IRATS: A DRL-based intelligent priority and deadline-aware online resource allocation and task scheduling algorithm in a vehicular fog network
Cloud computing platforms support the Internet of Vehicles, but the main bottlenecks are high latency and massive data transmission in cloud-based processing. Vehicular fog computing has emerged as a promising paradigm to accommodate the increasing computational needs of vehicles. It provides low la...
Uložené v:
| Vydané v: | Ad hoc networks Ročník 141; s. 103090 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.03.2023
|
| Predmet: | |
| ISSN: | 1570-8705, 1570-8713 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cloud computing platforms support the Internet of Vehicles, but the main bottlenecks are high latency and massive data transmission in cloud-based processing. Vehicular fog computing has emerged as a promising paradigm to accommodate the increasing computational needs of vehicles. It provides low latency network services that are most important for latency-sensitive tasks. The dynamic nature of VFC, having vehicles with heterogeneous computing resources, vehicle mobility, and diverse tasks with different priorities are the main challenges in vehicular fog networks. In VFC, vehicles can share their idle compute resources with other task-generating vehicles. So, scheduling the tasks on the idle resources of resource-limited vehicles is very important. Existing solutions use a heuristic approach to solve this issue but lack generalizability and adaptability. In this paper, we describe a PPO-based intelligent, priority and deadline-aware online and distributed resource allocation and task scheduling algorithm, called IRATS, in vehicular fog networks. IRATS formulates the resource allocation problem as a Markov decision process to minimize the waiting time and delay of tasks. For vehicles sharing their idle resources, we design a task scheduler for the orderly execution of received tasks according to their priorities using multi-level queues. We conducted extensive simulations using SUMO, OMNeT++, Veins, and veins-gym to validate the effectiveness of the presented algorithm. The simulation results confirm that the proposed algorithm improves the percentage of in-time completed tasks and decreases the packet loss, waiting time, and end-to-end delay as compared to random, A2C, and DQN algorithms considering the task priority and link duration of vehicles. |
|---|---|
| AbstractList | Cloud computing platforms support the Internet of Vehicles, but the main bottlenecks are high latency and massive data transmission in cloud-based processing. Vehicular fog computing has emerged as a promising paradigm to accommodate the increasing computational needs of vehicles. It provides low latency network services that are most important for latency-sensitive tasks. The dynamic nature of VFC, having vehicles with heterogeneous computing resources, vehicle mobility, and diverse tasks with different priorities are the main challenges in vehicular fog networks. In VFC, vehicles can share their idle compute resources with other task-generating vehicles. So, scheduling the tasks on the idle resources of resource-limited vehicles is very important. Existing solutions use a heuristic approach to solve this issue but lack generalizability and adaptability. In this paper, we describe a PPO-based intelligent, priority and deadline-aware online and distributed resource allocation and task scheduling algorithm, called IRATS, in vehicular fog networks. IRATS formulates the resource allocation problem as a Markov decision process to minimize the waiting time and delay of tasks. For vehicles sharing their idle resources, we design a task scheduler for the orderly execution of received tasks according to their priorities using multi-level queues. We conducted extensive simulations using SUMO, OMNeT++, Veins, and veins-gym to validate the effectiveness of the presented algorithm. The simulation results confirm that the proposed algorithm improves the percentage of in-time completed tasks and decreases the packet loss, waiting time, and end-to-end delay as compared to random, A2C, and DQN algorithms considering the task priority and link duration of vehicles. |
| ArticleNumber | 103090 |
| Author | Ijaz, Humaira Munir, Kashif Shojafar, Mohammad Jamil, Bushra |
| Author_xml | – sequence: 1 givenname: Bushra surname: Jamil fullname: Jamil, Bushra email: bushra.jamil@uos.edu.pk organization: Department of CS & IT, University of Sargodha, Sargodha, Pakistan – sequence: 2 givenname: Humaira surname: Ijaz fullname: Ijaz, Humaira email: humaira.bilalrasul@uos.edu.pk organization: Department of CS & IT, University of Sargodha, Sargodha, Pakistan – sequence: 3 givenname: Mohammad orcidid: 0000-0003-3284-5086 surname: Shojafar fullname: Shojafar, Mohammad email: m.shojafar@surrey.ac.uk organization: 5GIC & 6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, GU27XH, United Kingdom – sequence: 4 givenname: Kashif surname: Munir fullname: Munir, Kashif email: kashif.munir@nu.edu.pk organization: Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan |
| BookMark | eNqFkMtOAjEUhhuDiYg-gZu-wGDnBjMmLgjeSEhMENfNmfYMFIbWtAXCS_jMdsC4cKGrc_3Oyf9fko42Ggm5iVk_ZvHgdtUHuTSin7AkDZ2UleyMdON8yKJiGKedn5zlF-TSuRVjSZmwuEs-J7PR_O2OjujDbBpV4FBSpT02jVqg9vTDKmOVP1DQkkoE2SiNEezBIjW6LahFZ7ZWIIWmMQK8Mvq47cGtqRNLlNuwtwjjRXtquQkPKNAdLpXYNmBpbRZUo98bu74i5zU0Dq-_Y4-8Pz3Oxy_R9PV5Mh5NI5FmhY8GQiayElAFDTLOhsNM1nmW5BJyKESRprUIjbKsaigHdV5gUVaFFNkAGNaFhLRH0tNdYY1zFmsehG7AHnjMeGspX_Gjpby1lJ8sDVT5ixLKHwV7C6r5h70_sRhk7RRa7oRCLVAqi8JzadSf_Bco9pi8 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3455168 crossref_primary_10_1007_s00607_024_01410_x crossref_primary_10_1016_j_engappai_2024_108906 crossref_primary_10_3390_s25030687 crossref_primary_10_1007_s13369_023_08451_y crossref_primary_10_1016_j_jnca_2024_103891 crossref_primary_10_1109_TGCN_2024_3409390 crossref_primary_10_1016_j_comnet_2023_110080 crossref_primary_10_1007_s41870_024_02068_6 crossref_primary_10_1016_j_comnet_2023_109968 crossref_primary_10_1007_s11760_024_03006_6 crossref_primary_10_1109_ACCESS_2024_3430826 crossref_primary_10_1109_TIV_2024_3418307 crossref_primary_10_1007_s11227_023_05823_x crossref_primary_10_1016_j_eswa_2025_127214 crossref_primary_10_1007_s10878_025_01336_w crossref_primary_10_1007_s10115_024_02274_5 crossref_primary_10_1007_s10586_024_04612_2 crossref_primary_10_1109_ACCESS_2023_3277826 crossref_primary_10_1080_17445302_2025_2481513 crossref_primary_10_1007_s11227_025_07814_6 crossref_primary_10_3390_electronics14112169 crossref_primary_10_1016_j_asoc_2024_112594 crossref_primary_10_1016_j_future_2023_09_001 crossref_primary_10_1016_j_vehcom_2024_100770 crossref_primary_10_1109_MSMC_2023_3316790 crossref_primary_10_1109_TCE_2023_3321708 crossref_primary_10_1002_ett_4966 crossref_primary_10_1155_2024_2314019 crossref_primary_10_1007_s11042_024_18123_0 crossref_primary_10_1088_2631_8695_add64e crossref_primary_10_1016_j_adhoc_2025_103819 crossref_primary_10_1007_s11277_024_11373_z crossref_primary_10_1007_s42979_025_03981_8 crossref_primary_10_3390_s25175286 |
| Cites_doi | 10.1016/j.future.2019.09.060 10.1177/0020294019858088 10.1109/TVT.2020.3041929 10.1109/JIOT.2021.3081983 10.3390/s21051666 10.1155/2018/9136813 10.1109/TMC.2010.133 10.1109/JIOT.2020.2975084 10.1145/3513002 10.4108/ICST.SIMUTOOLS2008.3027 10.1109/ACCESS.2020.2968465 10.1007/s11042-021-11130-5 10.1155/2020/3046769 10.1145/3394810.3394818 10.3390/app10134541 10.1016/j.jnca.2022.103333 10.1109/TII.2022.3168292 10.1002/9781119551713.ch11 10.1109/OJCOMS.2021.3128637 10.1109/ACCESS.2020.2981045 10.1109/ACCESS.2016.2603219 10.1016/j.procs.2018.04.055 10.1109/TETCI.2019.2902869 10.1109/JIOT.2021.3091551 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.adhoc.2023.103090 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1570-8713 |
| ExternalDocumentID | 10_1016_j_adhoc_2023_103090 S1570870523000100 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS EJD HZ~ UHS ~HD |
| ID | FETCH-LOGICAL-c348t-6cd2dbcab201d14774df5425da5a8c833fcdf599bfa96f58e89b8dc46a0ef8da3 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923831000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-8705 |
| IngestDate | Sat Nov 29 07:03:26 EST 2025 Tue Nov 18 22:18:30 EST 2025 Fri Feb 23 02:38:34 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Task scheduling Deep reinforcement learning Proximal policy optimization Vehicular fog network Resource allocation |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-6cd2dbcab201d14774df5425da5a8c833fcdf599bfa96f58e89b8dc46a0ef8da3 |
| ORCID | 0000-0003-3284-5086 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.adhoc.2023.103090 |
| ParticipantIDs | crossref_primary_10_1016_j_adhoc_2023_103090 crossref_citationtrail_10_1016_j_adhoc_2023_103090 elsevier_sciencedirect_doi_10_1016_j_adhoc_2023_103090 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-15 |
| PublicationDateYYYYMMDD | 2023-03-15 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Ad hoc networks |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Krajzewicz, Erdmann, Behrisch, Bieker (b33) 2012; 5 Jiang (b17) 2021 Liao, Wu, Mumtaz, Li, Morello, Guizani (b15) 2020 Kaiwartya, Abdullah, Cao, Altameem, Prasad, Lin, Liu (b1) 2016; 4 Bonomi, Milito, Zhu, Addepalli (b5) 2012 Teke, Duran (b37) 2019; 52 Wang, Chen, Dong (b42) 2021 Hazarika, Singh, Biswas, Li (b32) 2022 Liu, Liu, Ren, Zhou, Feng, Guo, Lee (b6) 2019 Nguyen, Dow, Hwang (b38) 2018; 2018 Gazori, Rahbari, Nickray (b26) 2019 Qayyum, Malik, Khan, Khan (b36) 2020 Schettler, Buse, Zubow, Dressler (b52) 2020 Hu, Wang, Hu, Zhu (b31) 2021; 8 Tuli, Ilager, Ramamohanarao, Buyya (b46) 2020 Hamadanian, Schwarzkopf, Sen, Alizadeh (b11) 2022 Li, Ni, Yuan, Noor, Jamalipour (b20) 2022 Raffin, Hill, Gleave, Kanervisto, Ernestus, Dormann (b53) 2021 Zhang, Zhang, Yang (b18) 2022 Ye, Ren, Wang, Xu, Guo, Huang, Tian (b23) 2018 Valente Klaine (b44) 2019 Schulman, Wolski, Dhariwal, Radford, Klimov (b48) 2017 Sommer, Yao, German, Dressler (b35) 2008 Guo, Li, Liu, Ma, Yang, Zhang, Wu (b2) 2020; 7 Jamil, Ijaz, Shojafar, Munir, Buyya (b8) 2022 Che, Bai, Zuo, Li (b28) 2020; 2020 He, Xiong, Ou, Zhang, Wang, Huang, Zhang (b16) 2021 Gazori, Rahbari, Nickray (b30) 2020; 110 Brockman, Cheung, Pettersson, Schneider, Schulman, Tang, Zaremba (b51) 2016 Raza, Wang, Ahmed, Anwar (b4) 2019; 2019 A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment, in: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, 2008, pp. 1–10. Sommer, German, Dressler (b49) 2010; 10 Nahri, Boulmakoul, Karim, Lbath (b3) 2018; 130 Chen, Chen, Liu, He, Yuan, Lan, Chen (b10) 2020; 8 Chen, Zhang, You, Zheng, Lambotharan (b19) 2021; 9 Khan, Koubaa, Farman (b39) 2020; 10 Shi, Du, Wang, Wang, Yuan (b12) 2020; 69 Leng, Li, Shi, Zhu (b21) 2021; 80 Tang, Jia, Zhou, Yang, You (b27) 2020 Cao, Zhang, Liu (b47) 2019 Mekrache, Bradai, Moulay, Dawaliby (b41) 2021 Auluck, Azim, Fizza (b24) 2019 Rahimikhanghah, Tajkey, Rezazadeh, Rahmani (b7) 2021 Sutton, Barto (b43) 2018 Silberschatz, Galvin, Gagne (b13) 2006 Sommer, Eckhoff, Brummer, Buse, Hagenauer, Joerer, Segata (b50) 2019 Chen, Xu, Wu (b22) 2017 Wang, Liu, Zhang, Feng, Huang, Li, Zhang (b45) 2020 Bian, Huang, Shao (b25) 2019 J. Ibarz, M. Lauer, M. Roy, J.-C. Fabre, O. Flébus, Optimizing vehicle-to-cloud data transfers using soft real-time scheduling concepts, in: Proceedings of the 28th International Conference on Real-Time Networks and Systems, 2020, pp. 161–171. Wang, Zheng, Ge, Li (b9) 2020; 8 Zhou, Liao, Gu, Mumtaz, Rodriguez (b14) 2019; 4 Sheng, Chen, Chen, Wu, Yao (b29) 2021; 21 Azizi, Shojafar, Abawajy, Buyya (b54) 2022; 201 Leng (10.1016/j.adhoc.2023.103090_b21) 2021; 80 Guo (10.1016/j.adhoc.2023.103090_b2) 2020; 7 Chen (10.1016/j.adhoc.2023.103090_b19) 2021; 9 Nahri (10.1016/j.adhoc.2023.103090_b3) 2018; 130 Silberschatz (10.1016/j.adhoc.2023.103090_b13) 2006 Gazori (10.1016/j.adhoc.2023.103090_b26) 2019 Wang (10.1016/j.adhoc.2023.103090_b45) 2020 Sheng (10.1016/j.adhoc.2023.103090_b29) 2021; 21 Raffin (10.1016/j.adhoc.2023.103090_b53) 2021 Krajzewicz (10.1016/j.adhoc.2023.103090_b33) 2012; 5 Liao (10.1016/j.adhoc.2023.103090_b15) 2020 Ye (10.1016/j.adhoc.2023.103090_b23) 2018 Sommer (10.1016/j.adhoc.2023.103090_b50) 2019 Che (10.1016/j.adhoc.2023.103090_b28) 2020; 2020 Nguyen (10.1016/j.adhoc.2023.103090_b38) 2018; 2018 Tuli (10.1016/j.adhoc.2023.103090_b46) 2020 Hu (10.1016/j.adhoc.2023.103090_b31) 2021; 8 Brockman (10.1016/j.adhoc.2023.103090_b51) 2016 Shi (10.1016/j.adhoc.2023.103090_b12) 2020; 69 Li (10.1016/j.adhoc.2023.103090_b20) 2022 Chen (10.1016/j.adhoc.2023.103090_b10) 2020; 8 Tang (10.1016/j.adhoc.2023.103090_b27) 2020 Sommer (10.1016/j.adhoc.2023.103090_b35) 2008 Sommer (10.1016/j.adhoc.2023.103090_b49) 2010; 10 Rahimikhanghah (10.1016/j.adhoc.2023.103090_b7) 2021 He (10.1016/j.adhoc.2023.103090_b16) 2021 Qayyum (10.1016/j.adhoc.2023.103090_b36) 2020 Auluck (10.1016/j.adhoc.2023.103090_b24) 2019 Zhou (10.1016/j.adhoc.2023.103090_b14) 2019; 4 Hazarika (10.1016/j.adhoc.2023.103090_b32) 2022 Raza (10.1016/j.adhoc.2023.103090_b4) 2019; 2019 Zhang (10.1016/j.adhoc.2023.103090_b18) 2022 Sutton (10.1016/j.adhoc.2023.103090_b43) 2018 10.1016/j.adhoc.2023.103090_b40 Bian (10.1016/j.adhoc.2023.103090_b25) 2019 Jamil (10.1016/j.adhoc.2023.103090_b8) 2022 10.1016/j.adhoc.2023.103090_b34 Mekrache (10.1016/j.adhoc.2023.103090_b41) 2021 Wang (10.1016/j.adhoc.2023.103090_b9) 2020; 8 Teke (10.1016/j.adhoc.2023.103090_b37) 2019; 52 Bonomi (10.1016/j.adhoc.2023.103090_b5) 2012 Hamadanian (10.1016/j.adhoc.2023.103090_b11) 2022 Chen (10.1016/j.adhoc.2023.103090_b22) 2017 Gazori (10.1016/j.adhoc.2023.103090_b30) 2020; 110 Valente Klaine (10.1016/j.adhoc.2023.103090_b44) 2019 Cao (10.1016/j.adhoc.2023.103090_b47) 2019 Liu (10.1016/j.adhoc.2023.103090_b6) 2019 Schettler (10.1016/j.adhoc.2023.103090_b52) 2020 Kaiwartya (10.1016/j.adhoc.2023.103090_b1) 2016; 4 Jiang (10.1016/j.adhoc.2023.103090_b17) 2021 Khan (10.1016/j.adhoc.2023.103090_b39) 2020; 10 Schulman (10.1016/j.adhoc.2023.103090_b48) 2017 Azizi (10.1016/j.adhoc.2023.103090_b54) 2022; 201 Wang (10.1016/j.adhoc.2023.103090_b42) 2021 |
| References_xml | – start-page: 1 year: 2021 end-page: 35 ident: b7 article-title: Resource scheduling methods in cloud and fog computing environments: A systematic literature review publication-title: Cluster Comput. – year: 2018 ident: b43 article-title: Reinforcement Learning: An Introduction – year: 2021 ident: b41 article-title: Deep reinforcement learning techniques for vehicular networks: Recent advances and future trends towards 6G publication-title: Veh. Commun. – year: 2020 ident: b15 article-title: Cognitive balance for fog computing resource in internet of things: An edge learning approach publication-title: IEEE Trans. Mob. Comput. – volume: 10 start-page: 3 year: 2010 end-page: 15 ident: b49 article-title: Bidirectionally coupled network and road traffic simulation for improved IVC analysis publication-title: IEEE Trans. Mob. Comput. – volume: 130 start-page: 480 year: 2018 end-page: 487 ident: b3 article-title: IoV distributed architecture for real-time traffic data analytics publication-title: Procedia Comput. Sci. – start-page: 1 year: 2008 end-page: 6 ident: b35 article-title: Simulating the influence of IVC on road traffic using bidirectionally coupled simulators publication-title: IEEE INFOCOM Workshops 2008 – year: 2022 ident: b8 article-title: Resource allocation and task scheduling in fog computing and internet of everything environments: A taxonomy, review, and future directions publication-title: ACM Comput. Surv. – volume: 8 start-page: 18863 year: 2020 end-page: 18873 ident: b10 article-title: Delay-optimized v2v-based computation offloading in urban vehicular edge computing and networks publication-title: IEEE Access – year: 2021 ident: b16 article-title: An overview on the application of graph neural networks in wireless networks publication-title: IEEE Open J. Commun. Soc. – volume: 110 start-page: 1098 year: 2020 end-page: 1115 ident: b30 article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach publication-title: Future Gener. Comput. Syst. – year: 2022 ident: b11 article-title: Reinforcement learning in time-varying systems: An empirical study – year: 2020 ident: b27 article-title: Representation and reinforcement learning for task scheduling in edge computing publication-title: IEEE Trans. Big Data – year: 2016 ident: b51 article-title: Openai gym – year: 2017 ident: b22 article-title: Deep reinforcement learning for multi-resource multi-machine job scheduling – year: 2019 ident: b44 article-title: Self-Organization for 5G and Beyond Mobile Networks Using Reinforcement Learning – volume: 80 start-page: 29163 year: 2021 end-page: 29175 ident: b21 article-title: Graph convolutional network-based reinforcement learning for tasks offloading in multi-access edge computing publication-title: Multimedia Tools Appl. – volume: 201 year: 2022 ident: b54 article-title: Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach publication-title: J. Netw. Comput. Appl. – start-page: 1 year: 2019 end-page: 5 ident: b25 article-title: Online task scheduling for fog computing with multi-resource fairness publication-title: 2019 IEEE 90th Vehicular Technology Conference – volume: 4 start-page: 5356 year: 2016 end-page: 5373 ident: b1 article-title: Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects publication-title: IEEE Access – start-page: 293 year: 2020 end-page: 307 ident: b36 article-title: Modeling and simulation of distributed fog environment using FogNetSim++ publication-title: Fog Comput.: Theory Pract. – year: 2022 ident: b18 article-title: Learning-based resource allocation in heterogeneous ultra dense network publication-title: IEEE Internet Things J. – year: 2019 ident: b47 article-title: A deep reinforcement learning approach to multi-component job scheduling in edge computing – year: 2018 ident: b23 article-title: A new approach for resource scheduling with deep reinforcement learning – volume: 52 start-page: 985 year: 2019 end-page: 994 ident: b37 article-title: The design and implementation of road condition warning system for drivers publication-title: Meas. Control – volume: 2018 year: 2018 ident: b38 article-title: An efficient traffic congestion monitoring system on internet of vehicles publication-title: Wirel. Commun. Mob. Comput. – start-page: 1 year: 2020 end-page: 4 ident: b52 article-title: How to train your its? Integrating machine learning with vehicular network simulation publication-title: 2020 IEEE Vehicular Networking Conference – start-page: 378 year: 2019 end-page: 383 ident: b6 article-title: Enabling safety-critical and computation-intensive IoV applications via vehicular fog computing publication-title: 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks – reference: J. Ibarz, M. Lauer, M. Roy, J.-C. Fabre, O. Flébus, Optimizing vehicle-to-cloud data transfers using soft real-time scheduling concepts, in: Proceedings of the 28th International Conference on Real-Time Networks and Systems, 2020, pp. 161–171. – start-page: 215 year: 2019 end-page: 252 ident: b50 article-title: Veins: The open source vehicular network simulation framework publication-title: Recent Advances in Network Simulation – volume: 9 start-page: 1712 year: 2021 end-page: 1724 ident: b19 article-title: A GNN-based supervised learning framework for resource allocation in wireless IoT networks publication-title: IEEE Internet Things J. – volume: 8 start-page: 52428 year: 2020 end-page: 52442 ident: b9 article-title: Online offloading scheduling and resource allocation algorithms for vehicular edge computing system publication-title: IEEE Access – year: 2021 ident: b53 article-title: Stable-Baselines3: Reliable reinforcement learning implementations publication-title: J. Mach. Learn. Res. – year: 2017 ident: b48 article-title: Proximal policy optimization algorithms – year: 2022 ident: b20 article-title: Deep graph-based reinforcement learning for joint cruise control and task offloading for aerial edge internet-of-things (EdgeIoT) publication-title: IEEE Internet Things J. – volume: 7 start-page: 6647 year: 2020 end-page: 6662 ident: b2 article-title: TROVE: A context-awareness trust model for VANETs using reinforcement learning publication-title: IEEE Internet Things J. – year: 2020 ident: b46 article-title: Dynamic scheduling for stochastic edge-cloud computing environments using a3c learning and residual recurrent neural networks publication-title: IEEE Trans. Mob. Comput. – year: 2006 ident: b13 article-title: Operating System Concepts – volume: 2020 year: 2020 ident: b28 article-title: A deep reinforcement learning approach to the optimization of data center task scheduling publication-title: Complexity – start-page: 13 year: 2012 end-page: 16 ident: b5 article-title: Fog computing and its role in the internet of things publication-title: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing – year: 2019 ident: b24 article-title: Improving the schedulability of real-time tasks using fog computing publication-title: IEEE Trans. Serv. Comput. – start-page: 1 year: 2020 end-page: 19 ident: b45 article-title: Deep reinforcement learning: A survey publication-title: Front. Inf. Technol. Electron. Eng. – year: 2019 ident: b26 article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach publication-title: Future Gener. Comput. Syst. – volume: 21 start-page: 1666 year: 2021 ident: b29 article-title: Deep reinforcement learning-based task scheduling in IoT edge computing publication-title: Sensors – volume: 69 start-page: 16067 year: 2020 end-page: 16081 ident: b12 article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning publication-title: IEEE Trans. Veh. Technol. – year: 2022 ident: b32 article-title: DRL-based resource allocation for computation offloading in IoV networks publication-title: IEEE Trans. Ind. Inform. – reference: A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment, in: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, 2008, pp. 1–10. – volume: 5 year: 2012 ident: b33 article-title: Recent development and applications of SUMO-simulation of urban mobility publication-title: Int. J. Adv. Syst. Meas. – volume: 2019 year: 2019 ident: b4 article-title: A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions publication-title: Wirel. Commun. Mob. Comput. – volume: 10 start-page: 4541 year: 2020 ident: b39 article-title: Smart route: Internet-of-vehicles (IoV)-based congestion detection and avoidance (IoV-based cda) using rerouting planning publication-title: Appl. Sci. – year: 2021 ident: b17 article-title: Graph-based deep learning for communication networks: A survey publication-title: Comput. Commun. – year: 2021 ident: b42 article-title: Lifelong incremental reinforcement learning with online Bayesian inference publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 4 start-page: 227 year: 2019 end-page: 240 ident: b14 article-title: Resource sharing and task offloading in IoT fog computing: A contract-learning approach publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 8 start-page: 17541 year: 2021 end-page: 17556 ident: b31 article-title: Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting publication-title: IEEE Internet Things J. – year: 2019 ident: 10.1016/j.adhoc.2023.103090_b26 article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach publication-title: Future Gener. Comput. Syst. – volume: 110 start-page: 1098 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b30 article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.09.060 – year: 2022 ident: 10.1016/j.adhoc.2023.103090_b11 – volume: 52 start-page: 985 issue: 7–8 year: 2019 ident: 10.1016/j.adhoc.2023.103090_b37 article-title: The design and implementation of road condition warning system for drivers publication-title: Meas. Control doi: 10.1177/0020294019858088 – start-page: 1 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b45 article-title: Deep reinforcement learning: A survey publication-title: Front. Inf. Technol. Electron. Eng. – year: 2006 ident: 10.1016/j.adhoc.2023.103090_b13 – volume: 69 start-page: 16067 issue: 12 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b12 article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3041929 – year: 2021 ident: 10.1016/j.adhoc.2023.103090_b17 article-title: Graph-based deep learning for communication networks: A survey publication-title: Comput. Commun. – volume: 8 start-page: 17541 issue: 24 year: 2021 ident: 10.1016/j.adhoc.2023.103090_b31 article-title: Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3081983 – year: 2020 ident: 10.1016/j.adhoc.2023.103090_b46 article-title: Dynamic scheduling for stochastic edge-cloud computing environments using a3c learning and residual recurrent neural networks publication-title: IEEE Trans. Mob. Comput. – volume: 21 start-page: 1666 issue: 5 year: 2021 ident: 10.1016/j.adhoc.2023.103090_b29 article-title: Deep reinforcement learning-based task scheduling in IoT edge computing publication-title: Sensors doi: 10.3390/s21051666 – year: 2022 ident: 10.1016/j.adhoc.2023.103090_b20 article-title: Deep graph-based reinforcement learning for joint cruise control and task offloading for aerial edge internet-of-things (EdgeIoT) publication-title: IEEE Internet Things J. – year: 2021 ident: 10.1016/j.adhoc.2023.103090_b42 article-title: Lifelong incremental reinforcement learning with online Bayesian inference publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2021 ident: 10.1016/j.adhoc.2023.103090_b41 article-title: Deep reinforcement learning techniques for vehicular networks: Recent advances and future trends towards 6G publication-title: Veh. Commun. – volume: 2018 year: 2018 ident: 10.1016/j.adhoc.2023.103090_b38 article-title: An efficient traffic congestion monitoring system on internet of vehicles publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2018/9136813 – volume: 2019 year: 2019 ident: 10.1016/j.adhoc.2023.103090_b4 article-title: A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions publication-title: Wirel. Commun. Mob. Comput. – volume: 10 start-page: 3 issue: 1 year: 2010 ident: 10.1016/j.adhoc.2023.103090_b49 article-title: Bidirectionally coupled network and road traffic simulation for improved IVC analysis publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2010.133 – volume: 7 start-page: 6647 issue: 7 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b2 article-title: TROVE: A context-awareness trust model for VANETs using reinforcement learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2975084 – year: 2022 ident: 10.1016/j.adhoc.2023.103090_b8 article-title: Resource allocation and task scheduling in fog computing and internet of everything environments: A taxonomy, review, and future directions publication-title: ACM Comput. Surv. doi: 10.1145/3513002 – year: 2016 ident: 10.1016/j.adhoc.2023.103090_b51 – ident: 10.1016/j.adhoc.2023.103090_b34 doi: 10.4108/ICST.SIMUTOOLS2008.3027 – year: 2019 ident: 10.1016/j.adhoc.2023.103090_b47 – start-page: 1 year: 2021 ident: 10.1016/j.adhoc.2023.103090_b7 article-title: Resource scheduling methods in cloud and fog computing environments: A systematic literature review publication-title: Cluster Comput. – start-page: 1 year: 2019 ident: 10.1016/j.adhoc.2023.103090_b25 article-title: Online task scheduling for fog computing with multi-resource fairness – volume: 5 issue: 3&4 year: 2012 ident: 10.1016/j.adhoc.2023.103090_b33 article-title: Recent development and applications of SUMO-simulation of urban mobility publication-title: Int. J. Adv. Syst. Meas. – year: 2019 ident: 10.1016/j.adhoc.2023.103090_b24 article-title: Improving the schedulability of real-time tasks using fog computing publication-title: IEEE Trans. Serv. Comput. – year: 2019 ident: 10.1016/j.adhoc.2023.103090_b44 – volume: 8 start-page: 18863 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b10 article-title: Delay-optimized v2v-based computation offloading in urban vehicular edge computing and networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968465 – year: 2022 ident: 10.1016/j.adhoc.2023.103090_b18 article-title: Learning-based resource allocation in heterogeneous ultra dense network publication-title: IEEE Internet Things J. – volume: 80 start-page: 29163 issue: 19 year: 2021 ident: 10.1016/j.adhoc.2023.103090_b21 article-title: Graph convolutional network-based reinforcement learning for tasks offloading in multi-access edge computing publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-021-11130-5 – start-page: 1 year: 2008 ident: 10.1016/j.adhoc.2023.103090_b35 article-title: Simulating the influence of IVC on road traffic using bidirectionally coupled simulators – volume: 2020 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b28 article-title: A deep reinforcement learning approach to the optimization of data center task scheduling publication-title: Complexity doi: 10.1155/2020/3046769 – ident: 10.1016/j.adhoc.2023.103090_b40 doi: 10.1145/3394810.3394818 – volume: 10 start-page: 4541 issue: 13 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b39 article-title: Smart route: Internet-of-vehicles (IoV)-based congestion detection and avoidance (IoV-based cda) using rerouting planning publication-title: Appl. Sci. doi: 10.3390/app10134541 – volume: 201 year: 2022 ident: 10.1016/j.adhoc.2023.103090_b54 article-title: Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2022.103333 – year: 2022 ident: 10.1016/j.adhoc.2023.103090_b32 article-title: DRL-based resource allocation for computation offloading in IoV networks publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3168292 – year: 2017 ident: 10.1016/j.adhoc.2023.103090_b48 – year: 2021 ident: 10.1016/j.adhoc.2023.103090_b53 article-title: Stable-Baselines3: Reliable reinforcement learning implementations publication-title: J. Mach. Learn. Res. – year: 2017 ident: 10.1016/j.adhoc.2023.103090_b22 – start-page: 293 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b36 article-title: Modeling and simulation of distributed fog environment using FogNetSim++ publication-title: Fog Comput.: Theory Pract. doi: 10.1002/9781119551713.ch11 – year: 2018 ident: 10.1016/j.adhoc.2023.103090_b23 – year: 2021 ident: 10.1016/j.adhoc.2023.103090_b16 article-title: An overview on the application of graph neural networks in wireless networks publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2021.3128637 – start-page: 13 year: 2012 ident: 10.1016/j.adhoc.2023.103090_b5 article-title: Fog computing and its role in the internet of things – year: 2018 ident: 10.1016/j.adhoc.2023.103090_b43 – year: 2020 ident: 10.1016/j.adhoc.2023.103090_b15 article-title: Cognitive balance for fog computing resource in internet of things: An edge learning approach publication-title: IEEE Trans. Mob. Comput. – volume: 8 start-page: 52428 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b9 article-title: Online offloading scheduling and resource allocation algorithms for vehicular edge computing system publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981045 – year: 2020 ident: 10.1016/j.adhoc.2023.103090_b27 article-title: Representation and reinforcement learning for task scheduling in edge computing publication-title: IEEE Trans. Big Data – start-page: 1 year: 2020 ident: 10.1016/j.adhoc.2023.103090_b52 article-title: How to train your its? Integrating machine learning with vehicular network simulation – start-page: 215 year: 2019 ident: 10.1016/j.adhoc.2023.103090_b50 article-title: Veins: The open source vehicular network simulation framework – volume: 4 start-page: 5356 year: 2016 ident: 10.1016/j.adhoc.2023.103090_b1 article-title: Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2603219 – volume: 130 start-page: 480 year: 2018 ident: 10.1016/j.adhoc.2023.103090_b3 article-title: IoV distributed architecture for real-time traffic data analytics publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.04.055 – volume: 4 start-page: 227 issue: 3 year: 2019 ident: 10.1016/j.adhoc.2023.103090_b14 article-title: Resource sharing and task offloading in IoT fog computing: A contract-learning approach publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2019.2902869 – volume: 9 start-page: 1712 issue: 3 year: 2021 ident: 10.1016/j.adhoc.2023.103090_b19 article-title: A GNN-based supervised learning framework for resource allocation in wireless IoT networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3091551 – start-page: 378 year: 2019 ident: 10.1016/j.adhoc.2023.103090_b6 article-title: Enabling safety-critical and computation-intensive IoV applications via vehicular fog computing |
| SSID | ssj0029201 |
| Score | 2.5162952 |
| Snippet | Cloud computing platforms support the Internet of Vehicles, but the main bottlenecks are high latency and massive data transmission in cloud-based processing.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103090 |
| SubjectTerms | Deep reinforcement learning Proximal policy optimization Resource allocation Task scheduling Vehicular fog network |
| Title | IRATS: A DRL-based intelligent priority and deadline-aware online resource allocation and task scheduling algorithm in a vehicular fog network |
| URI | https://dx.doi.org/10.1016/j.adhoc.2023.103090 |
| Volume | 141 |
| WOSCitedRecordID | wos000923831000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1570-8713 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029201 issn: 1570-8705 databaseCode: AIEXJ dateStart: 20030701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_t8pIP3EJWaZwntwoWsQhWaFuk3iLHj01Km1Rtt-yv4D_wTxln8oKiFSBxiSLXjzTfF3tmPDMm5IWnfcEkaCc8DQLb0zAPpsrlNnOlZCMQCcIID5sIz86i2Sz-NBh8b2JhdouwKKKrq3j1X6GGMgDbhM7-Bdxtp1AA9wA6XAF2uP4R8Kfn4-kEA87fnH-wzTIlq6wQmHlza63WeWmOrKv2DSRgbCRNm381PmCYOMNa10Z9y2zLo1EPXS355osF-jCsT1UYO19cmK6ypTGbcGunshz9WnV5YRXoYd4Xf8fSykrR_NJ5LxorS8W0y022bheK0zmvzNtmoyHviidZOecaHcM_lhlfLrnseFPktZfIJst136bhMuPUhVGdaGjbC7bBuTl0YPJ2sJ7ql2E4azuhYyqtvcUB7RTzYy7hrx6bcU3KAQePK_0l6_bE9GwGAxXN6M3ODXLghn4cDcnB-PRk9r7V6mPXwaS89dM1qa0qJ8K9oX4v_vREmuldcqfWRegYOXSPDFRxn9zuZah8QL5VbHpFx7TlEu1xiTZcosAO-jOXKHKJNlyiHZeq2oZLtOMSbbkEA1BOWy5R4BKtGfOQfH57Mn39zq6P8LAF86KtHQjpylTwFF6SHHmga0jtwzIhuc8jETGmBRTEcap5HGg_UlGcRlJ4AXeUjiRnj8iwKAt1SCjoHiwcpcqXPvOEUHwUai9WnjHIMTlyj4jbvNlE1PntzTEri6RxZJwnFRyJgSNBOI7Iy7bRCtO7XF89aCBLagkVJc8EOHZdw8f_2vAJudV9IE_JcLu-VM_ITbHb5pv185qLPwDLUbn2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IRATS%3A+A+DRL-based+intelligent+priority+and+deadline-aware+online+resource+allocation+and+task+scheduling+algorithm+in+a+vehicular+fog+network&rft.jtitle=Ad+hoc+networks&rft.au=Jamil%2C+Bushra&rft.au=Ijaz%2C+Humaira&rft.au=Shojafar%2C+Mohammad&rft.au=Munir%2C+Kashif&rft.date=2023-03-15&rft.pub=Elsevier+B.V&rft.issn=1570-8705&rft.eissn=1570-8713&rft.volume=141&rft_id=info:doi/10.1016%2Fj.adhoc.2023.103090&rft.externalDocID=S1570870523000100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon |