Energy-Efficient Multi-Trip Routing for Municipal Solid Waste Collection by Contribution-Based Adaptive Particle Swarm Optimization

Waste collection is an important part of waste management system. Transportation costs and carbon emissions can be greatly reduced by proper vehicle routing. Meanwhile, each vehicle can work again after achieving its capacity limit and unloading the waste. For this, an energy-efficient multi-trip ve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex System Modeling and Simulation Ročník 3; číslo 3; s. 202 - 219
Hlavní autoři: Shen, Xiaoning, Pan, Hongli, Ge, Zhongpei, Chen, Wenyan, Song, Liyan, Wang, Shuo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tsinghua University Press 01.09.2023
Témata:
ISSN:2096-9929, 2096-9929
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Waste collection is an important part of waste management system. Transportation costs and carbon emissions can be greatly reduced by proper vehicle routing. Meanwhile, each vehicle can work again after achieving its capacity limit and unloading the waste. For this, an energy-efficient multi-trip vehicle routing model is established for municipal solid waste collection, which incorporates practical factors like the limited capacity, maximum working hours, and multiple trips of each vehicle. Considering both economy and environment, fixed costs, fuel costs, and carbon emission costs are minimized together. To solve the formulated model effectively, contribution-based adaptive particle swarm optimization is proposed. Four strategies named greedy learning, multi-operator learning, exploring learning, and exploiting learning are specifically designed with their own searching priorities. By assessing the contribution of each learning strategy during the process of evolution, an appropriate one is selected and assigned to each individual adaptively to improve the searching efficiency of the algorithm. Moreover, an improved local search operator is performed on the trips with the largest number of waste sites so that both the exploiting ability and the convergence accuracy of the algorithm are improved. Performance of the proposed algorithm is tested on ten waste collection instances, which include one real-world case derived from the Green Ring Company of Jiangbei New District, Nanjing, China, and nine synthetic instances with increasing scales generated from the commonly-used capacitated vehicle routing problem benchmark datasets. Comparisons with five state-of-the-art algorithms show that the proposed algorithm can obtain a solution with a higher accuracy for the constructed model.
AbstractList Waste collection is an important part of waste management system. Transportation costs and carbon emissions can be greatly reduced by proper vehicle routing. Meanwhile, each vehicle can work again after achieving its capacity limit and unloading the waste. For this, an energy-efficient multi-trip vehicle routing model is established for municipal solid waste collection, which incorporates practical factors like the limited capacity, maximum working hours, and multiple trips of each vehicle. Considering both economy and environment, fixed costs, fuel costs, and carbon emission costs are minimized together. To solve the formulated model effectively, contribution-based adaptive particle swarm optimization is proposed. Four strategies named greedy learning, multi-operator learning, exploring learning, and exploiting learning are specifically designed with their own searching priorities. By assessing the contribution of each learning strategy during the process of evolution, an appropriate one is selected and assigned to each individual adaptively to improve the searching efficiency of the algorithm. Moreover, an improved local search operator is performed on the trips with the largest number of waste sites so that both the exploiting ability and the convergence accuracy of the algorithm are improved. Performance of the proposed algorithm is tested on ten waste collection instances, which include one real-world case derived from the Green Ring Company of Jiangbei New District, Nanjing, China, and nine synthetic instances with increasing scales generated from the commonly-used capacitated vehicle routing problem benchmark datasets. Comparisons with five state-of-the-art algorithms show that the proposed algorithm can obtain a solution with a higher accuracy for the constructed model.
