UAV database and the code of the proposed model will be released to facilitate further research.
In recent years, User Generated Content (UGC) has grown dramatically in video sharing applications. It is necessary for service-providers to use video quality assessment (VQA) to monitor and control users' Quality of Experience when watching UGC videos. However, most existing UGC VQA studies only focus on the visual distortions of videos, ignoring that the perceptual quality also depends on the accompanying audio signals. In this paper, we conduct a comprehensive study on UGC audio-visual quality assessment (AVQA) from both subjective and objective perspectives. Specially, we construct the first UGC AVQA database named SJTU-UAV database, which includes 520 in-the-wild UGC audio and video (A/V) sequences collected from the YFCC100m database. A subjective AVQA experiment is conducted on the database to obtain the mean opinion scores (MOSs) of the A/V sequences. To demonstrate the content diversity of the SJTU-UAV database, we give a detailed analysis of the SJTU-UAV database as well as other two synthetically-distorted AVQA databases and one authentically-distorted VQA database, from both the audio and video aspects. Then, to facilitate the development of AVQA fields, we construct a benchmark of AVQA models on the proposed SJTU-UAV database and other two AVQA databases, of which the benchmark models consist of AVQA models designed for synthetically distorted A/V sequences and AVQA models built through combining the popular VQA methods and audio features via support vector regressor (SVR). Finally, considering benchmark AVQA models perform poorly in assessing in-the-wild UGC videos, we further propose an effective AVQA model via jointly learning quality-aware audio and visual feature representations in the temporal domain, which is seldom investigated by existing AVQA models. Our proposed model outperforms the aforementioned benchmark AVQA models on the SJTU-UAV database and two synthetically distorted AVQA databases. The SJTU-UAV database and the code of the proposed model will be released to facilitate further research.In recent years, User Generated Content (UGC) has grown dramatically in video sharing applications. It is necessary for service-providers to use video quality assessment (VQA) to monitor and control users' Quality of Experience when watching UGC videos. However, most existing UGC VQA studies only focus on the visual distortions of videos, ignoring that the perceptual quality also depends on the accompanying audio signals. In this paper, we conduct a comprehensive study on UGC audio-visual quality assessment (AVQA) from both subjective and objective perspectives. Specially, we construct the first UGC AVQA database named SJTU-UAV database, which includes 520 in-the-wild UGC audio and video (A/V) sequences collected from the YFCC100m database. A subjective AVQA experiment is conducted on the database to obtain the mean opinion scores (MOSs) of the A/V sequences. To demonstrate the content diversity of the SJTU-UAV database, we give a detailed analysis of the SJTU-UAV database as well as other two synthetically-distorted AVQA databases and one authentically-distorted VQA database, from both the audio and video aspects. Then, to facilitate the development of AVQA fields, we construct a benchmark of AVQA models on the proposed SJTU-UAV database and other two AVQA databases, of which the benchmark models consist of AVQA models designed for synthetically distorted A/V sequences and AVQA models built through combining the popular VQA methods and audio features via support vector regressor (SVR). Finally, considering benchmark AVQA models perform poorly in assessing in-the-wild UGC videos, we further propose an effective AVQA model via jointly learning quality-aware audio and visual feature representations in the temporal domain, which is seldom investigated by existing AVQA models. Our proposed model outperforms the aforementioned benchmark AVQA models on the SJTU-UAV database and two synthetically distorted AVQA databases. The SJTU-UAV database and the code of the proposed model will be released to facilitate further research.
Author Sun, Wei
Min, Xiongkuo
Cao, Yuqin
Zhai, Guangtao
Author_xml – sequence: 1
  givenname: Yuqin
  orcidid: 0000-0002-5087-6559
  surname: Cao
  fullname: Cao, Yuqin
  organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China
– sequence: 2
  givenname: Xiongkuo
  orcidid: 0000-0001-5693-0416
  surname: Min
  fullname: Min, Xiongkuo
  organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0001-8162-1949
  surname: Sun
  fullname: Sun, Wei
  organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China
– sequence: 4
  givenname: Guangtao
  orcidid: 0000-0001-8165-9322
  surname: Zhai
  fullname: Zhai, Guangtao
  organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37428674$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaT7aew8lLOTSyzozkrzSHo1p0kAgDUl6FbI0CzLr3UTSBvzvK2OnlBx6Gc2g5x1m5j1lR8M4EGNfEWaI0F4-3vyaceBiJngLc64_sBNsJdYAkh-VHOaqVijbY3aa0hoA5RybT-xYKMl1o-QJe3iYVmtyObxSZQdf3f2tFpMPY_07pMn21X0JIW-rRUqU0oaGXHVjrJ4SxeqaBoo2k6-W45DL12f2sbN9oi-H94w9Xf14XP6sb--ub5aL29oJqXOt5lqLMtGq1ejReWdVA-QIG4foyfkVt9pBg1Ih7yR4IbpOlbrR4Fri4ox93_d9juPLRCmbTUiO-t4ONE7JcC00LxtLVdCLd-h6nOJQpttR5UQAHAt1fqCm1Ya8eY5hY-PWvJ2rAM0ecHFMKVJnXMg2h7J3tKE3CGbniym-mJ0v5uBLEcI74Vvv_0i-7SWBiP7BUammFeIPzImWVg
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TIP_2025_3563076
crossref_primary_10_1016_j_eswa_2024_123731
crossref_primary_10_1016_j_displa_2024_102671
crossref_primary_10_1016_j_displa_2024_102792
crossref_primary_10_1145_3632178
crossref_primary_10_1007_s11432_024_4133_3
crossref_primary_10_1016_j_displa_2025_103174
crossref_primary_10_1016_j_displa_2025_103173
crossref_primary_10_1038_s41598_025_07710_2
crossref_primary_10_1016_j_displa_2024_102744
crossref_primary_10_1016_j_displa_2025_103208
crossref_primary_10_1016_j_displa_2023_102575
crossref_primary_10_1016_j_displa_2023_102585
crossref_primary_10_1016_j_displa_2024_102652
crossref_primary_10_1016_j_displa_2024_102653
crossref_primary_10_1109_LSP_2024_3522855
crossref_primary_10_7717_peerj_cs_2654
crossref_primary_10_1109_TIP_2024_3461956
crossref_primary_10_1109_TMM_2023_3325719
crossref_primary_10_3390_fi15090295
crossref_primary_10_1109_TCE_2024_3439577
Cites_doi 10.1109/78.650093
10.1007/978-3-031-19836-6_19
10.1145/2502081.2502106
10.1109/ICC.2016.7511101
10.1109/TIP.2018.2869673
10.21437/Interspeech.2020-1303
10.1109/TCSVT.2017.2707479
10.1109/QoMEX.2017.7965673
10.1109/CVPR42600.2020.00373
10.1109/ICCV.2017.74
10.1109/TIP.2023.3251695
10.1109/ICMEW53276.2021.9455999
10.1109/JSTSP.2023.3270621
10.1109/TCSVT.2022.3164467
10.1117/12.477378
10.1109/TIP.2020.2967829
10.1007/s11042-018-5656-7
10.1109/QoMEX.2016.7498974
10.1109/TIP.2021.3072221
10.1109/JSTSP.2012.2215007
10.1109/TBC.2022.3221689
10.1109/LSP.2012.2227726
10.1109/TIP.2020.2988148
10.1145/3503161.3548329
10.1109/TIP.2011.2131660
10.1109/TMC.2020.3004534
10.1109/TIP.2014.2299154
10.1109/TIP.2019.2922850
10.1109/OJSP.2021.3090333
10.1109/ICIP42928.2021.9506420
10.1109/TIP.2015.2500021
10.1109/TIP.2010.2053549
10.23919/EUSIPCO.2019.8902975
10.1109/TIP.2017.2685941
10.1145/1961189.1961199
10.1109/TIP.2012.2214050
10.1145/2812802
10.1109/TIP.2019.2923051
10.1109/MMSP.2019.8901772
10.1145/3503161.3547872
10.1109/TIP.2020.2966082
10.1109/JSTSP.2019.2955024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2023.3290528
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 37428674
10_1109_TIP_2023_3290528
10177693
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
AAYOK
NPM
PKN
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-75883145b981d1cdca760ece16c11decdb2a8c0614712f40d33ff7061680c9e23
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030610500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Wed Oct 01 14:59:22 EDT 2025
Mon Jun 30 10:14:07 EDT 2025
Wed Feb 19 02:06:58 EST 2025
Sat Nov 29 03:34:42 EST 2025
Tue Nov 18 22:18:53 EST 2025
Wed Aug 27 02:21:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-75883145b981d1cdca760ece16c11decdb2a8c0614712f40d33ff7061680c9e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8162-1949
0000-0002-5087-6559
0000-0001-5693-0416
0000-0001-8165-9322
PMID 37428674
PQID 2837140021
PQPubID 85429
PageCount 1
ParticipantIDs proquest_miscellaneous_2838245147
pubmed_primary_37428674
crossref_citationtrail_10_1109_TIP_2023_3290528
ieee_primary_10177693
proquest_journals_2837140021
crossref_primary_10_1109_TIP_2023_3290528
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
(ref25) 2002
ref16
ref19
ref18
martinez (ref17) 2014
cao (ref1) 2023
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref39
ref38
ye (ref30) 2012
giannakopoulos (ref15) 2014
(ref47) 2000
ref24
ref23
ref26
hermansky (ref35) 1991; 1
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – year: 2000
  ident: ref47
  publication-title: Final report from the video quality experts group on the validation of objective models of video quality assessment
– ident: ref19
  doi: 10.1109/78.650093
– ident: ref20
  doi: 10.1007/978-3-031-19836-6_19
– ident: ref36
  doi: 10.1145/2502081.2502106
– ident: ref22
  doi: 10.1109/ICC.2016.7511101
– year: 2023
  ident: ref1
  article-title: Audio-visual quality assessment for user generated content: Database and method
  publication-title: arXiv 2303 02392
– ident: ref6
  doi: 10.1109/TIP.2018.2869673
– ident: ref45
  doi: 10.21437/Interspeech.2020-1303
– ident: ref2
  doi: 10.1109/TCSVT.2017.2707479
– ident: ref7
  doi: 10.1109/QoMEX.2017.7965673
– ident: ref44
  doi: 10.1109/CVPR42600.2020.00373
– ident: ref48
  doi: 10.1109/ICCV.2017.74
– year: 2014
  ident: ref15
  publication-title: Introduction to Audio Analysis A MATLAB Approach
– ident: ref24
  doi: 10.1109/TIP.2023.3251695
– ident: ref9
  doi: 10.1109/ICMEW53276.2021.9455999
– ident: ref3
  doi: 10.1109/JSTSP.2023.3270621
– ident: ref18
  doi: 10.1109/TCSVT.2022.3164467
– ident: ref26
  doi: 10.1117/12.477378
– ident: ref43
  doi: 10.1109/TIP.2020.2967829
– ident: ref23
  doi: 10.1007/s11042-018-5656-7
– ident: ref4
  doi: 10.1109/QoMEX.2016.7498974
– ident: ref33
  doi: 10.1109/TIP.2021.3072221
– ident: ref13
  doi: 10.1109/JSTSP.2012.2215007
– ident: ref40
  doi: 10.1109/TBC.2022.3221689
– ident: ref28
  doi: 10.1109/LSP.2012.2227726
– volume: 1
  start-page: 121
  year: 1991
  ident: ref35
  article-title: RASTA-PLP speech analysis
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– ident: ref16
  doi: 10.1109/TIP.2020.2988148
– ident: ref10
  doi: 10.1145/3503161.3548329
– start-page: 1098
  year: 2012
  ident: ref30
  article-title: Unsupervised feature learning framework for no-reference image quality assessment
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref14
  doi: 10.1109/TIP.2011.2131660
– ident: ref5
  doi: 10.1109/TMC.2020.3004534
– ident: ref31
  doi: 10.1109/TIP.2014.2299154
– ident: ref49
  doi: 10.1109/TIP.2019.2922850
– ident: ref34
  doi: 10.1109/OJSP.2021.3090333
– ident: ref11
  doi: 10.1109/ICIP42928.2021.9506420
– ident: ref42
  doi: 10.1109/TIP.2015.2500021
– ident: ref41
  doi: 10.1109/TIP.2010.2053549
– ident: ref21
  doi: 10.23919/EUSIPCO.2019.8902975
– ident: ref29
  doi: 10.1109/TIP.2017.2685941
– ident: ref37
  doi: 10.1145/1961189.1961199
– ident: ref27
  doi: 10.1109/TIP.2012.2214050
– ident: ref12
  doi: 10.1145/2812802
– ident: ref32
  doi: 10.1109/TIP.2019.2923051
– ident: ref8
  doi: 10.1109/MMSP.2019.8901772
– ident: ref38
  doi: 10.1145/3503161.3547872
– ident: ref46
  doi: 10.1109/TIP.2020.2966082
– year: 2002
  ident: ref25
  publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures
– start-page: 2125
  year: 2014
  ident: ref17
  article-title: A no-reference audio-visual video quality metric
  publication-title: Proc Eur Signal Process Conf
– ident: ref39
  doi: 10.1109/JSTSP.2019.2955024
SSID ssj0014516
Score 2.5147579
Snippet In recent years, User Generated Content (UGC) has grown dramatically in video sharing applications. It is necessary for service-providers to use video quality...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Audio signals
audio-visual quality assessment
Benchmark testing
Benchmarks
Feature extraction
multimodal fusion
Quality assessment
Streaming media
User experience
User generated content
Video
Visual databases
Visualization
Title Subjective and Objective Audio-Visual Quality Assessment for User Generated Content
URI https://ieeexplore.ieee.org/document/10177693
https://www.ncbi.nlm.nih.gov/pubmed/37428674
https://www.proquest.com/docview/2837140021
https://www.proquest.com/docview/2838245147
Volume 32
WOSCitedRecordID wos001030610500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH848aAHP6fWLyJ48ZCtX0ma4xBFLyq4yW6lSxOYSCduFfzvfUm6souCpzY0TUveS_J7fc3vB3AljGFKKEaZTA3FWbKgkseSZizl3Bpcs4kTmxCPj9l4LJ-bzepuL4zW2v18pnv21OXyy5mq7aeyvnUfq93XgQ4e_WatNmVgFWddapMJKhD3L3OSoewPH557Via8l8QyZFZ4fWUNcqIqv-NLt87c7fzzDXdhuwGUZOA9YA_WdLUPOw24JM3Qne_D1grz4AG84ITx5uc6UlQleWpLg7qczujrdF5jq55h45sMWv5OgiCXjNBviSesRsBKHMNVtejC6O52eHNPG30FqpI0W1AMFbIE-20iEbRGqlSF4KFWOuIqikqtyklcZMqGjCKKTRqWSWKMwDLPQiV1nBzCejWr9DEQKSKDkVGJYM6kXPMilpopxgrNEiYmJoD-ssdz1ZCPWw2M99wFIaHM0Ua5tVHe2CiA6_aOD0-88UfdrjXFSj1vhQDOllbNm6E5zy3dD0aViG0CuGwv46CymZKi0rPa1clidKhUBHDkvaFtPBEYsXGRnvzy0FPYtO_mP9Ocwfris9bnsKG-FtP55wV67ji7cJ77A7Xj53E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4aMGnsAIx1I8DAk7js4DY__CM-VggEAgrSCuIWpY4tFU0pos0k_vs922nUC5O4xYrjWH7Pzvf84u8DOJHWci01p1wxS3GVLKkSqaI5Z0I4gxs-8WITcjTKHx_VXXtY3Z-FMcb4n89M3136XH41043bKhs493HafWuwwRlL43Bcq0saOM1Zn9zkkkpE_susZKwG48u7vhMK72epirmTXl_5CnlZlbcRpv_SnG-_s487sNVCSjIMPvAFPph6F7ZbeEnayTvfhc8r3INf4TcuGU9htSNlXZHbrjRsqumMPkznDbYaODZeybBj8CQIc8k9ei4JlNUIWYnnuKoXPbg_PxufXtBWYYHqjOULisFCnuG4TRTC1kRXupQiNtokQidJZXQ1Sctcu6BRJqllcZVl1kosizzWyqTZN1ivZ7XZA6JkYjE2qhDOWSaMKFNluOa8NDzjcmIjGCxHvNAt_bhTwfhT-DAkVgXaqHA2KlobRfCre-I5UG_8p27PmWKlXrBCBIdLqxbt5JwXjvAH40pENxH87G7jtHK5krI2s8bXyVN0KCYj-B68oWs8kxizCcn233jpMXy6GN9cF9eXo6sD2HT9DJs2h7C-eGnMD_io_y6m85cj77__AHDT6dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subjective+and+Objective+Audio-Visual+Quality+Assessment+for+User+Generated+Content&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Cao%2C+Yuqin&rft.au=Min%2C+Xiongkuo&rft.au=Sun%2C+Wei&rft.au=Zhai%2C+Guangtao&rft.date=2023-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=32&rft.spage=3847&rft_id=info:doi/10.1109%2FTIP.2023.3290528&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon