Scheduling meets n-fold integer programming

Scheduling problems are fundamental in combinatorial optimization. Much work has been done on approximation algorithms for NP-hard cases, but relatively little is known about exact solutions when some part of the input is a fixed parameter. In this paper, we continue this study and show that several...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scheduling Ročník 21; číslo 5; s. 493 - 503
Hlavní autoři: Knop, Dušan, Koutecký, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2018
Springer Nature B.V
Témata:
ISSN:1094-6136, 1099-1425
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Scheduling problems are fundamental in combinatorial optimization. Much work has been done on approximation algorithms for NP-hard cases, but relatively little is known about exact solutions when some part of the input is a fixed parameter. In this paper, we continue this study and show that several additional cases of fundamental scheduling problems are fixed-parameter tractable for some natural parameters. Our main tool is n -fold integer programming, a recent variable dimension technique which we believe to be highly relevant for the parameterized complexity community. This paper serves to showcase and highlight this technique. Specifically, we show the following four scheduling problems to be fixed-parameter tractable, where p max is the maximum processing time of a job and w max is the maximum weight of a job: Makespan minimization on uniformly related machines ( Q | | C max ) parameterized by p max , Makespan minimization on unrelated machines ( R | | C max ) parameterized by p max and the number of kinds of machines (defined later), Sum of weighted completion times minimization on unrelated machines ( R | | ∑ w j C j ) parameterized by p max + w max and the number of kinds of machines, The same problem, R | | ∑ w j C j , parameterized by the number of distinct job times and the number of machines.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1094-6136
1099-1425
DOI:10.1007/s10951-017-0550-0