Author Wang, Shuo
Shen, Xiaoning
Ge, Zhongpei
Chen, Wenyan
Song, Liyan
Pan, Hongli
Author_xml – sequence: 1
  givenname: Xiaoning
  surname: Shen
  fullname: Shen, Xiaoning
  organization: School of Automation, Nanjing University of Information Science and Technology,Collaborative Innovation Center of Atmospheric Environment and Equipment Technology and also with the Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing,China,210044
– sequence: 2
  givenname: Hongli
  surname: Pan
  fullname: Pan, Hongli
  organization: Nanjing University of Information Science and Technology,School of Automation,Nanjing,China,210044
– sequence: 3
  givenname: Zhongpei
  surname: Ge
  fullname: Ge, Zhongpei
  organization: Nanjing University of Information Science and Technology,School of Automation,Nanjing,China,210044
– sequence: 4
  givenname: Wenyan
  surname: Chen
  fullname: Chen, Wenyan
  organization: Nanjing University of Information Science and Technology,School of Automation,Nanjing,China,210044
– sequence: 5
  givenname: Liyan
  surname: Song
  fullname: Song, Liyan
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055
– sequence: 6
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
  organization: University of Birmingham,School of Computer Science,Birmingham,UK,B15 2TT
BookMark eNp1UU1rGzEUFCWF5sPnXPUH1tZKq13p6BonDSS4xC45iqcvo7JeGa3c4l77x7vrOBACPb33hplhHnOFLrrYOYRuSzKlTJZytlg_raeUUDYlhIhP6JISWRdSUnnxbv-CJn0fNOFUcF6z-hL9XXYubY_F0vtggusyfjq0ORSbFPb4OR5y6LbYxzTA3UDYQ4vXsQ0Wv0CfHV7EtnUmh9hhfRyuLqegD-NdfIXeWTy3sM_hl8PfIeVgWofXvyHt8GpAd-EPjNQb9NlD27vJeV6jH3fLzeJb8bi6f1jMHwvDKpEL7ggAOCqcELU3wpdN46QFSysDUHvBTaM15yX4RoLxlZOVL61mnmvG64Zdo4dXXxvhp9qnsIN0VBGCOgExbdU5pNK6caymVVNRXdmSack0KRtqdUUEsHrw4q9eJsW-T84rE_Lpm5wgtKok6lSMGotRYzFqLGbQzT7o3nL8T_EPfw-VEg
CitedBy_id crossref_primary_10_1016_j_swevo_2025_101870
crossref_primary_10_32604_cmes_2024_049044
crossref_primary_10_1080_15567036_2025_2488466
crossref_primary_10_1002_cpe_8153
crossref_primary_10_26599_TST_2023_9010101
crossref_primary_10_3390_s24103167
crossref_primary_10_1002_cpe_8150
crossref_primary_10_1088_1755_1315_1409_1_012021
crossref_primary_10_1016_j_renene_2024_121325
crossref_primary_10_3390_su17135672
crossref_primary_10_1016_j_cie_2025_111136
crossref_primary_10_1016_j_swevo_2024_101787
crossref_primary_10_1142_S0219686725500349
crossref_primary_10_7717_peerj_cs_2102
crossref_primary_10_1080_10962247_2024_2415298
crossref_primary_10_1109_ACCESS_2024_3389749
crossref_primary_10_1109_TCYB_2024_3412997
Cites_doi 10.1016/j.wasman.2017.10.019
10.1016/j.jclepro.2020.123557
10.1061/(ASCE)0733-9372(2001)127:11(1031)
10.1109/TCYB.2022.3164165
10.2307/2273574
10.1016/j.compeleceng.2018.01.040
10.1109/TEVC.2005.857610
10.1007/s11750-019-00505-5
10.1016/j.dam.2016.03.019
10.1016/j.tre.2020.101866
10.1177/0734242X10366272
10.1016/j.cie.2021.107131
10.23919/CSMS.2022.0005
10.3390/ijerph17020458
10.3390/app10072403
10.3390/su10051366
10.1109/MSPCT.2009.5164164
10.1016/j.trb.2015.12.004
10.1016/j.wasman.2018.03.015
10.1007/s12652-018-0778-3
10.1016/j.trb.2011.02.004
10.1007/s10586-018-2637-6
10.3390/ijerph17062163
10.1016/j.orl.2020.05.007
10.1109/TEVC.2022.3164260
10.1016/j.asoc.2021.107655
10.23919/CSMS.2022.0008
10.1109/ICNN.1995.488968
10.1002/net.3230040106
10.3390/ijerph17144963
10.1002/9780470999677
10.1016/j.cie.2019.106047
10.1016/j.asoc.2023.110023
10.1007/s12351-019-00543-8
10.1016/j.jclepro.2020.123932
10.1016/j.asoc.2018.12.033
10.1109/TSMC.2022.3219380
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23919/CSMS.2023.0008
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2096-9929
EndPage 219
ExternalDocumentID oai_doaj_org_article_bb7e3624742b4d13b93b0172db408a36
10_23919_CSMS_2023_0008
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
GROUPED_DOAJ
ID FETCH-LOGICAL-c348t-5e0aaae28e886fc8f177e9dad24caa6f85c7bb551af79acf4e94f1db3f5b35673
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001552786300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2096-9929
IngestDate Fri Oct 03 12:43:40 EDT 2025
Sat Nov 29 03:38:31 EST 2025
Tue Nov 18 21:23:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-5e0aaae28e886fc8f177e9dad24caa6f85c7bb551af79acf4e94f1db3f5b35673
OpenAccessLink https://doaj.org/article/bb7e3624742b4d13b93b0172db408a36
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_bb7e3624742b4d13b93b0172db408a36
crossref_citationtrail_10_23919_CSMS_2023_0008
crossref_primary_10_23919_CSMS_2023_0008
PublicationCentury 2000
PublicationDate 2023-9-00
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-9-00
PublicationDecade 2020
PublicationTitle Complex System Modeling and Simulation
PublicationYear 2023
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
wagner (ref5) 2013
hannan (ref7) 2020; 277
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
rada (ref2) 2010
ref26
ref25
zhen (ref36) 2020; 135
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
References_xml – ident: ref19
  doi: 10.1016/j.wasman.2017.10.019
– volume: 277
  start-page: 123557
  year: 2020
  ident: ref7
  article-title: Solid waste collection optimization objectives, constraints, modeling approaches, and their challenges toward achieving sustainable development goals
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123557
– ident: ref4
  doi: 10.1061/(ASCE)0733-9372(2001)127:11(1031)
– ident: ref34
  doi: 10.1109/TCYB.2022.3164165
– ident: ref14
  doi: 10.2307/2273574
– ident: ref38
  doi: 10.1016/j.compeleceng.2018.01.040
– ident: ref32
  doi: 10.1109/TEVC.2005.857610
– ident: ref9
  doi: 10.1007/s11750-019-00505-5
– ident: ref28
  doi: 10.1016/j.dam.2016.03.019
– volume: 135
  start-page: 101866
  year: 2020
  ident: ref36
  article-title: Multi-depot multi-trip vehicle routing problem with time windows and release dates
  publication-title: Transportation Research Part E Logistics and Transportation Review
  doi: 10.1016/j.tre.2020.101866
– ident: ref3
  doi: 10.1177/0734242X10366272
– ident: ref22
  doi: 10.1016/j.cie.2021.107131
– ident: ref25
  doi: 10.23919/CSMS.2022.0005
– ident: ref8
  doi: 10.3390/ijerph17020458
– ident: ref12
  doi: 10.3390/app10072403
– ident: ref39
  doi: 10.3390/su10051366
– ident: ref31
  doi: 10.1109/MSPCT.2009.5164164
– ident: ref11
  doi: 10.1016/j.trb.2015.12.004
– ident: ref13
  doi: 10.1016/j.wasman.2018.03.015
– ident: ref15
  doi: 10.1007/s12652-018-0778-3
– ident: ref26
  doi: 10.1016/j.trb.2011.02.004
– ident: ref37
  doi: 10.1007/s10586-018-2637-6
– ident: ref18
  doi: 10.3390/ijerph17062163
– ident: ref33
  doi: 10.1016/j.orl.2020.05.007
– ident: ref24
  doi: 10.1109/TEVC.2022.3164260
– ident: ref20
  doi: 10.1016/j.asoc.2021.107655
– year: 2013
  ident: ref5
  publication-title: Survey of best practices in emission control of in-use heavy-duty diesel vehicles
– ident: ref23
  doi: 10.23919/CSMS.2022.0008
– ident: ref27
  doi: 10.1109/ICNN.1995.488968
– ident: ref6
  doi: 10.1002/net.3230040106
– ident: ref10
  doi: 10.3390/ijerph17144963
– ident: ref1
  doi: 10.1002/9780470999677
– ident: ref17
  doi: 10.1016/j.cie.2019.106047
– ident: ref21
  doi: 10.1016/j.asoc.2023.110023
– ident: ref30
  doi: 10.1007/s12351-019-00543-8
– ident: ref35
  doi: 10.1016/j.jclepro.2020.123932
– start-page: 150
  year: 2010
  ident: ref2
  article-title: Web oriented technologies and equipments for MSW collection
  publication-title: Proc International Conference on Risk Management Assessment and Mitigation
– ident: ref16
  doi: 10.1016/j.asoc.2018.12.033
– ident: ref29
  doi: 10.1109/TSMC.2022.3219380
SSID ssib052855636
ssib053565417
Score 2.3695517
Snippet Waste collection is an important part of waste management system. Transportation costs and carbon emissions can be greatly reduced by proper vehicle routing....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 202
SubjectTerms contribution
energy conservation
multi-trip
municipal solid waste collection
particle swarm optimization
Title Energy-Efficient Multi-Trip Routing for Municipal Solid Waste Collection by Contribution-Based Adaptive Particle Swarm Optimization
URI https://doaj.org/article/bb7e3624742b4d13b93b0172db408a36
Volume 3
WOSCitedRecordID wos001552786300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2096-9929
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib053565417
  issn: 2096-9929
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA4iFjaiqPgmhYVNdB_JJilPObHxAadot0w2CQjnKeep2Nj4x53JrsdZiI3NFmE3hC-zmW92Z75hbF9rVQTpKSwprJAxZgKMjyIaCcQfIM8gNZvQFxfm7s5ezbT6opywVh64Be7IOR3wkJUYwjnp89LZ0lHc4p3MDJRJbBtZz0wwhZakCkPCV1NHq0pF_a6pdrpAzi4skoJW56cobW6PTgbng0NqJE5yhuaHi5pR8k8u53SZLXVckffaNa6wuTBaZZ_9VK0n-kn7AV0GTzW04hrffk75PeiLODJRHB6lhOkhHzwO7z2_BdxQnj4UpFoG7t45aVN9d7wSx-jQPO95eKIjkF912PDBG4wf-CWOPnRFm2vs5rR_fXImuk4KoimlmQgVMgAIhQnGVLExMdc6WA--kA1AFY1qtHNIniBqC02UwcqYe1dG5RA6Xa6z-dHjKGwwHlSTaVvh1nvSajdG4TFgocLpfOZjtckOv8Grm05mnLpdDGsMNxLaNaFdE9r059tssoPpA0-twsbvtx7TbkxvI2nsNIAGU3eg1H8ZzNZ_TLLNFmlVbbLZDpufjF_CLltoXif3z-O9ZIt4Pf_ofwER3uI_
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Multi-Trip+Routing+for+Municipal+Solid+Waste+Collection+by+Contribution-Based+Adaptive+Particle+Swarm+Optimization&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Shen%2C+Xiaoning&rft.au=Pan%2C+Hongli&rft.au=Ge%2C+Zhongpei&rft.au=Chen%2C+Wenyan&rft.date=2023-09-01&rft.issn=2096-9929&rft.eissn=2096-9929&rft.volume=3&rft.issue=3&rft.spage=202&rft.epage=219&rft_id=info:doi/10.23919%2FCSMS.2023.0008&rft.externalDBID=n%2Fa&rft.externalDocID=10_23919_CSMS_2023_0008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon