IRATS: A DRL-based intelligent priority and deadline-aware online resource allocation and task scheduling algorithm in a vehicular fog network

Cloud computing platforms support the Internet of Vehicles, but the main bottlenecks are high latency and massive data transmission in cloud-based processing. Vehicular fog computing has emerged as a promising paradigm to accommodate the increasing computational needs of vehicles. It provides low la...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ad hoc networks Ročník 141; s. 103090
Hlavní autori: Jamil, Bushra, Ijaz, Humaira, Shojafar, Mohammad, Munir, Kashif
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.03.2023
Predmet:
ISSN:1570-8705, 1570-8713
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cloud computing platforms support the Internet of Vehicles, but the main bottlenecks are high latency and massive data transmission in cloud-based processing. Vehicular fog computing has emerged as a promising paradigm to accommodate the increasing computational needs of vehicles. It provides low latency network services that are most important for latency-sensitive tasks. The dynamic nature of VFC, having vehicles with heterogeneous computing resources, vehicle mobility, and diverse tasks with different priorities are the main challenges in vehicular fog networks. In VFC, vehicles can share their idle compute resources with other task-generating vehicles. So, scheduling the tasks on the idle resources of resource-limited vehicles is very important. Existing solutions use a heuristic approach to solve this issue but lack generalizability and adaptability. In this paper, we describe a PPO-based intelligent, priority and deadline-aware online and distributed resource allocation and task scheduling algorithm, called IRATS, in vehicular fog networks. IRATS formulates the resource allocation problem as a Markov decision process to minimize the waiting time and delay of tasks. For vehicles sharing their idle resources, we design a task scheduler for the orderly execution of received tasks according to their priorities using multi-level queues. We conducted extensive simulations using SUMO, OMNeT++, Veins, and veins-gym to validate the effectiveness of the presented algorithm. The simulation results confirm that the proposed algorithm improves the percentage of in-time completed tasks and decreases the packet loss, waiting time, and end-to-end delay as compared to random, A2C, and DQN algorithms considering the task priority and link duration of vehicles.
AbstractList Cloud computing platforms support the Internet of Vehicles, but the main bottlenecks are high latency and massive data transmission in cloud-based processing. Vehicular fog computing has emerged as a promising paradigm to accommodate the increasing computational needs of vehicles. It provides low latency network services that are most important for latency-sensitive tasks. The dynamic nature of VFC, having vehicles with heterogeneous computing resources, vehicle mobility, and diverse tasks with different priorities are the main challenges in vehicular fog networks. In VFC, vehicles can share their idle compute resources with other task-generating vehicles. So, scheduling the tasks on the idle resources of resource-limited vehicles is very important. Existing solutions use a heuristic approach to solve this issue but lack generalizability and adaptability. In this paper, we describe a PPO-based intelligent, priority and deadline-aware online and distributed resource allocation and task scheduling algorithm, called IRATS, in vehicular fog networks. IRATS formulates the resource allocation problem as a Markov decision process to minimize the waiting time and delay of tasks. For vehicles sharing their idle resources, we design a task scheduler for the orderly execution of received tasks according to their priorities using multi-level queues. We conducted extensive simulations using SUMO, OMNeT++, Veins, and veins-gym to validate the effectiveness of the presented algorithm. The simulation results confirm that the proposed algorithm improves the percentage of in-time completed tasks and decreases the packet loss, waiting time, and end-to-end delay as compared to random, A2C, and DQN algorithms considering the task priority and link duration of vehicles.
ArticleNumber 103090
Author Ijaz, Humaira
Munir, Kashif
Shojafar, Mohammad
Jamil, Bushra
Author_xml – sequence: 1
  givenname: Bushra
  surname: Jamil
  fullname: Jamil, Bushra
  email: bushra.jamil@uos.edu.pk
  organization: Department of CS & IT, University of Sargodha, Sargodha, Pakistan
– sequence: 2
  givenname: Humaira
  surname: Ijaz
  fullname: Ijaz, Humaira
  email: humaira.bilalrasul@uos.edu.pk
  organization: Department of CS & IT, University of Sargodha, Sargodha, Pakistan
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0003-3284-5086
  surname: Shojafar
  fullname: Shojafar, Mohammad
  email: m.shojafar@surrey.ac.uk
  organization: 5GIC & 6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, GU27XH, United Kingdom
– sequence: 4
  givenname: Kashif
  surname: Munir
  fullname: Munir, Kashif
  email: kashif.munir@nu.edu.pk
  organization: Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan
BookMark eNqFkMtOAjEUhhuDiYg-gZu-wGDnBjMmLgjeSEhMENfNmfYMFIbWtAXCS_jMdsC4cKGrc_3Oyf9fko42Ggm5iVk_ZvHgdtUHuTSin7AkDZ2UleyMdON8yKJiGKedn5zlF-TSuRVjSZmwuEs-J7PR_O2OjujDbBpV4FBSpT02jVqg9vTDKmOVP1DQkkoE2SiNEezBIjW6LahFZ7ZWIIWmMQK8Mvq47cGtqRNLlNuwtwjjRXtquQkPKNAdLpXYNmBpbRZUo98bu74i5zU0Dq-_Y4-8Pz3Oxy_R9PV5Mh5NI5FmhY8GQiayElAFDTLOhsNM1nmW5BJyKESRprUIjbKsaigHdV5gUVaFFNkAGNaFhLRH0tNdYY1zFmsehG7AHnjMeGspX_Gjpby1lJ8sDVT5ixLKHwV7C6r5h70_sRhk7RRa7oRCLVAqi8JzadSf_Bco9pi8
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3455168
crossref_primary_10_1007_s00607_024_01410_x
crossref_primary_10_1016_j_engappai_2024_108906
crossref_primary_10_3390_s25030687
crossref_primary_10_1007_s13369_023_08451_y
crossref_primary_10_1016_j_jnca_2024_103891
crossref_primary_10_1109_TGCN_2024_3409390
crossref_primary_10_1016_j_comnet_2023_110080
crossref_primary_10_1007_s41870_024_02068_6
crossref_primary_10_1016_j_comnet_2023_109968
crossref_primary_10_1007_s11760_024_03006_6
crossref_primary_10_1109_ACCESS_2024_3430826
crossref_primary_10_1109_TIV_2024_3418307
crossref_primary_10_1007_s11227_023_05823_x
crossref_primary_10_1016_j_eswa_2025_127214
crossref_primary_10_1007_s10878_025_01336_w
crossref_primary_10_1007_s10115_024_02274_5
crossref_primary_10_1007_s10586_024_04612_2
crossref_primary_10_1109_ACCESS_2023_3277826
crossref_primary_10_1080_17445302_2025_2481513
crossref_primary_10_1007_s11227_025_07814_6
crossref_primary_10_3390_electronics14112169
crossref_primary_10_1016_j_asoc_2024_112594
crossref_primary_10_1016_j_future_2023_09_001
crossref_primary_10_1016_j_vehcom_2024_100770
crossref_primary_10_1109_MSMC_2023_3316790
crossref_primary_10_1109_TCE_2023_3321708
crossref_primary_10_1002_ett_4966
crossref_primary_10_1155_2024_2314019
crossref_primary_10_1007_s11042_024_18123_0
crossref_primary_10_1088_2631_8695_add64e
crossref_primary_10_1016_j_adhoc_2025_103819
crossref_primary_10_1007_s11277_024_11373_z
crossref_primary_10_1007_s42979_025_03981_8
crossref_primary_10_3390_s25175286
Cites_doi 10.1016/j.future.2019.09.060
10.1177/0020294019858088
10.1109/TVT.2020.3041929
10.1109/JIOT.2021.3081983
10.3390/s21051666
10.1155/2018/9136813
10.1109/TMC.2010.133
10.1109/JIOT.2020.2975084
10.1145/3513002
10.4108/ICST.SIMUTOOLS2008.3027
10.1109/ACCESS.2020.2968465
10.1007/s11042-021-11130-5
10.1155/2020/3046769
10.1145/3394810.3394818
10.3390/app10134541
10.1016/j.jnca.2022.103333
10.1109/TII.2022.3168292
10.1002/9781119551713.ch11
10.1109/OJCOMS.2021.3128637
10.1109/ACCESS.2020.2981045
10.1109/ACCESS.2016.2603219
10.1016/j.procs.2018.04.055
10.1109/TETCI.2019.2902869
10.1109/JIOT.2021.3091551
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.adhoc.2023.103090
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1570-8713
ExternalDocumentID 10_1016_j_adhoc_2023_103090
S1570870523000100
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EJD
HZ~
UHS
~HD
ID FETCH-LOGICAL-c348t-6cd2dbcab201d14774df5425da5a8c833fcdf599bfa96f58e89b8dc46a0ef8da3
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923831000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-8705
IngestDate Sat Nov 29 07:03:26 EST 2025
Tue Nov 18 22:18:30 EST 2025
Fri Feb 23 02:38:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Task scheduling
Deep reinforcement learning
Proximal policy optimization
Vehicular fog network
Resource allocation
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-6cd2dbcab201d14774df5425da5a8c833fcdf599bfa96f58e89b8dc46a0ef8da3
ORCID 0000-0003-3284-5086
OpenAccessLink https://dx.doi.org/10.1016/j.adhoc.2023.103090
ParticipantIDs crossref_primary_10_1016_j_adhoc_2023_103090
crossref_citationtrail_10_1016_j_adhoc_2023_103090
elsevier_sciencedirect_doi_10_1016_j_adhoc_2023_103090
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Ad hoc networks
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Krajzewicz, Erdmann, Behrisch, Bieker (b33) 2012; 5
Jiang (b17) 2021
Liao, Wu, Mumtaz, Li, Morello, Guizani (b15) 2020
Kaiwartya, Abdullah, Cao, Altameem, Prasad, Lin, Liu (b1) 2016; 4
Bonomi, Milito, Zhu, Addepalli (b5) 2012
Teke, Duran (b37) 2019; 52
Wang, Chen, Dong (b42) 2021
Hazarika, Singh, Biswas, Li (b32) 2022
Liu, Liu, Ren, Zhou, Feng, Guo, Lee (b6) 2019
Nguyen, Dow, Hwang (b38) 2018; 2018
Gazori, Rahbari, Nickray (b26) 2019
Qayyum, Malik, Khan, Khan (b36) 2020
Schettler, Buse, Zubow, Dressler (b52) 2020
Hu, Wang, Hu, Zhu (b31) 2021; 8
Tuli, Ilager, Ramamohanarao, Buyya (b46) 2020
Hamadanian, Schwarzkopf, Sen, Alizadeh (b11) 2022
Li, Ni, Yuan, Noor, Jamalipour (b20) 2022
Raffin, Hill, Gleave, Kanervisto, Ernestus, Dormann (b53) 2021
Zhang, Zhang, Yang (b18) 2022
Ye, Ren, Wang, Xu, Guo, Huang, Tian (b23) 2018
Valente Klaine (b44) 2019
Schulman, Wolski, Dhariwal, Radford, Klimov (b48) 2017
Sommer, Yao, German, Dressler (b35) 2008
Guo, Li, Liu, Ma, Yang, Zhang, Wu (b2) 2020; 7
Jamil, Ijaz, Shojafar, Munir, Buyya (b8) 2022
Che, Bai, Zuo, Li (b28) 2020; 2020
He, Xiong, Ou, Zhang, Wang, Huang, Zhang (b16) 2021
Gazori, Rahbari, Nickray (b30) 2020; 110
Brockman, Cheung, Pettersson, Schneider, Schulman, Tang, Zaremba (b51) 2016
Raza, Wang, Ahmed, Anwar (b4) 2019; 2019
A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment, in: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, 2008, pp. 1–10.
Sommer, German, Dressler (b49) 2010; 10
Nahri, Boulmakoul, Karim, Lbath (b3) 2018; 130
Chen, Chen, Liu, He, Yuan, Lan, Chen (b10) 2020; 8
Chen, Zhang, You, Zheng, Lambotharan (b19) 2021; 9
Khan, Koubaa, Farman (b39) 2020; 10
Shi, Du, Wang, Wang, Yuan (b12) 2020; 69
Leng, Li, Shi, Zhu (b21) 2021; 80
Tang, Jia, Zhou, Yang, You (b27) 2020
Cao, Zhang, Liu (b47) 2019
Mekrache, Bradai, Moulay, Dawaliby (b41) 2021
Auluck, Azim, Fizza (b24) 2019
Rahimikhanghah, Tajkey, Rezazadeh, Rahmani (b7) 2021
Sutton, Barto (b43) 2018
Silberschatz, Galvin, Gagne (b13) 2006
Sommer, Eckhoff, Brummer, Buse, Hagenauer, Joerer, Segata (b50) 2019
Chen, Xu, Wu (b22) 2017
Wang, Liu, Zhang, Feng, Huang, Li, Zhang (b45) 2020
Bian, Huang, Shao (b25) 2019
J. Ibarz, M. Lauer, M. Roy, J.-C. Fabre, O. Flébus, Optimizing vehicle-to-cloud data transfers using soft real-time scheduling concepts, in: Proceedings of the 28th International Conference on Real-Time Networks and Systems, 2020, pp. 161–171.
Wang, Zheng, Ge, Li (b9) 2020; 8
Zhou, Liao, Gu, Mumtaz, Rodriguez (b14) 2019; 4
Sheng, Chen, Chen, Wu, Yao (b29) 2021; 21
Azizi, Shojafar, Abawajy, Buyya (b54) 2022; 201
Leng (10.1016/j.adhoc.2023.103090_b21) 2021; 80
Guo (10.1016/j.adhoc.2023.103090_b2) 2020; 7
Chen (10.1016/j.adhoc.2023.103090_b19) 2021; 9
Nahri (10.1016/j.adhoc.2023.103090_b3) 2018; 130
Silberschatz (10.1016/j.adhoc.2023.103090_b13) 2006
Gazori (10.1016/j.adhoc.2023.103090_b26) 2019
Wang (10.1016/j.adhoc.2023.103090_b45) 2020
Sheng (10.1016/j.adhoc.2023.103090_b29) 2021; 21
Raffin (10.1016/j.adhoc.2023.103090_b53) 2021
Krajzewicz (10.1016/j.adhoc.2023.103090_b33) 2012; 5
Liao (10.1016/j.adhoc.2023.103090_b15) 2020
Ye (10.1016/j.adhoc.2023.103090_b23) 2018
Sommer (10.1016/j.adhoc.2023.103090_b50) 2019
Che (10.1016/j.adhoc.2023.103090_b28) 2020; 2020
Nguyen (10.1016/j.adhoc.2023.103090_b38) 2018; 2018
Tuli (10.1016/j.adhoc.2023.103090_b46) 2020
Hu (10.1016/j.adhoc.2023.103090_b31) 2021; 8
Brockman (10.1016/j.adhoc.2023.103090_b51) 2016
Shi (10.1016/j.adhoc.2023.103090_b12) 2020; 69
Li (10.1016/j.adhoc.2023.103090_b20) 2022
Chen (10.1016/j.adhoc.2023.103090_b10) 2020; 8
Tang (10.1016/j.adhoc.2023.103090_b27) 2020
Sommer (10.1016/j.adhoc.2023.103090_b35) 2008
Sommer (10.1016/j.adhoc.2023.103090_b49) 2010; 10
Rahimikhanghah (10.1016/j.adhoc.2023.103090_b7) 2021
He (10.1016/j.adhoc.2023.103090_b16) 2021
Qayyum (10.1016/j.adhoc.2023.103090_b36) 2020
Auluck (10.1016/j.adhoc.2023.103090_b24) 2019
Zhou (10.1016/j.adhoc.2023.103090_b14) 2019; 4
Hazarika (10.1016/j.adhoc.2023.103090_b32) 2022
Raza (10.1016/j.adhoc.2023.103090_b4) 2019; 2019
Zhang (10.1016/j.adhoc.2023.103090_b18) 2022
Sutton (10.1016/j.adhoc.2023.103090_b43) 2018
10.1016/j.adhoc.2023.103090_b40
Bian (10.1016/j.adhoc.2023.103090_b25) 2019
Jamil (10.1016/j.adhoc.2023.103090_b8) 2022
10.1016/j.adhoc.2023.103090_b34
Mekrache (10.1016/j.adhoc.2023.103090_b41) 2021
Wang (10.1016/j.adhoc.2023.103090_b9) 2020; 8
Teke (10.1016/j.adhoc.2023.103090_b37) 2019; 52
Bonomi (10.1016/j.adhoc.2023.103090_b5) 2012
Hamadanian (10.1016/j.adhoc.2023.103090_b11) 2022
Chen (10.1016/j.adhoc.2023.103090_b22) 2017
Gazori (10.1016/j.adhoc.2023.103090_b30) 2020; 110
Valente Klaine (10.1016/j.adhoc.2023.103090_b44) 2019
Cao (10.1016/j.adhoc.2023.103090_b47) 2019
Liu (10.1016/j.adhoc.2023.103090_b6) 2019
Schettler (10.1016/j.adhoc.2023.103090_b52) 2020
Kaiwartya (10.1016/j.adhoc.2023.103090_b1) 2016; 4
Jiang (10.1016/j.adhoc.2023.103090_b17) 2021
Khan (10.1016/j.adhoc.2023.103090_b39) 2020; 10
Schulman (10.1016/j.adhoc.2023.103090_b48) 2017
Azizi (10.1016/j.adhoc.2023.103090_b54) 2022; 201
Wang (10.1016/j.adhoc.2023.103090_b42) 2021
References_xml – start-page: 1
  year: 2021
  end-page: 35
  ident: b7
  article-title: Resource scheduling methods in cloud and fog computing environments: A systematic literature review
  publication-title: Cluster Comput.
– year: 2018
  ident: b43
  article-title: Reinforcement Learning: An Introduction
– year: 2021
  ident: b41
  article-title: Deep reinforcement learning techniques for vehicular networks: Recent advances and future trends towards 6G
  publication-title: Veh. Commun.
– year: 2020
  ident: b15
  article-title: Cognitive balance for fog computing resource in internet of things: An edge learning approach
  publication-title: IEEE Trans. Mob. Comput.
– volume: 10
  start-page: 3
  year: 2010
  end-page: 15
  ident: b49
  article-title: Bidirectionally coupled network and road traffic simulation for improved IVC analysis
  publication-title: IEEE Trans. Mob. Comput.
– volume: 130
  start-page: 480
  year: 2018
  end-page: 487
  ident: b3
  article-title: IoV distributed architecture for real-time traffic data analytics
  publication-title: Procedia Comput. Sci.
– start-page: 1
  year: 2008
  end-page: 6
  ident: b35
  article-title: Simulating the influence of IVC on road traffic using bidirectionally coupled simulators
  publication-title: IEEE INFOCOM Workshops 2008
– year: 2022
  ident: b8
  article-title: Resource allocation and task scheduling in fog computing and internet of everything environments: A taxonomy, review, and future directions
  publication-title: ACM Comput. Surv.
– volume: 8
  start-page: 18863
  year: 2020
  end-page: 18873
  ident: b10
  article-title: Delay-optimized v2v-based computation offloading in urban vehicular edge computing and networks
  publication-title: IEEE Access
– year: 2021
  ident: b16
  article-title: An overview on the application of graph neural networks in wireless networks
  publication-title: IEEE Open J. Commun. Soc.
– volume: 110
  start-page: 1098
  year: 2020
  end-page: 1115
  ident: b30
  article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach
  publication-title: Future Gener. Comput. Syst.
– year: 2022
  ident: b11
  article-title: Reinforcement learning in time-varying systems: An empirical study
– year: 2020
  ident: b27
  article-title: Representation and reinforcement learning for task scheduling in edge computing
  publication-title: IEEE Trans. Big Data
– year: 2016
  ident: b51
  article-title: Openai gym
– year: 2017
  ident: b22
  article-title: Deep reinforcement learning for multi-resource multi-machine job scheduling
– year: 2019
  ident: b44
  article-title: Self-Organization for 5G and Beyond Mobile Networks Using Reinforcement Learning
– volume: 80
  start-page: 29163
  year: 2021
  end-page: 29175
  ident: b21
  article-title: Graph convolutional network-based reinforcement learning for tasks offloading in multi-access edge computing
  publication-title: Multimedia Tools Appl.
– volume: 201
  year: 2022
  ident: b54
  article-title: Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach
  publication-title: J. Netw. Comput. Appl.
– start-page: 1
  year: 2019
  end-page: 5
  ident: b25
  article-title: Online task scheduling for fog computing with multi-resource fairness
  publication-title: 2019 IEEE 90th Vehicular Technology Conference
– volume: 4
  start-page: 5356
  year: 2016
  end-page: 5373
  ident: b1
  article-title: Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects
  publication-title: IEEE Access
– start-page: 293
  year: 2020
  end-page: 307
  ident: b36
  article-title: Modeling and simulation of distributed fog environment using FogNetSim++
  publication-title: Fog Comput.: Theory Pract.
– year: 2022
  ident: b18
  article-title: Learning-based resource allocation in heterogeneous ultra dense network
  publication-title: IEEE Internet Things J.
– year: 2019
  ident: b47
  article-title: A deep reinforcement learning approach to multi-component job scheduling in edge computing
– year: 2018
  ident: b23
  article-title: A new approach for resource scheduling with deep reinforcement learning
– volume: 52
  start-page: 985
  year: 2019
  end-page: 994
  ident: b37
  article-title: The design and implementation of road condition warning system for drivers
  publication-title: Meas. Control
– volume: 2018
  year: 2018
  ident: b38
  article-title: An efficient traffic congestion monitoring system on internet of vehicles
  publication-title: Wirel. Commun. Mob. Comput.
– start-page: 1
  year: 2020
  end-page: 4
  ident: b52
  article-title: How to train your its? Integrating machine learning with vehicular network simulation
  publication-title: 2020 IEEE Vehicular Networking Conference
– start-page: 378
  year: 2019
  end-page: 383
  ident: b6
  article-title: Enabling safety-critical and computation-intensive IoV applications via vehicular fog computing
  publication-title: 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks
– reference: J. Ibarz, M. Lauer, M. Roy, J.-C. Fabre, O. Flébus, Optimizing vehicle-to-cloud data transfers using soft real-time scheduling concepts, in: Proceedings of the 28th International Conference on Real-Time Networks and Systems, 2020, pp. 161–171.
– start-page: 215
  year: 2019
  end-page: 252
  ident: b50
  article-title: Veins: The open source vehicular network simulation framework
  publication-title: Recent Advances in Network Simulation
– volume: 9
  start-page: 1712
  year: 2021
  end-page: 1724
  ident: b19
  article-title: A GNN-based supervised learning framework for resource allocation in wireless IoT networks
  publication-title: IEEE Internet Things J.
– volume: 8
  start-page: 52428
  year: 2020
  end-page: 52442
  ident: b9
  article-title: Online offloading scheduling and resource allocation algorithms for vehicular edge computing system
  publication-title: IEEE Access
– year: 2021
  ident: b53
  article-title: Stable-Baselines3: Reliable reinforcement learning implementations
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: b48
  article-title: Proximal policy optimization algorithms
– year: 2022
  ident: b20
  article-title: Deep graph-based reinforcement learning for joint cruise control and task offloading for aerial edge internet-of-things (EdgeIoT)
  publication-title: IEEE Internet Things J.
