Implications of deep learning for the automation of design patterns organization

Though like other domains such as email filtering, web page classification, sentiment analysis, and author identification, the researchers have employed the text categorization approach to automate organization and selection of design patterns. However, there is a need to bridge the gap between the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of parallel and distributed computing Ročník 117; s. 256 - 266
Hlavní autori: Hussain, Shahid, Keung, Jacky, Khan, Arif Ali, Ahmad, Awais, Cuomo, Salvatore, Piccialli, Francesco, Jeon, Gwanggil, Akhunzada, Adnan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.07.2018
Predmet:
ISSN:0743-7315, 1096-0848
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Though like other domains such as email filtering, web page classification, sentiment analysis, and author identification, the researchers have employed the text categorization approach to automate organization and selection of design patterns. However, there is a need to bridge the gap between the semantic relationship between design patterns (i.e. Documents) and the features which are used for the organization of design patterns. In this study, we propose an approach by leveraging a powerful deep learning algorithm named Deep Belief Network (DBN) which learns on the semantic representation of documents formulated in the form of feature vectors. We performed a case study in the context of a text categorization based automated system used for the classification and selection of software design patterns. In the case study, we focused on two main research objectives: 1) to empirically investigate the effect of feature sets constructed through the global filter-based feature selection methods besides the proposed approach, and 2) to evaluate the significant improvement in the classification decision (i.e. Pattern organization) of classifiers using the proposed approach. The adjustment of DBN parameters such as a number of hidden layers, nodes and iteration can aid a developer to construct a more illustrative feature set. The experimental promising results suggest the significance of the proposed approach to construct a more representative feature set and improve the classifier’s performance in terms of organization of design patterns. •There is a need to bridge the gap between the semantic relationship between patterns.•We propose an approach by leveraging a powerful deep learning algorithm named Deep Belief Network (DBN).•The DBN learns on the semantic representation of documents formulated in the form of feature vectors.•We performed a case study in the context of a text categorization based automated system.•The experimental promising results suggest the significance of the proposed approach to construct a more representative feature set.
AbstractList Though like other domains such as email filtering, web page classification, sentiment analysis, and author identification, the researchers have employed the text categorization approach to automate organization and selection of design patterns. However, there is a need to bridge the gap between the semantic relationship between design patterns (i.e. Documents) and the features which are used for the organization of design patterns. In this study, we propose an approach by leveraging a powerful deep learning algorithm named Deep Belief Network (DBN) which learns on the semantic representation of documents formulated in the form of feature vectors. We performed a case study in the context of a text categorization based automated system used for the classification and selection of software design patterns. In the case study, we focused on two main research objectives: 1) to empirically investigate the effect of feature sets constructed through the global filter-based feature selection methods besides the proposed approach, and 2) to evaluate the significant improvement in the classification decision (i.e. Pattern organization) of classifiers using the proposed approach. The adjustment of DBN parameters such as a number of hidden layers, nodes and iteration can aid a developer to construct a more illustrative feature set. The experimental promising results suggest the significance of the proposed approach to construct a more representative feature set and improve the classifier’s performance in terms of organization of design patterns. •There is a need to bridge the gap between the semantic relationship between patterns.•We propose an approach by leveraging a powerful deep learning algorithm named Deep Belief Network (DBN).•The DBN learns on the semantic representation of documents formulated in the form of feature vectors.•We performed a case study in the context of a text categorization based automated system.•The experimental promising results suggest the significance of the proposed approach to construct a more representative feature set.
Author Piccialli, Francesco
Keung, Jacky
Akhunzada, Adnan
Khan, Arif Ali
Jeon, Gwanggil
Hussain, Shahid
Cuomo, Salvatore
Ahmad, Awais
Author_xml – sequence: 1
  givenname: Shahid
  surname: Hussain
  fullname: Hussain, Shahid
  email: Shussain7-c@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Jacky
  surname: Keung
  fullname: Keung, Jacky
  email: jacky.keung@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Arif Ali
  surname: Khan
  fullname: Khan, Arif Ali
  email: aliakhan2-c@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Awais
  surname: Ahmad
  fullname: Ahmad, Awais
  email: aahmad.marwat@gmail.com
  organization: Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea
– sequence: 5
  givenname: Salvatore
  surname: Cuomo
  fullname: Cuomo, Salvatore
  email: salvatore.cuomo@unina.it
  organization: University of Naples Federico II, Naples, Italy
– sequence: 6
  givenname: Francesco
  surname: Piccialli
  fullname: Piccialli, Francesco
  email: francesco.piccialli@unina.it
  organization: University of Naples Federico II, Naples, Italy
– sequence: 7
  givenname: Gwanggil
  surname: Jeon
  fullname: Jeon, Gwanggil
  email: gjeon@inu.ac.kr
  organization: Department of Embedded Systems Engineering, Incheon National University, Republic of Korea
– sequence: 8
  givenname: Adnan
  surname: Akhunzada
  fullname: Akhunzada, Adnan
  email: a.qureshi@comsats.edu.pk
  organization: Comsats Institute of Information Technology, Islamabad, Pakistan
BookMark eNp9kMtOwzAQRS1UJNrCD7DKDySMH3EciQ2qeFRCggWsLdcZF0etEzkGCb6epGXFoqu7mHtGM2dBZqELSMg1hYIClTdt0faNLRjQqgBZAGNnZE6hljkooWZkDpXgecVpeUEWw9ACUFpWak5e1_t-561JvgtD1rmsQeyzHZoYfNhmrotZ-sDMfKZufygdO4Pfhqw3KWGcsLg1wf8c5pfk3JndgFd_uSTvD_dvq6f8-eVxvbp7zi0XKuWVULx0dc0lRWBQN4aDkoLWKGGzGYMzVrpGAVJagVCKKqy4FWLDnHDS8iVRx702dsMQ0Wnr0-GCFI3faQp6MqNbPZnRkxkNUo9mRpT9Q_vo9yZ-n4ZujxCOT315jHqwHoPFxke0STedP4X_AqwZf0I
CitedBy_id crossref_primary_10_1007_s11042_019_08353_y
crossref_primary_10_1007_s13748_021_00247_1
crossref_primary_10_1155_2021_5543698
crossref_primary_10_1186_s40537_023_00808_2
crossref_primary_10_1007_s00779_021_01541_4
crossref_primary_10_1002_spe_3176
crossref_primary_10_1007_s00034_019_01283_y
crossref_primary_10_1007_s11219_022_09610_4
crossref_primary_10_1016_j_jss_2021_111179
crossref_primary_10_1016_j_procs_2020_09_312
crossref_primary_10_1007_s00779_021_01612_6
crossref_primary_10_1186_s13677_019_0147_6
crossref_primary_10_1109_JSEN_2020_2964939
crossref_primary_10_1109_ACCESS_2020_3047364
crossref_primary_10_3390_rs12101674
crossref_primary_10_1007_s00530_020_00665_6
crossref_primary_10_1109_ACCESS_2020_2974887
crossref_primary_10_1049_iet_ipr_2019_0588
crossref_primary_10_1109_JSEN_2019_2939343
crossref_primary_10_1016_j_future_2020_01_019
crossref_primary_10_1002_cpe_6613
Cites_doi 10.1016/j.asej.2014.04.011
10.1162/neco.2006.18.7.1527
10.1016/j.scico.2015.12.007
10.1016/j.eswa.2009.07.045
10.1109/TPAMI.2013.50
10.1016/j.knosys.2011.04.014
10.1016/j.eswa.2006.04.001
10.1016/j.jvlc.2007.02.009
10.1109/QRS.2015.14
10.1016/j.asoc.2014.05.002
10.21248/jlcl.20.2005.68
10.1109/ASE.2015.73
10.1016/j.eswa.2013.02.019
10.1109/TOOLS.1997.654742
10.1109/ICASSP.2015.7178304
10.1016/j.ipm.2004.08.006
10.1016/j.knosys.2014.04.025
10.1007/s11219-008-9048-5
10.1126/science.1127647
10.1007/s11219-014-9249-z
10.1613/jair.2934
10.1155/2014/649260
10.1145/2884781.2884804
10.1016/j.eswa.2015.08.050
10.1109/MSR.2015.38
10.1016/j.asoc.2017.04.043
10.1145/2771283
10.1145/2328909.2328912
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2017.06.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1096-0848
EndPage 266
ExternalDocumentID 10_1016_j_jpdc_2017_06_022
S0743731517302113
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c348t-74835f99361e0209da3086419e60bb19e3225fd80e117048818e73c44b2f4f6c3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432903500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0743-7315
IngestDate Sat Nov 29 07:15:33 EST 2025
Tue Nov 18 21:45:06 EST 2025
Fri Feb 23 02:31:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Classifiers
Feature set
Design patterns
Performance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-74835f99361e0209da3086419e60bb19e3225fd80e117048818e73c44b2f4f6c3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_jpdc_2017_06_022
crossref_primary_10_1016_j_jpdc_2017_06_022
elsevier_sciencedirect_doi_10_1016_j_jpdc_2017_06_022
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Schumacher, Fernandez, Hybertson, Buschmann (b30) 2006
Kim, Khawand (b19) 2007; 18
A. Lam, A. Nguyen, H. Nguyen, T. Nguyen, Combining deep learning with information retrieval to localize buggy files for bug reports, in: Proceedings of 30th IEEE ASE Conference, pp. 476–481.
Douglass (b6) 2002
Lee, Lee (b22) 2006; 42
Shang, Huang, Zhu, Lin, Qu, Wang (b31) 2007; 33
Booch (b3) 2006
Kim, Han (b18) 2007
Tantithamthavorn, Mclntosh, Hassan, Matsumoto (b32) 2016; PP
Forman (b8) 2003; 3
Ogura, Amano, Kondo (b24) 2010; 37
Pree (b27) 1995
Y. Yang, J.O. Pedersen, A comparative study on feature selection in text categorization, in: Proceedings of the 14th International Conference on Machine Learning, 1997, pp. 412–420.
Edwards (b7) 2015; 58
W.F. Tichy, A catalogue of general-purpose software design patterns, in: Proceedings of Technology of Object-Oriented Languages and Systems, 1997, pp. 330–339.
Coad, North, Mayfield (b5) 1995
Gunal (b10) 2012; 20
Porter (b26) 2006; 40
S. Wang, T. Liu, L. Tan, Automatically learning semantic features for defect prediction, in: Proceeding of IEEE International Conference on Software Engineering, ICSE, 2016.
Gamma, Helm, Johnson, Vlissides (b9) 1995
Idris, Selamat (b17) 2014; 22
Kim, Shen (b20) 2008; 16
R. Pascanu, J.W. Stokes, H. Sanossian, M. Marinescu, A. Thomas, Malware classification with recurrent networks, in: Proceeding of ICASSP, 2015, pp. 1916–1920.
Uguz (b36) 2011; 24
Zimmer (b44) 1995; 1
E. Sarac, S.A. Ozel, An ant colony optimization based feature selection for web page classification, 2014, pp. 1–16.
Hinton, Osindero, Teh (b12) 2006; 18
Hussain, Keung, Khan, Bennin (b16) 2016
Bengio, Courville, Vincent (b1) 2013; 35
S. Hasso, C.R. Carlson, A theoretically-based process for organizing design patterns, in: Proceedings of 12th Pattern Language of Patterns, 2005.
Hussain, Keung, Khan (b15) 2017
Hotho, Nurnberger, Paab (b14) 2005; 20
Velasco-Elizondo, Marín-Piña, Vazquez-Reyes, Mora-Soto, Mejia (b38) 2016; 121
Zhang, Wu, Niu, Ding (b43) 2014; 66
Tascı, Güngör (b33) 2013; 40
A. Birukou, A survey of existing approaches for pattern search and selection, in: Proceeding of PLoP, 2010.
Rising (b28) 2000
Turney, Pantel (b35) 2010; 37
X. Yang, D. Lo, X. xia, Y. Zhang, J. Sun, Deep learning for just-in-time defect prediction, in: Proceedings of QRS, 2015, pp. 17–26.
Medhat, Hassan, Korashy (b23) 2014; 5
Bouhours, Leblance, Percebois (b4) 2015; 23
Uysal (b37) 2016; 43
Hinton, Salakhutdinov (b13) 2006; 313
M. White, C. Vendome, M.L. Vasquez, D. Poshyvanyk, Toward deep learning software repositories, in: Proceedings of MSR’15, 2015, pp. 334–345.
Bouhours (10.1016/j.jpdc.2017.06.022_b4) 2015; 23
Kim (10.1016/j.jpdc.2017.06.022_b20) 2008; 16
10.1016/j.jpdc.2017.06.022_b29
Hinton (10.1016/j.jpdc.2017.06.022_b12) 2006; 18
Lee (10.1016/j.jpdc.2017.06.022_b22) 2006; 42
Tascı (10.1016/j.jpdc.2017.06.022_b33) 2013; 40
Rising (10.1016/j.jpdc.2017.06.022_b28) 2000
Gamma (10.1016/j.jpdc.2017.06.022_b9) 1995
Hotho (10.1016/j.jpdc.2017.06.022_b14) 2005; 20
Uysal (10.1016/j.jpdc.2017.06.022_b37) 2016; 43
Douglass (10.1016/j.jpdc.2017.06.022_b6) 2002
Uguz (10.1016/j.jpdc.2017.06.022_b36) 2011; 24
Ogura (10.1016/j.jpdc.2017.06.022_b24) 2010; 37
Pree (10.1016/j.jpdc.2017.06.022_b27) 1995
10.1016/j.jpdc.2017.06.022_b41
Kim (10.1016/j.jpdc.2017.06.022_b18) 2007
10.1016/j.jpdc.2017.06.022_b40
10.1016/j.jpdc.2017.06.022_b21
10.1016/j.jpdc.2017.06.022_b42
Zimmer (10.1016/j.jpdc.2017.06.022_b44) 1995; 1
Hussain (10.1016/j.jpdc.2017.06.022_b15) 2017
Idris (10.1016/j.jpdc.2017.06.022_b17) 2014; 22
Schumacher (10.1016/j.jpdc.2017.06.022_b30) 2006
Shang (10.1016/j.jpdc.2017.06.022_b31) 2007; 33
Zhang (10.1016/j.jpdc.2017.06.022_b43) 2014; 66
10.1016/j.jpdc.2017.06.022_b25
Coad (10.1016/j.jpdc.2017.06.022_b5) 1995
10.1016/j.jpdc.2017.06.022_b39
Gunal (10.1016/j.jpdc.2017.06.022_b10) 2012; 20
Tantithamthavorn (10.1016/j.jpdc.2017.06.022_b32) 2016; PP
Kim (10.1016/j.jpdc.2017.06.022_b19) 2007; 18
Porter (10.1016/j.jpdc.2017.06.022_b26) 2006; 40
10.1016/j.jpdc.2017.06.022_b2
Hinton (10.1016/j.jpdc.2017.06.022_b13) 2006; 313
Bengio (10.1016/j.jpdc.2017.06.022_b1) 2013; 35
Velasco-Elizondo (10.1016/j.jpdc.2017.06.022_b38) 2016; 121
Forman (10.1016/j.jpdc.2017.06.022_b8) 2003; 3
Hussain (10.1016/j.jpdc.2017.06.022_b16) 2016
Medhat (10.1016/j.jpdc.2017.06.022_b23) 2014; 5
Turney (10.1016/j.jpdc.2017.06.022_b35) 2010; 37
Edwards (10.1016/j.jpdc.2017.06.022_b7) 2015; 58
10.1016/j.jpdc.2017.06.022_b34
Booch (10.1016/j.jpdc.2017.06.022_b3) 2006
10.1016/j.jpdc.2017.06.022_b11
References_xml – volume: 58
  year: 2015
  ident: b7
  article-title: Growing pains for deep learning
  publication-title: Commun. ACM
– reference: E. Sarac, S.A. Ozel, An ant colony optimization based feature selection for web page classification, 2014, pp. 1–16.
– volume: 24
  start-page: 1024
  year: 2011
  end-page: 1032
  ident: b36
  article-title: A two-stage feature selection method for text classification by using information gain, principal component analysis and genetic algorithm
  publication-title: Knowl.-Based Syst.
– volume: 5
  start-page: 1093
  year: 2014
  end-page: 1113
  ident: b23
  article-title: Sentiment analysis algorithms and applications: A survey
  publication-title: Ain Shams Eng. J.
– year: 2002
  ident: b6
  publication-title: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b12
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– start-page: 997
  year: 2007
  end-page: 1006
  ident: b18
  article-title: Clustering algorithm of design pattern using object-oriented relationship
  publication-title: Proceeding of Computational Science and Its Applications
– volume: 16
  start-page: 329
  year: 2008
  end-page: 359
  ident: b20
  article-title: Evaluating pattern conformance of UML models: A divide and conquer approach and case studies
  publication-title: Softw. Qual. J.
– reference: S. Hasso, C.R. Carlson, A theoretically-based process for organizing design patterns, in: Proceedings of 12th Pattern Language of Patterns, 2005.
– year: 1995
  ident: b27
  publication-title: Design Patterns for Object-Oriented Software Development
– volume: 66
  start-page: 99
  year: 2014
  end-page: 111
  ident: b43
  article-title: Authorship identification from unstructured texts
  publication-title: Knowl. Based Syst.
– volume: 18
  start-page: 560
  year: 2007
  end-page: 591
  ident: b19
  article-title: An approach to precisely specifying the problem domain of design patterns
  publication-title: J. Vis. Lang. Comput.
– year: 1995
  ident: b5
  publication-title: Object Models: Strategies, Patterns, Applications
– reference: Y. Yang, J.O. Pedersen, A comparative study on feature selection in text categorization, in: Proceedings of the 14th International Conference on Machine Learning, 1997, pp. 412–420.
– year: 2006
  ident: b3
  publication-title: Handbook of Software Architecture
– volume: 3
  start-page: 1289
  year: 2003
  end-page: 1305
  ident: b8
  article-title: An extensive empirical study of feature selection metrics for text classification
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 4871
  year: 2013
  end-page: 4886
  ident: b33
  article-title: Comparison of text feature selection policies and using an adaptive framework
  publication-title: Expert Syst. Appl.
– year: 2016
  ident: b16
  article-title: A methodology to automate the selection of design patterns
  publication-title: Proceedings of International Conference on Computers, Software and Application
– volume: 23
  start-page: 661
  year: 2015
  end-page: 694
  ident: b4
  article-title: Spoiled patterns: How to extend the GoF
  publication-title: Softw. Qual. J.
– year: 2000
  ident: b28
  publication-title: The Pattern Almanac 2000
– year: 2006
  ident: b30
  publication-title: Security Patterns: Integrating Security and Systems Engineering
– volume: 22
  start-page: 11
  year: 2014
  end-page: 27
  ident: b17
  article-title: Improved email spam detection model with negative selection algorithm and particles warm optimization
  publication-title: Appl. Soft Comput.
– reference: R. Pascanu, J.W. Stokes, H. Sanossian, M. Marinescu, A. Thomas, Malware classification with recurrent networks, in: Proceeding of ICASSP, 2015, pp. 1916–1920.
– reference: W.F. Tichy, A catalogue of general-purpose software design patterns, in: Proceedings of Technology of Object-Oriented Languages and Systems, 1997, pp. 330–339.
– volume: 40
  start-page: 211
  year: 2006
  end-page: 218
  ident: b26
  article-title: An algorithm for suffix stripping
  publication-title: J. Program Electron. Libr. Inf. Syst.
– year: 2017
  ident: b15
  article-title: Software design patterns classification and selection using text categorization approach
  publication-title: Appl. Soft Comput.
– volume: PP
  year: 2016
  ident: b32
  article-title: An empirical comparison of model validation techniques for defect prediction models
  publication-title: IEEE Trans. Softw. Eng.
– volume: 20
  start-page: 19
  year: 2005
  end-page: 62
  ident: b14
  article-title: A brief survey of text mining
  publication-title: J. Comput. Linguist. Lang. Technol.
– volume: 37
  start-page: 141
  year: 2010
  end-page: 188
  ident: b35
  article-title: From frequency to meaning: Vector space models of semantics
  publication-title: J. Artif. Intell. Res.
– volume: 121
  start-page: 176
  year: 2016
  end-page: 189
  ident: b38
  article-title: Knowledge representation and information extraction for analyzing architectural patterns
  publication-title: Sci. Comput. Programming
– reference: M. White, C. Vendome, M.L. Vasquez, D. Poshyvanyk, Toward deep learning software repositories, in: Proceedings of MSR’15, 2015, pp. 334–345.
– reference: A. Birukou, A survey of existing approaches for pattern search and selection, in: Proceeding of PLoP, 2010.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b1
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 20
  start-page: 1296
  year: 2012
  end-page: 1311
  ident: b10
  article-title: Hybrid feature selection for text classification
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 33
  start-page: 1
  year: 2007
  end-page: 5
  ident: b31
  article-title: A novel feature selection algorithm for text categorization
  publication-title: Expert Syst. Appl.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b13
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– reference: S. Wang, T. Liu, L. Tan, Automatically learning semantic features for defect prediction, in: Proceeding of IEEE International Conference on Software Engineering, ICSE, 2016.
– reference: A. Lam, A. Nguyen, H. Nguyen, T. Nguyen, Combining deep learning with information retrieval to localize buggy files for bug reports, in: Proceedings of 30th IEEE ASE Conference, pp. 476–481.
– reference: X. Yang, D. Lo, X. xia, Y. Zhang, J. Sun, Deep learning for just-in-time defect prediction, in: Proceedings of QRS, 2015, pp. 17–26.
– volume: 37
  start-page: 2273
  year: 2010
  end-page: 2281
  ident: b24
  article-title: Distinctive characteristics of a metric using deviation from poisson for feature selection
  publication-title: J. Expert Syst. Appl.
– volume: 42
  start-page: 155
  year: 2006
  end-page: 165
  ident: b22
  article-title: Information gain and divergence-based feature selection for machine learning-based text categorization
  publication-title: Inf. Process. Manage.
– volume: 43
  start-page: 82
  year: 2016
  end-page: 92
  ident: b37
  article-title: An improved global feature selection scheme for text classification
  publication-title: Expert Syst. Appl.
– year: 1995
  ident: b9
  publication-title: Design Patterns: Elements of Reusable Object-Oriented Software
– volume: 1
  start-page: 345
  year: 1995
  end-page: 364
  ident: b44
  article-title: Relationships between design patterns
  publication-title: J. Pattern Lang. Program. Des.
– volume: 5
  start-page: 1093
  year: 2014
  ident: 10.1016/j.jpdc.2017.06.022_b23
  article-title: Sentiment analysis algorithms and applications: A survey
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2014.04.011
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.jpdc.2017.06.022_b12
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– year: 1995
  ident: 10.1016/j.jpdc.2017.06.022_b27
– volume: 121
  start-page: 176
  year: 2016
  ident: 10.1016/j.jpdc.2017.06.022_b38
  article-title: Knowledge representation and information extraction for analyzing architectural patterns
  publication-title: Sci. Comput. Programming
  doi: 10.1016/j.scico.2015.12.007
– volume: 37
  start-page: 2273
  year: 2010
  ident: 10.1016/j.jpdc.2017.06.022_b24
  article-title: Distinctive characteristics of a metric using deviation from poisson for feature selection
  publication-title: J. Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.07.045
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.jpdc.2017.06.022_b1
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– year: 1995
  ident: 10.1016/j.jpdc.2017.06.022_b9
– volume: 3
  start-page: 1289
  year: 2003
  ident: 10.1016/j.jpdc.2017.06.022_b8
  article-title: An extensive empirical study of feature selection metrics for text classification
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 1024
  issue: 7
  year: 2011
  ident: 10.1016/j.jpdc.2017.06.022_b36
  article-title: A two-stage feature selection method for text classification by using information gain, principal component analysis and genetic algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.04.014
– volume: 1
  start-page: 345
  year: 1995
  ident: 10.1016/j.jpdc.2017.06.022_b44
  article-title: Relationships between design patterns
  publication-title: J. Pattern Lang. Program. Des.
– ident: 10.1016/j.jpdc.2017.06.022_b11
– volume: PP
  issue: 99
  year: 2016
  ident: 10.1016/j.jpdc.2017.06.022_b32
  article-title: An empirical comparison of model validation techniques for defect prediction models
  publication-title: IEEE Trans. Softw. Eng.
– volume: 33
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.jpdc.2017.06.022_b31
  article-title: A novel feature selection algorithm for text categorization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.04.001
– volume: 18
  start-page: 560
  year: 2007
  ident: 10.1016/j.jpdc.2017.06.022_b19
  article-title: An approach to precisely specifying the problem domain of design patterns
  publication-title: J. Vis. Lang. Comput.
  doi: 10.1016/j.jvlc.2007.02.009
– year: 2000
  ident: 10.1016/j.jpdc.2017.06.022_b28
– ident: 10.1016/j.jpdc.2017.06.022_b41
  doi: 10.1109/QRS.2015.14
– year: 1995
  ident: 10.1016/j.jpdc.2017.06.022_b5
– volume: 22
  start-page: 11
  year: 2014
  ident: 10.1016/j.jpdc.2017.06.022_b17
  article-title: Improved email spam detection model with negative selection algorithm and particles warm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.05.002
– volume: 40
  start-page: 211
  year: 2006
  ident: 10.1016/j.jpdc.2017.06.022_b26
  article-title: An algorithm for suffix stripping
  publication-title: J. Program Electron. Libr. Inf. Syst.
– volume: 20
  start-page: 1296
  year: 2012
  ident: 10.1016/j.jpdc.2017.06.022_b10
  article-title: Hybrid feature selection for text classification
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– start-page: 997
  year: 2007
  ident: 10.1016/j.jpdc.2017.06.022_b18
  article-title: Clustering algorithm of design pattern using object-oriented relationship
– volume: 20
  start-page: 19
  year: 2005
  ident: 10.1016/j.jpdc.2017.06.022_b14
  article-title: A brief survey of text mining
  publication-title: J. Comput. Linguist. Lang. Technol.
  doi: 10.21248/jlcl.20.2005.68
– ident: 10.1016/j.jpdc.2017.06.022_b21
  doi: 10.1109/ASE.2015.73
– ident: 10.1016/j.jpdc.2017.06.022_b42
– volume: 40
  start-page: 4871
  year: 2013
  ident: 10.1016/j.jpdc.2017.06.022_b33
  article-title: Comparison of text feature selection policies and using an adaptive framework
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.019
– ident: 10.1016/j.jpdc.2017.06.022_b34
  doi: 10.1109/TOOLS.1997.654742
– ident: 10.1016/j.jpdc.2017.06.022_b25
  doi: 10.1109/ICASSP.2015.7178304
– year: 2016
  ident: 10.1016/j.jpdc.2017.06.022_b16
  article-title: A methodology to automate the selection of design patterns
– volume: 42
  start-page: 155
  issue: 1
  year: 2006
  ident: 10.1016/j.jpdc.2017.06.022_b22
  article-title: Information gain and divergence-based feature selection for machine learning-based text categorization
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2004.08.006
– volume: 66
  start-page: 99
  year: 2014
  ident: 10.1016/j.jpdc.2017.06.022_b43
  article-title: Authorship identification from unstructured texts
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.04.025
– volume: 16
  start-page: 329
  issue: 3
  year: 2008
  ident: 10.1016/j.jpdc.2017.06.022_b20
  article-title: Evaluating pattern conformance of UML models: A divide and conquer approach and case studies
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-008-9048-5
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.jpdc.2017.06.022_b13
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 23
  start-page: 661
  year: 2015
  ident: 10.1016/j.jpdc.2017.06.022_b4
  article-title: Spoiled patterns: How to extend the GoF
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-014-9249-z
– volume: 37
  start-page: 141
  year: 2010
  ident: 10.1016/j.jpdc.2017.06.022_b35
  article-title: From frequency to meaning: Vector space models of semantics
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2934
– year: 2006
  ident: 10.1016/j.jpdc.2017.06.022_b30
– ident: 10.1016/j.jpdc.2017.06.022_b29
  doi: 10.1155/2014/649260
– ident: 10.1016/j.jpdc.2017.06.022_b39
  doi: 10.1145/2884781.2884804
– year: 2006
  ident: 10.1016/j.jpdc.2017.06.022_b3
– volume: 43
  start-page: 82
  year: 2016
  ident: 10.1016/j.jpdc.2017.06.022_b37
  article-title: An improved global feature selection scheme for text classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.08.050
– year: 2002
  ident: 10.1016/j.jpdc.2017.06.022_b6
– ident: 10.1016/j.jpdc.2017.06.022_b40
  doi: 10.1109/MSR.2015.38
– year: 2017
  ident: 10.1016/j.jpdc.2017.06.022_b15
  article-title: Software design patterns classification and selection using text categorization approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.043
– volume: 58
  issue: 7
  year: 2015
  ident: 10.1016/j.jpdc.2017.06.022_b7
  article-title: Growing pains for deep learning
  publication-title: Commun. ACM
  doi: 10.1145/2771283
– ident: 10.1016/j.jpdc.2017.06.022_b2
  doi: 10.1145/2328909.2328912
SSID ssj0011578
Score 2.3780282
Snippet Though like other domains such as email filtering, web page classification, sentiment analysis, and author identification, the researchers have employed the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 256
SubjectTerms Classifiers
Deep learning
Design patterns
Feature set
Title Implications of deep learning for the automation of design patterns organization
URI https://dx.doi.org/10.1016/j.jpdc.2017.06.022
Volume 117
WOSCitedRecordID wos000432903500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0848
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011578
  issn: 0743-7315
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu4e97Hus-0IPexsuli3H8mMYHes2SqEd5M1YlrQkuI5JnK70D-nfuztLctx2lG2wFycIyxa6X-5Ol7vfEfJeJIZLGZmAS6YDnmQmKJAIMoxVYRKlImk6Etdv6dGRmE6z49HoytfCnFdpXYuLi6z5r6KGMRA2ls7-hbj7h8IAfAehwxXEDtc_EvzhMEccXEGldeObQ_zoswqLTbs8691F1eVxIMkqxgfXrtfT5VZqt91X5AyvKm2ZBhTS72LnLN0VyTWb1lvEDjHrdWGpCk5mxcyn0KOSd5oGC_370P7XmY3JTlZzcJKreQ_J2ZmF4-RnMb8WrWCiz2x1ITRfRnMty7PjSU1jW9e5r60mDjE7Wlgazl5V2zpPr2yT8cBuR7Z7yy2TYKMTi_1Fo5CykqUdX6sthr5BtX2CC8F1MNB7cDKO75HdKE0yUPi7k8OD6Zf-_ymWWBvvF-7KsWzm4M03_d7lGbgxp4_JQydAOrG4eUJGun5KHvneHtSp-mfkeAgjujQUYUQ9jCjAiAKM6BZG9h6EEfUwokMYPSffPx2cfvwcuO4bQRlz0SLJbJwYcF_HTMOZIlNFDMdfzjI9DqWEDzQFRolQY_MisANM6DQuOYdfPjfjMn5BduplrV8SCmPCFDCHpyU-QCpZalZkoQ4lTxO5R5jfoLx01PTYIaXKfQ7iIsdNzXFTc0zEjKI98qGf01hiljvvTvy-5861tC5jDjC5Y96rf5z3mjzYov8N2WlXG_2W3C_P2_l69c6h6RfqrZ_8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implications+of+deep+learning+for+the+automation+of+design+patterns+organization&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Hussain%2C+Shahid&rft.au=Keung%2C+Jacky&rft.au=Khan%2C+Arif+Ali&rft.au=Ahmad%2C+Awais&rft.date=2018-07-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.eissn=1096-0848&rft.volume=117&rft.spage=256&rft.epage=266&rft_id=info:doi/10.1016%2Fj.jpdc.2017.06.022&rft.externalDocID=S0743731517302113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon