A Precedence Constrained Knapsack Problem with Uncertain Item Weights for Personalized Learning Systems

•Studies a novel educational context problem of personalized learning environments.•Presents a new precedence-constrained knapsack model with uncertain item weights.•Provides efficient approximate cutting plane methods with Taylor approximations.•Provides effective pre-processing procedures and cove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Omega (Oxford) Jg. 115; S. 102779
Hauptverfasser: Aslan, Ayse, Ursavas, Evrim, Romeijnders, Ward
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2023
Schlagworte:
ISSN:0305-0483
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Studies a novel educational context problem of personalized learning environments.•Presents a new precedence-constrained knapsack model with uncertain item weights.•Provides efficient approximate cutting plane methods with Taylor approximations.•Provides effective pre-processing procedures and cover cuts. This paper studies a unique precedence constrained knapsack problem in which there are two methods available to place an item in the knapsack. Whether or not an item weight is uncertain depends on which one of the two methods is selected. This knapsack problem models students’ decisions on choosing subjects to study in hybrid personalized learning systems in which students can study either under teacher supervision or in an unsupervised self-study mode by using online tools. We incorporate the uncertainty in the problem using a chance-constrained programming framework. Under the assumption that uncertain item weights are independently and normally distributed, we focus on the deterministic reformulation in which the capacity constraint involves a nonlinear and convex function of the decision variables. By using the first-order linear approximations of this function, we propose an exact cutting plane method that iteratively adds feasibility cuts. To supplement this, we develop novel approximate cutting plane methods that converge quickly to high-quality feasible solutions. To improve the computational efficiency of our methods, we introduce new pre-processing procedures to eliminate items beforehand and cover cuts to refine the feasibility space. Our computational experiments on small and large problem instances show that the optimality gaps of our approximate methods are very small overall, and that they are even able to find solutions with no optimality gaps as the number of items increases in the instances. Moreover, our experiments demonstrate that our pre-processing methods are particularly effective when the precedence relations are dense, and that our cover cuts may significantly speed up our exact cutting plane approach in challenging instances.
AbstractList •Studies a novel educational context problem of personalized learning environments.•Presents a new precedence-constrained knapsack model with uncertain item weights.•Provides efficient approximate cutting plane methods with Taylor approximations.•Provides effective pre-processing procedures and cover cuts. This paper studies a unique precedence constrained knapsack problem in which there are two methods available to place an item in the knapsack. Whether or not an item weight is uncertain depends on which one of the two methods is selected. This knapsack problem models students’ decisions on choosing subjects to study in hybrid personalized learning systems in which students can study either under teacher supervision or in an unsupervised self-study mode by using online tools. We incorporate the uncertainty in the problem using a chance-constrained programming framework. Under the assumption that uncertain item weights are independently and normally distributed, we focus on the deterministic reformulation in which the capacity constraint involves a nonlinear and convex function of the decision variables. By using the first-order linear approximations of this function, we propose an exact cutting plane method that iteratively adds feasibility cuts. To supplement this, we develop novel approximate cutting plane methods that converge quickly to high-quality feasible solutions. To improve the computational efficiency of our methods, we introduce new pre-processing procedures to eliminate items beforehand and cover cuts to refine the feasibility space. Our computational experiments on small and large problem instances show that the optimality gaps of our approximate methods are very small overall, and that they are even able to find solutions with no optimality gaps as the number of items increases in the instances. Moreover, our experiments demonstrate that our pre-processing methods are particularly effective when the precedence relations are dense, and that our cover cuts may significantly speed up our exact cutting plane approach in challenging instances.
ArticleNumber 102779
Author Aslan, Ayse
Ursavas, Evrim
Romeijnders, Ward
Author_xml – sequence: 1
  givenname: Ayse
  surname: Aslan
  fullname: Aslan, Ayse
  email: a.aslan@napier.ac.uk
  organization: School of Engineering and The Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, United Kingdom
– sequence: 2
  givenname: Evrim
  surname: Ursavas
  fullname: Ursavas, Evrim
  email: e.ursavas@rug.nl
  organization: Department of Operations, University of Groningen, Groningen 9747 AD, The Netherlands
– sequence: 3
  givenname: Ward
  surname: Romeijnders
  fullname: Romeijnders, Ward
  email: w.romeijnders@rug.nl
  organization: Department of Operations, University of Groningen, Groningen 9747 AD, The Netherlands
BookMark eNqFkMtKAzEUhrOoYFt9Ajd5gam5zHXhohQvxYIFLS5DJnNmmjpNShKU-vRmrCsXujrwn_87cL4JGhlrAKErSmaU0Px6N7N76OSMEcZiwoqiGqEx4SRLSFryczTxfkcIoSXhY9TN8dqBggaMArywxgcntYEGPxp58FK9xb2te9jjDx22eBNrLsQGXoaYvYLutsHj1jq8Buetkb3-jPQKpDPadPj56GPRX6CzVvYeLn_mFG3ubl8WD8nq6X65mK8SxdMyJLlqVVPRoslTDikhQCvWtHUOtCxYK8sCsirPmpwwyiWnkEtFQNWyYHXW0qzgU1Sd7ipnvXfQCqWDDNqa4a9eUCIGS2Invi2JwZI4WYos_8UenN5Ld_yHujlREN961-CEV3qw2egoNojG6j_5L6U_h-4
CitedBy_id crossref_primary_10_1016_j_omega_2023_103003
Cites_doi 10.1016/j.ijpe.2008.11.009
10.1016/j.cor.2017.02.009
10.1007/s10107-015-0931-0
10.1016/j.omega.2021.102591
10.1287/moor.8.1.1
10.1007/s10479-009-0577-5
10.1287/opre.2021.2173
10.1287/opre.39.5.776
10.1111/poms.13501
10.1016/j.ejor.2020.03.038
10.1016/j.omega.2022.102594
10.1007/s10107-010-0438-7
10.1016/0166-218X(90)90053-F
10.1080/01411926.2012.669747
10.1023/A:1004649425222
10.1287/inte.29.5.95
10.1016/j.ejor.2006.10.031
10.1007/s11590-019-01445-6
10.1007/BF02592064
10.1016/j.ejor.2014.10.043
10.1007/s10479-013-1321-8
10.1287/inte.1120.0643
10.1016/j.cor.2019.104782
10.1016/j.omega.2018.06.014
10.1287/mnsc.6.1.73
10.1016/j.cor.2013.05.005
10.1002/(SICI)1097-0037(199807)31:4<205::AID-NET1>3.0.CO;2-H
10.1287/ijoc.1120.0545
10.1137/120880355
10.1080/03052150701686937
10.1016/j.compedu.2013.08.006
10.1016/j.omega.2017.10.008
10.1007/s10957-006-9084-x
10.1016/j.ejor.2011.06.039
10.1016/j.omega.2019.102191
10.7249/RR2042
10.1007/s101070050084
10.1287/opre.1120.1050
10.1016/S0927-0507(03)10005-9
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.omega.2022.102779
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
ExternalDocumentID 10_1016_j_omega_2022_102779
S0305048322001864
GroupedDBID --K
--M
-~X
.~1
0R~
13V
1B1
1OL
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
96U
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABDPE
ABJNI
ABKBG
ABMAC
ABMVD
ABUCO
ABWVN
ABXDB
ACBMB
ACDAQ
ACGFS
ACHQT
ACHRH
ACNCT
ACNTT
ACRLP
ACRPL
ADBBV
ADEZE
ADIYS
ADMHG
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AFACB
AFAZI
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGQRV
AGUBO
AGUMN
AGYEJ
AHEHV
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BAAKF
BDEBP
BKOJK
BKOMP
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IAO
IEA
IGG
IHE
IHR
IOF
IPO
ITC
J1W
KOM
LPU
LXL
LY1
M41
MO0
MS~
N95
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPCBC
SSB
SSD
SSL
SSZ
T5K
TAE
TAF
TN5
U5U
VQA
WUQ
XI7
XPP
XSW
XYO
YNT
ZRQ
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
IPC
~HD
ID FETCH-LOGICAL-c348t-6cfcd917d643e400e192dfb6e1872fa87e5965d60213a31e6ac0ecba72b5f1573
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867659400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0483
IngestDate Tue Nov 18 22:08:44 EST 2025
Sat Nov 29 04:12:51 EST 2025
Sat Jan 25 16:00:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Precedence Constraints
Cutting Plane Methods
Knapsack Problems
Chance-constrained Programming
Personalized Learning
OR in Education
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-6cfcd917d643e400e192dfb6e1872fa87e5965d60213a31e6ac0ecba72b5f1573
OpenAccessLink https://dx.doi.org/10.1016/j.omega.2022.102779
ParticipantIDs crossref_citationtrail_10_1016_j_omega_2022_102779
crossref_primary_10_1016_j_omega_2022_102779
elsevier_sciencedirect_doi_10_1016_j_omega_2022_102779
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Omega (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Commission E.. 10 trends transforming education as we know it.
Prain, Cox, Deed, Dorman, Edwards, Farrelly, Keeffe, Lovejoy, Mow, Sellings, Waldrip, Yager (bib0041) 2013; 39
Caserta, Vos (bib0008) 2019; 86
Kannan, van den Berg, Kuo (bib0021) 2012; 42
Han, Lee, Lee, Choi, Park (bib0016) 2016; 157
Lin (bib0029) 2009; 117
Lu, Nakao, Shen, Zhao (bib0030) 2021; 99
Araujo, Santos, Gendron, Jena, Brito, Souza (bib0001) 2020; 113
Garey, Johnson (bib0014) 1979
Eiken (bib0012) 2011; 1
Boland, Bley, Fricke, Froyland, Sotirov (bib0004) 2012; 133
Lagos, Armstrong, Homem-de Mello, Lagos, Saure (bib0027) 2020
Monaci, Pferschy, Serafini (bib0033) 2013; 40
Pane J.F., Steiner E.D., Baird M.D., Hamilton L.S., Pane J.D.. Informing progress: Insights on personalized learning implementation and effects. 2017.
Nansheng, Qichen (bib0035) 2022; 0
Boyd, Vandenberghe (bib0006) 2004
Van de Leensel, van Hoesel, van de Klundert (bib0050) 1999; 86
Calafiore, Ghaoui (bib0007) 2006; 130
Ohanian (bib0038) 1999
Yoo, Garcia-Diaz (bib0052) 2008; 40
Monaci, Pferschy (bib0032) 2013; 23
Kosuch, Lisser (bib0024) 2010; 176
Nossack (bib0037) 2022; 109
You, Yamada (bib0053) 2007; 183
Lyu, Chou, Teo, Zheng, Zhong (bib0031) 2022; 70
.
Hijazi, Bonami, Ouorou (bib0017) 2013; 26
Tonissen, van den Akker, Hooggeveen (bib0048) 2017; 83
Lightfoot (bib0028) 2006; 6
Joung, Lee (bib0020) 2020; 14
Kim, Olfman, Ryan, Eryilmaz (bib0023) 2014; 70
Kunskapsskolen. The KED program. 2021.
Weintraub, Vera (bib0051) 1991; 39
Qiu, Sun, Sun (bib0043) 2022; 109
Johnson, Niemi (bib0019) 1983; 8
NCES. Education expenditures by country. 2020.
UNESCO. Training tools for curriculum development: Personalized learning. 2017.
Duran, Grossmann (bib0011) 1986; 36
Aslan, Bakir, Vis (bib0002) 2020; 286
Chicoisne, Espinoza, Goycoolea, Moreno, Rubio (bib0010) 2012; 60
Smilowitz, Keppler (bib0047) 2020; 1
Samavati, Essam, Nehring, Sarker (bib0044) 2018; 81
Pillay (bib0040) 2014; 218
Shaw, Cho (bib0046) 1998; 31
2019.
Morton, Wood (bib0034) 1998; 9
Charnes, Cooper (bib0009) 1959; 6
Kasapidis, Paraskevopoulos, Repoussis, Tarantilis (bib0022) 2021; 30
Kristiansen, Sørensen, Stidsen (bib0025) 2011; 215
Haase, Latteier, Schirmer (bib0015) 1999; 29
Bloom (bib0003) 1968; 1
Johnes (bib0018) 2015; 243
Samphaiboon, Yamada (bib0045) 2000; 105
Prekopa (bib0042) 2003; 10
Boyd (bib0005) 1993; 41
Nossack (10.1016/j.omega.2022.102779_bib0037) 2022; 109
Monaci (10.1016/j.omega.2022.102779_bib0032) 2013; 23
Garey (10.1016/j.omega.2022.102779_bib0014) 1979
Aslan (10.1016/j.omega.2022.102779_bib0002) 2020; 286
Samavati (10.1016/j.omega.2022.102779_bib0044) 2018; 81
Calafiore (10.1016/j.omega.2022.102779_bib0007) 2006; 130
Eiken (10.1016/j.omega.2022.102779_bib0012) 2011; 1
Pillay (10.1016/j.omega.2022.102779_bib0040) 2014; 218
10.1016/j.omega.2022.102779_bib0039
Prain (10.1016/j.omega.2022.102779_bib0041) 2013; 39
Tonissen (10.1016/j.omega.2022.102779_bib0048) 2017; 83
10.1016/j.omega.2022.102779_bib0036
You (10.1016/j.omega.2022.102779_bib0053) 2007; 183
Boyd (10.1016/j.omega.2022.102779_bib0005) 1993; 41
Han (10.1016/j.omega.2022.102779_bib0016) 2016; 157
Nansheng (10.1016/j.omega.2022.102779_bib0035) 2022; 0
Lu (10.1016/j.omega.2022.102779_bib0030) 2021; 99
Kasapidis (10.1016/j.omega.2022.102779_bib0022) 2021; 30
Lin (10.1016/j.omega.2022.102779_bib0029) 2009; 117
10.1016/j.omega.2022.102779_bib0026
Kristiansen (10.1016/j.omega.2022.102779_bib0025) 2011; 215
Lagos (10.1016/j.omega.2022.102779_bib0027) 2020
Chicoisne (10.1016/j.omega.2022.102779_bib0010) 2012; 60
Qiu (10.1016/j.omega.2022.102779_bib0043) 2022; 109
Yoo (10.1016/j.omega.2022.102779_bib0052) 2008; 40
Kosuch (10.1016/j.omega.2022.102779_bib0024) 2010; 176
Boland (10.1016/j.omega.2022.102779_bib0004) 2012; 133
Weintraub (10.1016/j.omega.2022.102779_bib0051) 1991; 39
Morton (10.1016/j.omega.2022.102779_bib0034) 1998; 9
Lyu (10.1016/j.omega.2022.102779_bib0031) 2022; 70
10.1016/j.omega.2022.102779_bib0013
Kim (10.1016/j.omega.2022.102779_bib0023) 2014; 70
Caserta (10.1016/j.omega.2022.102779_bib0008) 2019; 86
Hijazi (10.1016/j.omega.2022.102779_bib0017) 2013; 26
Kannan (10.1016/j.omega.2022.102779_bib0021) 2012; 42
Bloom (10.1016/j.omega.2022.102779_bib0003) 1968; 1
Haase (10.1016/j.omega.2022.102779_bib0015) 1999; 29
Johnson (10.1016/j.omega.2022.102779_bib0019) 1983; 8
Prekopa (10.1016/j.omega.2022.102779_bib0042) 2003; 10
Johnes (10.1016/j.omega.2022.102779_bib0018) 2015; 243
Shaw (10.1016/j.omega.2022.102779_bib0046) 1998; 31
Lightfoot (10.1016/j.omega.2022.102779_bib0028) 2006; 6
Duran (10.1016/j.omega.2022.102779_bib0011) 1986; 36
Monaci (10.1016/j.omega.2022.102779_bib0033) 2013; 40
Smilowitz (10.1016/j.omega.2022.102779_bib0047) 2020; 1
Boyd (10.1016/j.omega.2022.102779_bib0006) 2004
Ohanian (10.1016/j.omega.2022.102779_bib0038) 1999
Joung (10.1016/j.omega.2022.102779_bib0020) 2020; 14
10.1016/j.omega.2022.102779_bib0049
Charnes (10.1016/j.omega.2022.102779_bib0009) 1959; 6
Van de Leensel (10.1016/j.omega.2022.102779_bib0050) 1999; 86
Samphaiboon (10.1016/j.omega.2022.102779_bib0045) 2000; 105
Araujo (10.1016/j.omega.2022.102779_bib0001) 2020; 113
References_xml – volume: 14
  start-page: 101
  year: 2020
  end-page: 113
  ident: bib0020
  article-title: Robust optimization-based heuristic algorithm for the chance-constrained knapsack problem using submodularity
  publication-title: Optimization Letters
– volume: 130
  start-page: 1
  year: 2006
  end-page: 22
  ident: bib0007
  article-title: On distributionally robust chance-constrained linear programs
  publication-title: Journal of Optimization Theory and Applications
– volume: 109
  start-page: 102594
  year: 2022
  ident: bib0037
  article-title: Therapy scheduling and therapy planning at hospitals
  publication-title: Omega
– volume: 42
  start-page: 437
  year: 2012
  end-page: 448
  ident: bib0021
  article-title: iSchedule to personalized learning
  publication-title: Interfaces
– volume: 70
  start-page: 729
  year: 2022
  end-page: 747
  ident: bib0031
  article-title: Stochastic knapsack revisited: The service level perspective
  publication-title: Operations Research
– volume: 1
  start-page: 1
  year: 1968
  end-page: 5
  ident: bib0003
  article-title: Learning for mastery
  publication-title: UCLA - CSEIP - Evaluation Comment
– volume: 113
  start-page: 104782
  year: 2020
  ident: bib0001
  article-title: Strong bounds for resource constrained project scheduling: Preprocessing and cutting planes
  publication-title: Computers & Operations Research
– year: 1999
  ident: bib0038
  article-title: One size fits few: The folly of educational standards
– volume: 157
  start-page: 277
  year: 2016
  end-page: 296
  ident: bib0016
  article-title: Robust optimization approach for a chance-constrained binary knapsack problem
  publication-title: Mathematical Programming
– volume: 218
  start-page: 261
  year: 2014
  end-page: 293
  ident: bib0040
  article-title: A survey of school timetabling research
  publication-title: Annals of Operations Research
– volume: 81
  start-page: 169
  year: 2018
  end-page: 182
  ident: bib0044
  article-title: A new methodology for the open-pit mine production scheduling problem
  publication-title: Omega
– volume: 83
  start-page: 125
  year: 2017
  end-page: 139
  ident: bib0048
  article-title: Column generation strategies and decomposition approaches for the two-stage stochastic multiple knapsack problem
  publication-title: Computers & Operations Research
– volume: 133
  start-page: 481
  year: 2012
  end-page: 511
  ident: bib0004
  article-title: Clique-based facets for the precedence constrained knapsack problem
  publication-title: Mathematical Programming
– volume: 86
  start-page: 161
  year: 1999
  end-page: 185
  ident: bib0050
  article-title: Lifting valid inequalities for the precedence constrained knapsack problem
  publication-title: Mathematical Programming
– volume: 176
  start-page: 77
  year: 2010
  end-page: 93
  ident: bib0024
  article-title: Upper bounds for the 0-1 stochastic knapsack problem and a b&b algorithm
  publication-title: Annals of Operations Research
– volume: 286
  start-page: 673
  year: 2020
  end-page: 688
  ident: bib0002
  article-title: A dynamic Thompson sampling hyper-heuristic framework for learning activity planning in personalized learning
  publication-title: European Journal of Operational Research
– volume: 0
  start-page: 1
  year: 2022
  end-page: 18
  ident: bib0035
  article-title: Resource allocation in robust scheduling
  publication-title: Journal of the Operational Research Society
– volume: 36
  start-page: 307
  year: 1986
  end-page: 339
  ident: bib0011
  article-title: An outer-approximation algorithm for a class of mixed-integer nonlinear programs
  publication-title: Mathematical Programming
– volume: 86
  start-page: 16
  year: 2019
  end-page: 27
  ident: bib0008
  article-title: The robust multiple-choice multidimensional knapsack problem
  publication-title: Omega
– reference: NCES. Education expenditures by country. 2020.
– reference: Pane J.F., Steiner E.D., Baird M.D., Hamilton L.S., Pane J.D.. Informing progress: Insights on personalized learning implementation and effects. 2017.
– volume: 26
  start-page: 31
  year: 2013
  end-page: 44
  ident: bib0017
  article-title: An outer-inner approximation for separable mixed-integer nonlinear programs
  publication-title: INFORMS Journal on Computing
– volume: 31
  start-page: 205
  year: 1998
  end-page: 216
  ident: bib0046
  article-title: The critical-item, upper bounds, and a branch-and-bound algorithm for the tree knapsack problem
  publication-title: Networks
– volume: 10
  start-page: 267
  year: 2003
  end-page: 351
  ident: bib0042
  article-title: Probabilistic programming
  publication-title: Handbooks in Operations Research and Management Science
– volume: 6
  start-page: 1
  year: 1959
  end-page: 140
  ident: bib0009
  article-title: Chance-constrained programming
  publication-title: Management Science
– volume: 23
  start-page: 1956
  year: 2013
  end-page: 1982
  ident: bib0032
  article-title: On distributionally robust chance-constrained linear programs
  publication-title: SIAM Journal on Optimization
– volume: 9
  start-page: 149
  year: 1998
  end-page: 168
  ident: bib0034
  article-title: On a stochastic knapsack problem and generalizations
  publication-title: In: Woodruff DL (eds) Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search Operations Research/Computer Science Interfaces Series, Springer, Boston, MA
– volume: 117
  start-page: 439
  year: 2009
  end-page: 451
  ident: bib0029
  article-title: Stochastic single-source capacitated facility location model with service level requirements
  publication-title: International Journal of Production Economics
– volume: 1
  start-page: 6
  year: 2011
  ident: bib0012
  article-title: The kunskapsskolan (“the knowledge school”): A personalised approach to education
  publication-title: CELE Exchange, Centre for Effective Learning Environments, OECD Publishing, Paris
– reference: Commission E.. 10 trends transforming education as we know it.
– year: 2004
  ident: bib0006
  article-title: Convex Optimization
– volume: 40
  start-page: 2625
  year: 2013
  end-page: 2631
  ident: bib0033
  article-title: Exact solution of the robust knapsack problem
  publication-title: Computers & Operations Research
– year: 2020
  ident: bib0027
  article-title: A framework for adaptive open-pit mining planning under geological uncertainty
  publication-title: Optimization and Engineering
– year: 1979
  ident: bib0014
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– volume: 41
  start-page: 185
  year: 1993
  end-page: 201
  ident: bib0005
  article-title: Polyhedral results for the precedence-constrained knapsack problem
  publication-title: Discrete Applied Mathematics
– volume: 70
  start-page: 150
  year: 2014
  end-page: 160
  ident: bib0023
  article-title: Leveraging a personalized system to improve self-directed learning in online educational environments
  publication-title: Computers & Education
– volume: 8
  start-page: 1
  year: 1983
  end-page: 14
  ident: bib0019
  article-title: On knapsacks, partitions, and a new dynamic programming technique for trees
  publication-title: Mathematics of Operations Research
– volume: 30
  start-page: 4044
  year: 2021
  end-page: 4068
  ident: bib0022
  article-title: Flexible job shop scheduling problems with arbitrary precedence graphs
  publication-title: Production and Operations Management
– volume: 6
  start-page: Article6
  year: 2006
  ident: bib0028
  article-title: Modular curriculum design using personal learning plans and reusable learning components
  publication-title: Communications of the IIMA
– volume: 183
  start-page: 618
  year: 2007
  end-page: 632
  ident: bib0053
  article-title: A pegging approach to the precedence-constrained knapsack problem
  publication-title: European Journal of Operational Research
– reference: ; 2019.
– volume: 40
  start-page: 205
  year: 2008
  end-page: 222
  ident: bib0052
  article-title: Cost-effective selection and multi-period scheduling of pavement maintenance and rehabilitation strategies
  publication-title: Engineering Optimization
– volume: 60
  start-page: 517
  year: 2012
  end-page: 528
  ident: bib0010
  article-title: A new algorithm for the open-pit mine production scheduling problem
  publication-title: Operations Research
– volume: 39
  start-page: 776
  year: 1991
  end-page: 785
  ident: bib0051
  article-title: A cutting plane approach for chance constrained linear programs
  publication-title: Operations Research
– volume: 215
  start-page: 713
  year: 2011
  end-page: 720
  ident: bib0025
  article-title: Elective course planning
  publication-title: European Journal of Operational Research
– volume: 243
  start-page: 683
  year: 2015
  end-page: 696
  ident: bib0018
  article-title: Operational research in education
  publication-title: European Journal of Operational Research
– volume: 99
  start-page: 102191
  year: 2021
  ident: bib0030
  article-title: Non-profit resource allocation and service scheduling with cross-subsidization and uncertain resource consumptions
  publication-title: Omega
– volume: 39
  start-page: 654
  year: 2013
  end-page: 676
  ident: bib0041
  article-title: Personalised learning: Lessons to be learnt
  publication-title: British Educational Research Journal
– volume: 109
  start-page: 102591
  year: 2022
  ident: bib0043
  article-title: A robust optimization approach for multi-product inventory management in a dual-channel warehouse under demand uncertainties
  publication-title: Omega
– reference: .
– volume: 1
  start-page: 84
  year: 2020
  end-page: 105
  ident: bib0047
  article-title: On the use of operations research and management in public education systems
  publication-title: INFORMS TutORials in Operations Research
– volume: 29
  start-page: 95
  year: 1999
  end-page: 109
  ident: bib0015
  article-title: Course planning at lufthansa technical training: Constructing more profitable schedules
  publication-title: Interfaces
– reference: Kunskapsskolen. The KED program. 2021.
– volume: 105
  start-page: 659
  year: 2000
  end-page: 676
  ident: bib0045
  article-title: Heuristic and exact algorithms for the precedence-constrained knapsack problem
  publication-title: Journal of Optimization Theory and Applications
– reference: UNESCO. Training tools for curriculum development: Personalized learning. 2017.
– volume: 117
  start-page: 439
  year: 2009
  ident: 10.1016/j.omega.2022.102779_bib0029
  article-title: Stochastic single-source capacitated facility location model with service level requirements
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2008.11.009
– ident: 10.1016/j.omega.2022.102779_bib0026
– volume: 83
  start-page: 125
  year: 2017
  ident: 10.1016/j.omega.2022.102779_bib0048
  article-title: Column generation strategies and decomposition approaches for the two-stage stochastic multiple knapsack problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2017.02.009
– volume: 157
  start-page: 277
  year: 2016
  ident: 10.1016/j.omega.2022.102779_bib0016
  article-title: Robust optimization approach for a chance-constrained binary knapsack problem
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-015-0931-0
– volume: 109
  start-page: 102591
  year: 2022
  ident: 10.1016/j.omega.2022.102779_bib0043
  article-title: A robust optimization approach for multi-product inventory management in a dual-channel warehouse under demand uncertainties
  publication-title: Omega
  doi: 10.1016/j.omega.2021.102591
– volume: 8
  start-page: 1
  year: 1983
  ident: 10.1016/j.omega.2022.102779_bib0019
  article-title: On knapsacks, partitions, and a new dynamic programming technique for trees
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.8.1.1
– ident: 10.1016/j.omega.2022.102779_bib0049
– volume: 176
  start-page: 77
  year: 2010
  ident: 10.1016/j.omega.2022.102779_bib0024
  article-title: Upper bounds for the 0-1 stochastic knapsack problem and a b&b algorithm
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-009-0577-5
– volume: 70
  start-page: 729
  issue: 2
  year: 2022
  ident: 10.1016/j.omega.2022.102779_bib0031
  article-title: Stochastic knapsack revisited: The service level perspective
  publication-title: Operations Research
  doi: 10.1287/opre.2021.2173
– volume: 39
  start-page: 776
  year: 1991
  ident: 10.1016/j.omega.2022.102779_bib0051
  article-title: A cutting plane approach for chance constrained linear programs
  publication-title: Operations Research
  doi: 10.1287/opre.39.5.776
– volume: 30
  start-page: 4044
  issue: 11
  year: 2021
  ident: 10.1016/j.omega.2022.102779_bib0022
  article-title: Flexible job shop scheduling problems with arbitrary precedence graphs
  publication-title: Production and Operations Management
  doi: 10.1111/poms.13501
– ident: 10.1016/j.omega.2022.102779_bib0036
– ident: 10.1016/j.omega.2022.102779_bib0013
– volume: 286
  start-page: 673
  issue: 2
  year: 2020
  ident: 10.1016/j.omega.2022.102779_bib0002
  article-title: A dynamic Thompson sampling hyper-heuristic framework for learning activity planning in personalized learning
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.03.038
– volume: 109
  start-page: 102594
  year: 2022
  ident: 10.1016/j.omega.2022.102779_bib0037
  article-title: Therapy scheduling and therapy planning at hospitals
  publication-title: Omega
  doi: 10.1016/j.omega.2022.102594
– year: 1999
  ident: 10.1016/j.omega.2022.102779_bib0038
– volume: 133
  start-page: 481
  year: 2012
  ident: 10.1016/j.omega.2022.102779_bib0004
  article-title: Clique-based facets for the precedence constrained knapsack problem
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-010-0438-7
– volume: 1
  start-page: 1
  issue: 2
  year: 1968
  ident: 10.1016/j.omega.2022.102779_bib0003
  article-title: Learning for mastery
  publication-title: UCLA - CSEIP - Evaluation Comment
– volume: 41
  start-page: 185
  year: 1993
  ident: 10.1016/j.omega.2022.102779_bib0005
  article-title: Polyhedral results for the precedence-constrained knapsack problem
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/0166-218X(90)90053-F
– volume: 39
  start-page: 654
  issue: 4
  year: 2013
  ident: 10.1016/j.omega.2022.102779_bib0041
  article-title: Personalised learning: Lessons to be learnt
  publication-title: British Educational Research Journal
  doi: 10.1080/01411926.2012.669747
– volume: 105
  start-page: 659
  year: 2000
  ident: 10.1016/j.omega.2022.102779_bib0045
  article-title: Heuristic and exact algorithms for the precedence-constrained knapsack problem
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1023/A:1004649425222
– volume: 29
  start-page: 95
  year: 1999
  ident: 10.1016/j.omega.2022.102779_bib0015
  article-title: Course planning at lufthansa technical training: Constructing more profitable schedules
  publication-title: Interfaces
  doi: 10.1287/inte.29.5.95
– volume: 183
  start-page: 618
  year: 2007
  ident: 10.1016/j.omega.2022.102779_bib0053
  article-title: A pegging approach to the precedence-constrained knapsack problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.10.031
– volume: 14
  start-page: 101
  year: 2020
  ident: 10.1016/j.omega.2022.102779_bib0020
  article-title: Robust optimization-based heuristic algorithm for the chance-constrained knapsack problem using submodularity
  publication-title: Optimization Letters
  doi: 10.1007/s11590-019-01445-6
– volume: 36
  start-page: 307
  year: 1986
  ident: 10.1016/j.omega.2022.102779_bib0011
  article-title: An outer-approximation algorithm for a class of mixed-integer nonlinear programs
  publication-title: Mathematical Programming
  doi: 10.1007/BF02592064
– volume: 243
  start-page: 683
  issue: 3
  year: 2015
  ident: 10.1016/j.omega.2022.102779_bib0018
  article-title: Operational research in education
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.10.043
– volume: 9
  start-page: 149
  year: 1998
  ident: 10.1016/j.omega.2022.102779_bib0034
  article-title: On a stochastic knapsack problem and generalizations
  publication-title: In: Woodruff DL (eds) Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search Operations Research/Computer Science Interfaces Series, Springer, Boston, MA
– volume: 218
  start-page: 261
  year: 2014
  ident: 10.1016/j.omega.2022.102779_bib0040
  article-title: A survey of school timetabling research
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-013-1321-8
– volume: 1
  start-page: 84
  issue: 4
  year: 2020
  ident: 10.1016/j.omega.2022.102779_bib0047
  article-title: On the use of operations research and management in public education systems
  publication-title: INFORMS TutORials in Operations Research
– volume: 42
  start-page: 437
  issue: 5
  year: 2012
  ident: 10.1016/j.omega.2022.102779_bib0021
  article-title: iSchedule to personalized learning
  publication-title: Interfaces
  doi: 10.1287/inte.1120.0643
– volume: 113
  start-page: 104782
  year: 2020
  ident: 10.1016/j.omega.2022.102779_bib0001
  article-title: Strong bounds for resource constrained project scheduling: Preprocessing and cutting planes
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2019.104782
– volume: 86
  start-page: 16
  year: 2019
  ident: 10.1016/j.omega.2022.102779_bib0008
  article-title: The robust multiple-choice multidimensional knapsack problem
  publication-title: Omega
  doi: 10.1016/j.omega.2018.06.014
– volume: 6
  start-page: 1
  year: 1959
  ident: 10.1016/j.omega.2022.102779_bib0009
  article-title: Chance-constrained programming
  publication-title: Management Science
  doi: 10.1287/mnsc.6.1.73
– year: 2020
  ident: 10.1016/j.omega.2022.102779_bib0027
  article-title: A framework for adaptive open-pit mining planning under geological uncertainty
  publication-title: Optimization and Engineering
– year: 2004
  ident: 10.1016/j.omega.2022.102779_bib0006
– volume: 40
  start-page: 2625
  issue: 11
  year: 2013
  ident: 10.1016/j.omega.2022.102779_bib0033
  article-title: Exact solution of the robust knapsack problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2013.05.005
– volume: 31
  start-page: 205
  year: 1998
  ident: 10.1016/j.omega.2022.102779_bib0046
  article-title: The critical-item, upper bounds, and a branch-and-bound algorithm for the tree knapsack problem
  publication-title: Networks
  doi: 10.1002/(SICI)1097-0037(199807)31:4<205::AID-NET1>3.0.CO;2-H
– volume: 26
  start-page: 31
  issue: 1
  year: 2013
  ident: 10.1016/j.omega.2022.102779_bib0017
  article-title: An outer-inner approximation for separable mixed-integer nonlinear programs
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1120.0545
– volume: 23
  start-page: 1956
  issue: 4
  year: 2013
  ident: 10.1016/j.omega.2022.102779_bib0032
  article-title: On distributionally robust chance-constrained linear programs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/120880355
– volume: 1
  start-page: 6
  year: 2011
  ident: 10.1016/j.omega.2022.102779_bib0012
  article-title: The kunskapsskolan (“the knowledge school”): A personalised approach to education
  publication-title: CELE Exchange, Centre for Effective Learning Environments, OECD Publishing, Paris
– volume: 40
  start-page: 205
  year: 2008
  ident: 10.1016/j.omega.2022.102779_bib0052
  article-title: Cost-effective selection and multi-period scheduling of pavement maintenance and rehabilitation strategies
  publication-title: Engineering Optimization
  doi: 10.1080/03052150701686937
– volume: 70
  start-page: 150
  year: 2014
  ident: 10.1016/j.omega.2022.102779_bib0023
  article-title: Leveraging a personalized system to improve self-directed learning in online educational environments
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2013.08.006
– volume: 81
  start-page: 169
  year: 2018
  ident: 10.1016/j.omega.2022.102779_bib0044
  article-title: A new methodology for the open-pit mine production scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2017.10.008
– volume: 0
  start-page: 1
  issue: 0
  year: 2022
  ident: 10.1016/j.omega.2022.102779_bib0035
  article-title: Resource allocation in robust scheduling
  publication-title: Journal of the Operational Research Society
– volume: 130
  start-page: 1
  year: 2006
  ident: 10.1016/j.omega.2022.102779_bib0007
  article-title: On distributionally robust chance-constrained linear programs
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-006-9084-x
– volume: 215
  start-page: 713
  issue: 3
  year: 2011
  ident: 10.1016/j.omega.2022.102779_bib0025
  article-title: Elective course planning
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2011.06.039
– volume: 99
  start-page: 102191
  year: 2021
  ident: 10.1016/j.omega.2022.102779_bib0030
  article-title: Non-profit resource allocation and service scheduling with cross-subsidization and uncertain resource consumptions
  publication-title: Omega
  doi: 10.1016/j.omega.2019.102191
– ident: 10.1016/j.omega.2022.102779_bib0039
  doi: 10.7249/RR2042
– volume: 86
  start-page: 161
  year: 1999
  ident: 10.1016/j.omega.2022.102779_bib0050
  article-title: Lifting valid inequalities for the precedence constrained knapsack problem
  publication-title: Mathematical Programming
  doi: 10.1007/s101070050084
– volume: 6
  start-page: Article6
  year: 2006
  ident: 10.1016/j.omega.2022.102779_bib0028
  article-title: Modular curriculum design using personal learning plans and reusable learning components
  publication-title: Communications of the IIMA
– volume: 60
  start-page: 517
  year: 2012
  ident: 10.1016/j.omega.2022.102779_bib0010
  article-title: A new algorithm for the open-pit mine production scheduling problem
  publication-title: Operations Research
  doi: 10.1287/opre.1120.1050
– year: 1979
  ident: 10.1016/j.omega.2022.102779_bib0014
– volume: 10
  start-page: 267
  year: 2003
  ident: 10.1016/j.omega.2022.102779_bib0042
  article-title: Probabilistic programming
  publication-title: Handbooks in Operations Research and Management Science
  doi: 10.1016/S0927-0507(03)10005-9
SSID ssj0001803
Score 2.4242322
Snippet •Studies a novel educational context problem of personalized learning environments.•Presents a new precedence-constrained knapsack model with uncertain item...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102779
SubjectTerms Chance-constrained Programming
Cutting Plane Methods
Knapsack Problems
OR in Education
Personalized Learning
Precedence Constraints
Title A Precedence Constrained Knapsack Problem with Uncertain Item Weights for Personalized Learning Systems
URI https://dx.doi.org/10.1016/j.omega.2022.102779
Volume 115
WOSCitedRecordID wos000867659400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0305-0483
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001803
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGh9AuiE9tDJAP3CBTYze2c6xQETA0OKyit8hx7KmFZlVbqsJfv-evJMBUbYddojSyXTfv1-efn98HQm9MmRkiaT8hlFXJQLAsgU8yIRXVjGsleOWLTfCzMzGZ5N_CCf7KlRPgdS2223xxp6KGZyBsGzp7C3E3g8IDuAehwxXEDtcbCX5o3SqUdrVCXT1OVwUCeOVpLRcrqX7Y4ABbRMbbYMfQzHkFOKv92-_OVOqSNDjveEfU_0DvL9GG0s1xHljt17m-kC5x6db7yrfWBUCcT1Lwuz0FGi9XcuMDyUab5XTeHvrM9XTmom2c618I-I9GCUKjH3Oju6j1CRz4GjWNok2zjqpM7elxfq0W9waF2cmlnT3s4Qk5aVv_nTP7n7Ws8TCMzmuzwg1S2EEKP8g9tE94lose2h9-Gk0-Nwt3Kvq-mnaYe0xS5dwB_5vL9USmQ07OH6GHYVeBhx4Nj9Gerp-gBzGo4Sm6GOIWFLgDChxBgQMosAUFbkCBLShwAAUG4eIuKHAEBQ6geIbGH0bn7z8mocRGouhArBOmjKpgx14BMdWgzjUQ_sqUTKeCEyMF11nOsooBE6SSpppJ1deqlJzAfzzNOH2OevVlrQ8RNowIk5fCKFYO0tIIWLoYATrPcy7KTB0hEt9XoUL-eftbfxY7ZHWE3jWdFj79yu7mLAqiCAzSM8MCoLWr44vbfc8xOmhR_xL11stf-hW6rzbr6Wr5OuDqCg46kvk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Precedence+Constrained+Knapsack+Problem+with+Uncertain+Item+Weights+for+Personalized+Learning+Systems&rft.jtitle=Omega+%28Oxford%29&rft.au=Aslan%2C+Ayse&rft.au=Ursavas%2C+Evrim&rft.au=Romeijnders%2C+Ward&rft.date=2023-02-01&rft.issn=0305-0483&rft.volume=115&rft.spage=102779&rft_id=info:doi/10.1016%2Fj.omega.2022.102779&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_omega_2022_102779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0483&client=summon