– volume: 7
  start-page: 6647
  year: 2020
  end-page: 6662
  ident: b2
  article-title: TROVE: A context-awareness trust model for VANETs using reinforcement learning
  publication-title: IEEE Internet Things J.
– year: 2020
  ident: b46
  article-title: Dynamic scheduling for stochastic edge-cloud computing environments using a3c learning and residual recurrent neural networks
  publication-title: IEEE Trans. Mob. Comput.
– year: 2006
  ident: b13
  article-title: Operating System Concepts
– volume: 2020
  year: 2020
  ident: b28
  article-title: A deep reinforcement learning approach to the optimization of data center task scheduling
  publication-title: Complexity
– start-page: 13
  year: 2012
  end-page: 16
  ident: b5
  article-title: Fog computing and its role in the internet of things
  publication-title: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing
– year: 2019
  ident: b24
  article-title: Improving the schedulability of real-time tasks using fog computing
  publication-title: IEEE Trans. Serv. Comput.
– start-page: 1
  year: 2020
  end-page: 19
  ident: b45
  article-title: Deep reinforcement learning: A survey
  publication-title: Front. Inf. Technol. Electron. Eng.
– year: 2019
  ident: b26
  article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach
  publication-title: Future Gener. Comput. Syst.
– volume: 21
  start-page: 1666
  year: 2021
  ident: b29
  article-title: Deep reinforcement learning-based task scheduling in IoT edge computing
  publication-title: Sensors
– volume: 69
  start-page: 16067
  year: 2020
  end-page: 16081
  ident: b12
  article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
– year: 2022
  ident: b32
  article-title: DRL-based resource allocation for computation offloading in IoV networks
  publication-title: IEEE Trans. Ind. Inform.
– reference: A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment, in: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, 2008, pp. 1–10.
– volume: 5
  year: 2012
  ident: b33
  article-title: Recent development and applications of SUMO-simulation of urban mobility
  publication-title: Int. J. Adv. Syst. Meas.
– volume: 2019
  year: 2019
  ident: b4
  article-title: A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 10
  start-page: 4541
  year: 2020
  ident: b39
  article-title: Smart route: Internet-of-vehicles (IoV)-based congestion detection and avoidance (IoV-based cda) using rerouting planning
  publication-title: Appl. Sci.
– year: 2021
  ident: b17
  article-title: Graph-based deep learning for communication networks: A survey
  publication-title: Comput. Commun.
– year: 2021
  ident: b42
  article-title: Lifelong incremental reinforcement learning with online Bayesian inference
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 4
  start-page: 227
  year: 2019
  end-page: 240
  ident: b14
  article-title: Resource sharing and task offloading in IoT fog computing: A contract-learning approach
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 8
  start-page: 17541
  year: 2021
  end-page: 17556
  ident: b31
  article-title: Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting
  publication-title: IEEE Internet Things J.
– year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b26
  article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach
  publication-title: Future Gener. Comput. Syst.
– volume: 110
  start-page: 1098
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b30
  article-title: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.060
– year: 2022
  ident: 10.1016/j.adhoc.2023.103090_b11
– volume: 52
  start-page: 985
  issue: 7–8
  year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b37
  article-title: The design and implementation of road condition warning system for drivers
  publication-title: Meas. Control
  doi: 10.1177/0020294019858088
– start-page: 1
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b45
  article-title: Deep reinforcement learning: A survey
  publication-title: Front. Inf. Technol. Electron. Eng.
– year: 2006
  ident: 10.1016/j.adhoc.2023.103090_b13
– volume: 69
  start-page: 16067
  issue: 12
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b12
  article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3041929
– year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b17
  article-title: Graph-based deep learning for communication networks: A survey
  publication-title: Comput. Commun.
– volume: 8
  start-page: 17541
  issue: 24
  year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b31
  article-title: Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3081983
– year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b46
  article-title: Dynamic scheduling for stochastic edge-cloud computing environments using a3c learning and residual recurrent neural networks
  publication-title: IEEE Trans. Mob. Comput.
– volume: 21
  start-page: 1666
  issue: 5
  year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b29
  article-title: Deep reinforcement learning-based task scheduling in IoT edge computing
  publication-title: Sensors
  doi: 10.3390/s21051666
– year: 2022
  ident: 10.1016/j.adhoc.2023.103090_b20
  article-title: Deep graph-based reinforcement learning for joint cruise control and task offloading for aerial edge internet-of-things (EdgeIoT)
  publication-title: IEEE Internet Things J.
– year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b42
  article-title: Lifelong incremental reinforcement learning with online Bayesian inference
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b41
  article-title: Deep reinforcement learning techniques for vehicular networks: Recent advances and future trends towards 6G
  publication-title: Veh. Commun.
– volume: 2018
  year: 2018
  ident: 10.1016/j.adhoc.2023.103090_b38
  article-title: An efficient traffic congestion monitoring system on internet of vehicles
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2018/9136813
– volume: 2019
  year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b4
  article-title: A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 10
  start-page: 3
  issue: 1
  year: 2010
  ident: 10.1016/j.adhoc.2023.103090_b49
  article-title: Bidirectionally coupled network and road traffic simulation for improved IVC analysis
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2010.133
– volume: 7
  start-page: 6647
  issue: 7
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b2
  article-title: TROVE: A context-awareness trust model for VANETs using reinforcement learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2975084
– year: 2022
  ident: 10.1016/j.adhoc.2023.103090_b8
  article-title: Resource allocation and task scheduling in fog computing and internet of everything environments: A taxonomy, review, and future directions
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3513002
– year: 2016
  ident: 10.1016/j.adhoc.2023.103090_b51
– ident: 10.1016/j.adhoc.2023.103090_b34
  doi: 10.4108/ICST.SIMUTOOLS2008.3027
– year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b47
– start-page: 1
  year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b7
  article-title: Resource scheduling methods in cloud and fog computing environments: A systematic literature review
  publication-title: Cluster Comput.
– start-page: 1
  year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b25
  article-title: Online task scheduling for fog computing with multi-resource fairness
– volume: 5
  issue: 3&4
  year: 2012
  ident: 10.1016/j.adhoc.2023.103090_b33
  article-title: Recent development and applications of SUMO-simulation of urban mobility
  publication-title: Int. J. Adv. Syst. Meas.
– year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b24
  article-title: Improving the schedulability of real-time tasks using fog computing
  publication-title: IEEE Trans. Serv. Comput.
– year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b44
– volume: 8
  start-page: 18863
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b10
  article-title: Delay-optimized v2v-based computation offloading in urban vehicular edge computing and networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968465
– year: 2022
  ident: 10.1016/j.adhoc.2023.103090_b18
  article-title: Learning-based resource allocation in heterogeneous ultra dense network
  publication-title: IEEE Internet Things J.
– volume: 80
  start-page: 29163
  issue: 19
  year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b21
  article-title: Graph convolutional network-based reinforcement learning for tasks offloading in multi-access edge computing
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-11130-5
– start-page: 1
  year: 2008
  ident: 10.1016/j.adhoc.2023.103090_b35
  article-title: Simulating the influence of IVC on road traffic using bidirectionally coupled simulators
– volume: 2020
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b28
  article-title: A deep reinforcement learning approach to the optimization of data center task scheduling
  publication-title: Complexity
  doi: 10.1155/2020/3046769
– ident: 10.1016/j.adhoc.2023.103090_b40
  doi: 10.1145/3394810.3394818
– volume: 10
  start-page: 4541
  issue: 13
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b39
  article-title: Smart route: Internet-of-vehicles (IoV)-based congestion detection and avoidance (IoV-based cda) using rerouting planning
  publication-title: Appl. Sci.
  doi: 10.3390/app10134541
– volume: 201
  year: 2022
  ident: 10.1016/j.adhoc.2023.103090_b54
  article-title: Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2022.103333
– year: 2022
  ident: 10.1016/j.adhoc.2023.103090_b32
  article-title: DRL-based resource allocation for computation offloading in IoV networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3168292
– year: 2017
  ident: 10.1016/j.adhoc.2023.103090_b48
– year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b53
  article-title: Stable-Baselines3: Reliable reinforcement learning implementations
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: 10.1016/j.adhoc.2023.103090_b22
– start-page: 293
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b36
  article-title: Modeling and simulation of distributed fog environment using FogNetSim++
  publication-title: Fog Comput.: Theory Pract.
  doi: 10.1002/9781119551713.ch11
– year: 2018
  ident: 10.1016/j.adhoc.2023.103090_b23
– year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b16
  article-title: An overview on the application of graph neural networks in wireless networks
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2021.3128637
– start-page: 13
  year: 2012
  ident: 10.1016/j.adhoc.2023.103090_b5
  article-title: Fog computing and its role in the internet of things
– year: 2018
  ident: 10.1016/j.adhoc.2023.103090_b43
– year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b15
  article-title: Cognitive balance for fog computing resource in internet of things: An edge learning approach
  publication-title: IEEE Trans. Mob. Comput.
– volume: 8
  start-page: 52428
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b9
  article-title: Online offloading scheduling and resource allocation algorithms for vehicular edge computing system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981045
– year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b27
  article-title: Representation and reinforcement learning for task scheduling in edge computing
  publication-title: IEEE Trans. Big Data
– start-page: 1
  year: 2020
  ident: 10.1016/j.adhoc.2023.103090_b52
  article-title: How to train your its? Integrating machine learning with vehicular network simulation
– start-page: 215
  year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b50
  article-title: Veins: The open source vehicular network simulation framework
– volume: 4
  start-page: 5356
  year: 2016
  ident: 10.1016/j.adhoc.2023.103090_b1
  article-title: Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2603219
– volume: 130
  start-page: 480
  year: 2018
  ident: 10.1016/j.adhoc.2023.103090_b3
  article-title: IoV distributed architecture for real-time traffic data analytics
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.04.055
– volume: 4
  start-page: 227
  issue: 3
  year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b14
  article-title: Resource sharing and task offloading in IoT fog computing: A contract-learning approach
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2019.2902869
– volume: 9
  start-page: 1712
  issue: 3
  year: 2021
  ident: 10.1016/j.adhoc.2023.103090_b19
  article-title: A GNN-based supervised learning framework for resource allocation in wireless IoT networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3091551
– start-page: 378
  year: 2019
  ident: 10.1016/j.adhoc.2023.103090_b6
  article-title: Enabling safety-critical and computation-intensive IoV applications via vehicular fog computing
SSID ssj0029201
Score 2.5162952
Snippet Cloud computing platforms support the Internet of Vehicles, but the main bottlenecks are high latency and massive data transmission in cloud-based processing....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103090
SubjectTerms Deep reinforcement learning
Proximal policy optimization
Resource allocation
Task scheduling
Vehicular fog network
Title IRATS: A DRL-based intelligent priority and deadline-aware online resource allocation and task scheduling algorithm in a vehicular fog network
URI https://dx.doi.org/10.1016/j.adhoc.2023.103090
Volume 141
WOSCitedRecordID wos000923831000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1570-8713
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029201
  issn: 1570-8705
  databaseCode: AIEXJ
  dateStart: 20030701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_t8pIP3EJWaZwntwoWsQhWaFuk3iLHj01Km1Rtt-yv4D_wTxln8oKiFSBxiSLXjzTfF3tmPDMm5IWnfcEkaCc8DQLb0zAPpsrlNnOlZCMQCcIID5sIz86i2Sz-NBh8b2JhdouwKKKrq3j1X6GGMgDbhM7-Bdxtp1AA9wA6XAF2uP4R8Kfn4-kEA87fnH-wzTIlq6wQmHlza63WeWmOrKv2DSRgbCRNm381PmCYOMNa10Z9y2zLo1EPXS355osF-jCsT1UYO19cmK6ypTGbcGunshz9WnV5YRXoYd4Xf8fSykrR_NJ5LxorS8W0y022bheK0zmvzNtmoyHviidZOecaHcM_lhlfLrnseFPktZfIJst136bhMuPUhVGdaGjbC7bBuTl0YPJ2sJ7ql2E4azuhYyqtvcUB7RTzYy7hrx6bcU3KAQePK_0l6_bE9GwGAxXN6M3ODXLghn4cDcnB-PRk9r7V6mPXwaS89dM1qa0qJ8K9oX4v_vREmuldcqfWRegYOXSPDFRxn9zuZah8QL5VbHpFx7TlEu1xiTZcosAO-jOXKHKJNlyiHZeq2oZLtOMSbbkEA1BOWy5R4BKtGfOQfH57Mn39zq6P8LAF86KtHQjpylTwFF6SHHmga0jtwzIhuc8jETGmBRTEcap5HGg_UlGcRlJ4AXeUjiRnj8iwKAt1SCjoHiwcpcqXPvOEUHwUai9WnjHIMTlyj4jbvNlE1PntzTEri6RxZJwnFRyJgSNBOI7Iy7bRCtO7XF89aCBLagkVJc8EOHZdw8f_2vAJudV9IE_JcLu-VM_ITbHb5pv185qLPwDLUbn2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IRATS%3A+A+DRL-based+intelligent+priority+and+deadline-aware+online+resource+allocation+and+task+scheduling+algorithm+in+a+vehicular+fog+network&rft.jtitle=Ad+hoc+networks&rft.au=Jamil%2C+Bushra&rft.au=Ijaz%2C+Humaira&rft.au=Shojafar%2C+Mohammad&rft.au=Munir%2C+Kashif&rft.date=2023-03-15&rft.pub=Elsevier+B.V&rft.issn=1570-8705&rft.eissn=1570-8713&rft.volume=141&rft_id=info:doi/10.1016%2Fj.adhoc.2023.103090&rft.externalDocID=S1570870523000100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon