Energy-Efficient Multi-Trip Routing for Municipal Solid Waste Collection by Contribution-Based Adaptive Particle Swarm Optimization
Waste collection is an important part of waste management system. Transportation costs and carbon emissions can be greatly reduced by proper vehicle routing. Meanwhile, each vehicle can work again after achieving its capacity limit and unloading the waste. For this, an energy-efficient multi-trip ve...
Saved in:
| Published in: | Complex System Modeling and Simulation Vol. 3; no. 3; pp. 202 - 219 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Tsinghua University Press
01.09.2023
|
| Subjects: | |
| ISSN: | 2096-9929, 2096-9929 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Waste collection is an important part of waste management system. Transportation costs and carbon emissions can be greatly reduced by proper vehicle routing. Meanwhile, each vehicle can work again after achieving its capacity limit and unloading the waste. For this, an energy-efficient multi-trip vehicle routing model is established for municipal solid waste collection, which incorporates practical factors like the limited capacity, maximum working hours, and multiple trips of each vehicle. Considering both economy and environment, fixed costs, fuel costs, and carbon emission costs are minimized together. To solve the formulated model effectively, contribution-based adaptive particle swarm optimization is proposed. Four strategies named greedy learning, multi-operator learning, exploring learning, and exploiting learning are specifically designed with their own searching priorities. By assessing the contribution of each learning strategy during the process of evolution, an appropriate one is selected and assigned to each individual adaptively to improve the searching efficiency of the algorithm. Moreover, an improved local search operator is performed on the trips with the largest number of waste sites so that both the exploiting ability and the convergence accuracy of the algorithm are improved. Performance of the proposed algorithm is tested on ten waste collection instances, which include one real-world case derived from the Green Ring Company of Jiangbei New District, Nanjing, China, and nine synthetic instances with increasing scales generated from the commonly-used capacitated vehicle routing problem benchmark datasets. Comparisons with five state-of-the-art algorithms show that the proposed algorithm can obtain a solution with a higher accuracy for the constructed model. |
|---|---|
| AbstractList | Waste collection is an important part of waste management system. Transportation costs and carbon emissions can be greatly reduced by proper vehicle routing. Meanwhile, each vehicle can work again after achieving its capacity limit and unloading the waste. For this, an energy-efficient multi-trip vehicle routing model is established for municipal solid waste collection, which incorporates practical factors like the limited capacity, maximum working hours, and multiple trips of each vehicle. Considering both economy and environment, fixed costs, fuel costs, and carbon emission costs are minimized together. To solve the formulated model effectively, contribution-based adaptive particle swarm optimization is proposed. Four strategies named greedy learning, multi-operator learning, exploring learning, and exploiting learning are specifically designed with their own searching priorities. By assessing the contribution of each learning strategy during the process of evolution, an appropriate one is selected and assigned to each individual adaptively to improve the searching efficiency of the algorithm. Moreover, an improved local search operator is performed on the trips with the largest number of waste sites so that both the exploiting ability and the convergence accuracy of the algorithm are improved. Performance of the proposed algorithm is tested on ten waste collection instances, which include one real-world case derived from the Green Ring Company of Jiangbei New District, Nanjing, China, and nine synthetic instances with increasing scales generated from the commonly-used capacitated vehicle routing problem benchmark datasets. Comparisons with five state-of-the-art algorithms show that the proposed algorithm can obtain a solution with a higher accuracy for the constructed model. |
| Author | Wang, Shuo Shen, Xiaoning Ge, Zhongpei Chen, Wenyan Song, Liyan Pan, Hongli |
| Author_xml | – sequence: 1 givenname: Xiaoning surname: Shen fullname: Shen, Xiaoning organization: School of Automation, Nanjing University of Information Science and Technology,Collaborative Innovation Center of Atmospheric Environment and Equipment Technology and also with the Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing,China,210044 – sequence: 2 givenname: Hongli surname: Pan fullname: Pan, Hongli organization: Nanjing University of Information Science and Technology,School of Automation,Nanjing,China,210044 – sequence: 3 givenname: Zhongpei surname: Ge fullname: Ge, Zhongpei organization: Nanjing University of Information Science and Technology,School of Automation,Nanjing,China,210044 – sequence: 4 givenname: Wenyan surname: Chen fullname: Chen, Wenyan organization: Nanjing University of Information Science and Technology,School of Automation,Nanjing,China,210044 – sequence: 5 givenname: Liyan surname: Song fullname: Song, Liyan organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055 – sequence: 6 givenname: Shuo surname: Wang fullname: Wang, Shuo organization: University of Birmingham,School of Computer Science,Birmingham,UK,B15 2TT |
| BookMark | eNp1UU1rGzEUFCWF5sPnXPUH1tZKq13p6BonDSS4xC45iqcvo7JeGa3c4l77x7vrOBACPb33hplhHnOFLrrYOYRuSzKlTJZytlg_raeUUDYlhIhP6JISWRdSUnnxbv-CJn0fNOFUcF6z-hL9XXYubY_F0vtggusyfjq0ORSbFPb4OR5y6LbYxzTA3UDYQ4vXsQ0Wv0CfHV7EtnUmh9hhfRyuLqegD-NdfIXeWTy3sM_hl8PfIeVgWofXvyHt8GpAd-EPjNQb9NlD27vJeV6jH3fLzeJb8bi6f1jMHwvDKpEL7ggAOCqcELU3wpdN46QFSysDUHvBTaM15yX4RoLxlZOVL61mnmvG64Zdo4dXXxvhp9qnsIN0VBGCOgExbdU5pNK6caymVVNRXdmSack0KRtqdUUEsHrw4q9eJsW-T84rE_Lpm5wgtKok6lSMGotRYzFqLGbQzT7o3nL8T_EPfw-VEg |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_101870 crossref_primary_10_32604_cmes_2024_049044 crossref_primary_10_1080_15567036_2025_2488466 crossref_primary_10_1002_cpe_8153 crossref_primary_10_26599_TST_2023_9010101 crossref_primary_10_3390_s24103167 crossref_primary_10_1002_cpe_8150 crossref_primary_10_1088_1755_1315_1409_1_012021 crossref_primary_10_1016_j_renene_2024_121325 crossref_primary_10_3390_su17135672 crossref_primary_10_1016_j_cie_2025_111136 crossref_primary_10_1016_j_swevo_2024_101787 crossref_primary_10_1142_S0219686725500349 crossref_primary_10_7717_peerj_cs_2102 crossref_primary_10_1080_10962247_2024_2415298 crossref_primary_10_1109_ACCESS_2024_3389749 crossref_primary_10_1109_TCYB_2024_3412997 |
| Cites_doi | 10.1016/j.wasman.2017.10.019 10.1016/j.jclepro.2020.123557 10.1061/(ASCE)0733-9372(2001)127:11(1031) 10.1109/TCYB.2022.3164165 10.2307/2273574 10.1016/j.compeleceng.2018.01.040 10.1109/TEVC.2005.857610 10.1007/s11750-019-00505-5 10.1016/j.dam.2016.03.019 10.1016/j.tre.2020.101866 10.1177/0734242X10366272 10.1016/j.cie.2021.107131 10.23919/CSMS.2022.0005 10.3390/ijerph17020458 10.3390/app10072403 10.3390/su10051366 10.1109/MSPCT.2009.5164164 10.1016/j.trb.2015.12.004 10.1016/j.wasman.2018.03.015 10.1007/s12652-018-0778-3 10.1016/j.trb.2011.02.004 10.1007/s10586-018-2637-6 10.3390/ijerph17062163 10.1016/j.orl.2020.05.007 10.1109/TEVC.2022.3164260 10.1016/j.asoc.2021.107655 10.23919/CSMS.2022.0008 10.1109/ICNN.1995.488968 10.1002/net.3230040106 10.3390/ijerph17144963 10.1002/9780470999677 10.1016/j.cie.2019.106047 10.1016/j.asoc.2023.110023 10.1007/s12351-019-00543-8 10.1016/j.jclepro.2020.123932 10.1016/j.asoc.2018.12.033 10.1109/TSMC.2022.3219380 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.23919/CSMS.2023.0008 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2096-9929 |
| EndPage | 219 |
| ExternalDocumentID | oai_doaj_org_article_bb7e3624742b4d13b93b0172db408a36 10_23919_CSMS_2023_0008 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c348t-5e0aaae28e886fc8f177e9dad24caa6f85c7bb551af79acf4e94f1db3f5b35673 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001552786300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2096-9929 |
| IngestDate | Fri Oct 03 12:43:40 EDT 2025 Sat Nov 29 03:38:31 EST 2025 Tue Nov 18 21:23:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-5e0aaae28e886fc8f177e9dad24caa6f85c7bb551af79acf4e94f1db3f5b35673 |
| OpenAccessLink | https://doaj.org/article/bb7e3624742b4d13b93b0172db408a36 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bb7e3624742b4d13b93b0172db408a36 crossref_citationtrail_10_23919_CSMS_2023_0008 crossref_primary_10_23919_CSMS_2023_0008 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-9-00 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-9-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Complex System Modeling and Simulation |
| PublicationYear | 2023 |
| Publisher | Tsinghua University Press |
| Publisher_xml | – name: Tsinghua University Press |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 wagner (ref5) 2013 hannan (ref7) 2020; 277 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 rada (ref2) 2010 ref26 ref25 zhen (ref36) 2020; 135 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref19 doi: 10.1016/j.wasman.2017.10.019 – volume: 277 start-page: 123557 year: 2020 ident: ref7 article-title: Solid waste collection optimization objectives, constraints, modeling approaches, and their challenges toward achieving sustainable development goals publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123557 – ident: ref4 doi: 10.1061/(ASCE)0733-9372(2001)127:11(1031) – ident: ref34 doi: 10.1109/TCYB.2022.3164165 – ident: ref14 doi: 10.2307/2273574 – ident: ref38 doi: 10.1016/j.compeleceng.2018.01.040 – ident: ref32 doi: 10.1109/TEVC.2005.857610 – ident: ref9 doi: 10.1007/s11750-019-00505-5 – ident: ref28 doi: 10.1016/j.dam.2016.03.019 – volume: 135 start-page: 101866 year: 2020 ident: ref36 article-title: Multi-depot multi-trip vehicle routing problem with time windows and release dates publication-title: Transportation Research Part E Logistics and Transportation Review doi: 10.1016/j.tre.2020.101866 – ident: ref3 doi: 10.1177/0734242X10366272 – ident: ref22 doi: 10.1016/j.cie.2021.107131 – ident: ref25 doi: 10.23919/CSMS.2022.0005 – ident: ref8 doi: 10.3390/ijerph17020458 – ident: ref12 doi: 10.3390/app10072403 – ident: ref39 doi: 10.3390/su10051366 – ident: ref31 doi: 10.1109/MSPCT.2009.5164164 – ident: ref11 doi: 10.1016/j.trb.2015.12.004 – ident: ref13 doi: 10.1016/j.wasman.2018.03.015 – ident: ref15 doi: 10.1007/s12652-018-0778-3 – ident: ref26 doi: 10.1016/j.trb.2011.02.004 – ident: ref37 doi: 10.1007/s10586-018-2637-6 – ident: ref18 doi: 10.3390/ijerph17062163 – ident: ref33 doi: 10.1016/j.orl.2020.05.007 – ident: ref24 doi: 10.1109/TEVC.2022.3164260 – ident: ref20 doi: 10.1016/j.asoc.2021.107655 – year: 2013 ident: ref5 publication-title: Survey of best practices in emission control of in-use heavy-duty diesel vehicles – ident: ref23 doi: 10.23919/CSMS.2022.0008 – ident: ref27 doi: 10.1109/ICNN.1995.488968 – ident: ref6 doi: 10.1002/net.3230040106 – ident: ref10 doi: 10.3390/ijerph17144963 – ident: ref1 doi: 10.1002/9780470999677 – ident: ref17 doi: 10.1016/j.cie.2019.106047 – ident: ref21 doi: 10.1016/j.asoc.2023.110023 – ident: ref30 doi: 10.1007/s12351-019-00543-8 – ident: ref35 doi: 10.1016/j.jclepro.2020.123932 – start-page: 150 year: 2010 ident: ref2 article-title: Web oriented technologies and equipments for MSW collection publication-title: Proc International Conference on Risk Management Assessment and Mitigation – ident: ref16 doi: 10.1016/j.asoc.2018.12.033 – ident: ref29 doi: 10.1109/TSMC.2022.3219380 |
| SSID | ssib052855636 ssib053565417 |
| Score | 2.3695517 |
| Snippet | Waste collection is an important part of waste management system. Transportation costs and carbon emissions can be greatly reduced by proper vehicle routing.... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 202 |
| SubjectTerms | contribution energy conservation multi-trip municipal solid waste collection particle swarm optimization |
| Title | Energy-Efficient Multi-Trip Routing for Municipal Solid Waste Collection by Contribution-Based Adaptive Particle Swarm Optimization |
| URI | https://doaj.org/article/bb7e3624742b4d13b93b0172db408a36 |
| Volume | 3 |
| WOSCitedRecordID | wos001552786300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2096-9929 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib053565417 issn: 2096-9929 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIEC85YGBxW0T29geARWx8JBaRLfIT6lSW1ApIBYW_jh3TqjKgFhYMlhOZH2--O6Su-8j5JjDkeckTyxE4ZmIRcGM44GBK9C-YyVEHD6LTaibGz0YmLsFqS-sCavpgWvg2s6pCIesgBTOiVBwZ7jDvCU40dGWZ7JtiHoWkimwJFlqJL6aO1rJJepdY-90CTE7MxAU1Dw_JTeFaV_0rnstFBJHOkP9w0UtMPlnl3O5TtaaWJGe1WvcIEtxskk-u7lbj3Uz9wO4DJp7aFkf3n6K9T3giyhEojA8yQXTI9p7HA0DfbCwoTR_KMi9DNS9U-Sm-la8Yufg0AI9C_YJj0B612BDe292Oqa3MDpumja3yP1lt39xxRolBea50DMmY8daG0sdtT5NXqdCqWiCDaXw1p4mLb1yDoInm5SxPoloRCqC40k6gE7xbbI8eZzEHUIt7F7sqGSkEcK6AtlltBU-liEImdQuaX2DV_mGZhzVLkYVpBsZ7QrRrhBt_POtd8nJ_IanmmHj96nnuBvzaUiNnQfAYKoGlOovg9n7j4fsk1VcVV1sdkCWZ9OXeEhW_Ots-Dw9yrYI1-uP7hfmQ-IZ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Multi-Trip+Routing+for+Municipal+Solid+Waste+Collection+by+Contribution-Based+Adaptive+Particle+Swarm+Optimization&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Shen%2C+Xiaoning&rft.au=Pan%2C+Hongli&rft.au=Ge%2C+Zhongpei&rft.au=Chen%2C+Wenyan&rft.date=2023-09-01&rft.issn=2096-9929&rft.eissn=2096-9929&rft.volume=3&rft.issue=3&rft.spage=202&rft.epage=219&rft_id=info:doi/10.23919%2FCSMS.2023.0008&rft.externalDBID=n%2Fa&rft.externalDocID=10_23919_CSMS_2023_0008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon |