Differential Evolution with Level-Based Learning Mechanism

To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this approach, the whole population is sorted from the best to the worst at the beginning of each generation. Then, the population is partitioned...

Full description

Saved in:
Bibliographic Details
Published in:Complex System Modeling and Simulation Vol. 2; no. 1; pp. 35 - 58
Main Authors: Qiao, Kangjia, Liang, Jing, Qu, Boyang, Yu, Kunjie, Yue, Caitong, Song, Hui
Format: Journal Article
Language:English
Published: Tsinghua University Press 01.03.2022
Subjects:
ISSN:2096-9929, 2096-9929
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this approach, the whole population is sorted from the best to the worst at the beginning of each generation. Then, the population is partitioned into multiple levels, and different levels are used to exert different functions. In each level, a control parameter is used to select excellent exemplars from upper levels for learning. In this case, the poorer individuals can choose more learning exemplars to improve their exploration ability, and excellent individuals can directly learn from the several best individuals to improve the quality of solutions. To accelerate the convergence speed, a difference vector selection method based on the level is developed. Furthermore, specific crossover rates are assigned to individuals at the lowest level to guarantee that the population can continue to update during the later evolutionary process. A comprehensive experiment is organized and conducted to obtain a deep insight into LBLDE and demonstrates the superiority of LBLDE in comparison with seven peer DE variants.
AbstractList To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this approach, the whole population is sorted from the best to the worst at the beginning of each generation. Then, the population is partitioned into multiple levels, and different levels are used to exert different functions. In each level, a control parameter is used to select excellent exemplars from upper levels for learning. In this case, the poorer individuals can choose more learning exemplars to improve their exploration ability, and excellent individuals can directly learn from the several best individuals to improve the quality of solutions. To accelerate the convergence speed, a difference vector selection method based on the level is developed. Furthermore, specific crossover rates are assigned to individuals at the lowest level to guarantee that the population can continue to update during the later evolutionary process. A comprehensive experiment is organized and conducted to obtain a deep insight into LBLDE and demonstrates the superiority of LBLDE in comparison with seven peer DE variants.
Author Liang, Jing
Yue, Caitong
Qiao, Kangjia
Yu, Kunjie
Qu, Boyang
Song, Hui
Author_xml – sequence: 1
  givenname: Kangjia
  surname: Qiao
  fullname: Qiao, Kangjia
  organization: School of Electrical Engineering, Zhengzhou University,Zhengzhou,China,450001
– sequence: 2
  givenname: Jing
  surname: Liang
  fullname: Liang, Jing
  organization: School of Electrical Engineering, Zhengzhou University,Zhengzhou,China,450001
– sequence: 3
  givenname: Boyang
  surname: Qu
  fullname: Qu, Boyang
  organization: School of Electronic and Information, Zhongyuan University of Technology,Zhengzhou,China,450007
– sequence: 4
  givenname: Kunjie
  surname: Yu
  fullname: Yu, Kunjie
  organization: School of Electrical Engineering, Zhengzhou University,Zhengzhou,China,450001
– sequence: 5
  givenname: Caitong
  surname: Yue
  fullname: Yue, Caitong
  organization: School of Electrical Engineering, Zhengzhou University,Zhengzhou,China,450001
– sequence: 6
  givenname: Hui
  surname: Song
  fullname: Song, Hui
  organization: School of Engineering, RMIT University,Melbourne,Australia,3000
BookMark eNp1kM1OwzAQhC1UJErpmWteIK1_YifmBqWFSq04FM6WY69bozRGTiji7UlakBASpx2tZka73yUa1KEGhK4JnlAmiZzONuvNhGJKJxjj7AwNKZYilZLKwS99gcZN40vMacG5YGKIbu69cxChbr2ukvkhVO-tD3Xy4dtdsoIDVOmdbsB2Wsfa19tkDWana9_sr9C501UD4-85Qi-L-fPsMV09PSxnt6vUsKxoU16WAEJL7ASYQgtHcyKkcaIURecwhtoMKDXO5p0mOO_cOebgABgRXLMRWp56bdCv6i36vY6fKmivjosQt0rH1psKFMfWWVYyDLzIuMwKkhOTGeZKywg2ruvipy4TQ9NEcMr4Vvcft1H7ShGsjjxVz1P1PFXPs8tN_-R-7vgv8QWdPnnM
CitedBy_id crossref_primary_10_32604_cmes_2024_049044
crossref_primary_10_1016_j_swevo_2024_101572
crossref_primary_10_1016_j_measurement_2025_116721
crossref_primary_10_1016_j_eswa_2025_129528
crossref_primary_10_1109_ACCESS_2024_3460385
crossref_primary_10_1007_s42235_023_00416_z
crossref_primary_10_1007_s12083_025_01991_0
crossref_primary_10_1109_TII_2024_3514155
crossref_primary_10_26599_TST_2023_9010138
crossref_primary_10_1109_TEVC_2022_3220424
crossref_primary_10_1007_s10586_024_05070_6
crossref_primary_10_1016_j_swevo_2025_101916
crossref_primary_10_1109_TEVC_2022_3186667
crossref_primary_10_1016_j_swevo_2024_101504
crossref_primary_10_3390_math12172641
crossref_primary_10_1016_j_ins_2024_121188
crossref_primary_10_1016_j_swevo_2024_101566
crossref_primary_10_1109_TSMC_2024_3427864
crossref_primary_10_1016_j_eswa_2025_128158
crossref_primary_10_1016_j_ins_2024_120522
crossref_primary_10_1016_j_swevo_2024_101822
crossref_primary_10_1016_j_eswa_2023_122076
crossref_primary_10_1109_ACCESS_2023_3300229
crossref_primary_10_1007_s13042_022_01647_y
Cites_doi 10.1109/CEC.2014.6900380
10.1109/TEVC.2017.2754271
10.1016/j.ins.2014.03.083
10.1016/j.ins.2017.09.053
10.1109/TSMCA.2012.2226024
10.1109/TEVC.2022.3145582
10.1109/CEC.2004.1331145
10.1016/j.swevo.2017.11.002
10.1016/j.swevo.2018.03.008
10.1016/j.ins.2015.09.009
10.1016/j.ins.2012.04.027
10.1016/j.swevo.2019.03.003
10.1109/CEC.2013.6557794
10.1016/j.swevo.2016.01.004
10.1109/TEVC.2006.872133
10.1109/ACCESS.2019.2914963
10.1016/j.asoc.2010.04.024
10.1109/CEC.2017.7969307
10.1016/j.neucom.2020.09.007
10.1109/TEVC.2010.2083670
10.1007/978-3-642-00267-0_7
10.1016/j.ins.2021.01.031
10.1109/TIM.2020.2983233
10.1145/2576768.2598236
10.1016/j.solener.2020.06.100
10.1007/s12293-009-0008-9
10.1016/j.enconman.2020.112509
10.1007/s00500-017-2588-5
10.1109/CEC.2016.7744190
10.1016/j.swevo.2018.06.010
10.1007/s10489-007-0091-x
10.1109/TCYB.2020.3034427
10.1504/IJWMC.2016.081159
10.1007/s00500-019-04159-0
10.1007/978-3-642-30976-2_43
10.1023/A:1011375326814
10.1016/j.jocs.2017.07.010
10.1016/j.knosys.2020.106209
10.1007/s13042-017-0711-7
10.2991/ijcis.d.190711.001
10.1023/A:1008202821328
10.1109/TEVC.2019.2904900
10.1109/TEVC.2008.927706
10.1016/j.knosys.2021.107080
10.1007/s12293-021-00328-7
10.1109/ICIECS.2009.5365500
10.1016/j.swevo.2020.100788
10.1007/s10710-009-9089-y
10.1007/s00500-019-04154-5
10.1016/j.ins.2017.09.002
10.1109/TEVC.2009.2014613
10.1109/TEVC.2017.2743016
10.1109/TCYB.2013.2239988
10.1109/CEC.2013.6557555
10.1016/j.ins.2020.11.023
10.1007/s00500-017-2777-2
10.1109/TSMC.2018.2807785
10.1007/s10462-017-9562-6
10.1016/j.swevo.2018.08.017
10.1007/s00500-008-0357-1
10.1109/ISACV.2017.8054910
10.1016/j.knosys.2021.107653
10.1016/j.solener.2019.08.022
10.1109/TEVC.2002.800880
10.23919/CSMS.2021.0010
10.1109/TEVC.2010.2087271
10.1007/978-3-030-02357-7_21
10.23919/CSMS.2021.0002
10.1109/TCYB.2017.2676882
10.1109/TCYB.2013.2279211
10.1016/j.asoc.2009.02.012
10.1016/j.engappai.2020.103479
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23919/CSMS.2022.0004
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2096-9929
EndPage 58
ExternalDocumentID oai_doaj_org_article_50dfd3b30e5845948171c4c3fbd310cf
10_23919_CSMS_2022_0004
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
GROUPED_DOAJ
ID FETCH-LOGICAL-c348t-5bbee6a90f6ec8a6f27169cf6b68c34cc2d4e22cfd7cc2107ee6705efee3165a3
IEDL.DBID DOA
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544324900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2096-9929
IngestDate Fri Oct 03 12:44:44 EDT 2025
Tue Nov 18 22:15:37 EST 2025
Sat Nov 29 03:38:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-5bbee6a90f6ec8a6f27169cf6b68c34cc2d4e22cfd7cc2107ee6705efee3165a3
OpenAccessLink https://doaj.org/article/50dfd3b30e5845948171c4c3fbd310cf
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_50dfd3b30e5845948171c4c3fbd310cf
crossref_citationtrail_10_23919_CSMS_2022_0004
crossref_primary_10_23919_CSMS_2022_0004
PublicationCentury 2000
PublicationDate 2022-3-00
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-3-00
PublicationDecade 2020
PublicationTitle Complex System Modeling and Simulation
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref57
ref13
ref56
ref12
wang (ref38) 2012
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref33
ref32
ref2
ref1
ref39
ref71
ref70
ref73
ref72
peng (ref60) 2009
ref68
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
pant (ref10) 2020; 90
ref28
ref27
ref29
awad (ref69) 2016
ref62
ref61
References_xml – ident: ref22
  doi: 10.1109/CEC.2014.6900380
– ident: ref73
  doi: 10.1109/TEVC.2017.2754271
– ident: ref49
  doi: 10.1016/j.ins.2014.03.083
– ident: ref32
  doi: 10.1016/j.ins.2017.09.053
– ident: ref67
  doi: 10.1109/TSMCA.2012.2226024
– ident: ref74
  doi: 10.1109/TEVC.2022.3145582
– ident: ref15
  doi: 10.1109/CEC.2004.1331145
– ident: ref44
  doi: 10.1016/j.swevo.2017.11.002
– ident: ref68
  doi: 10.1016/j.swevo.2018.03.008
– ident: ref45
  doi: 10.1016/j.ins.2015.09.009
– ident: ref48
  doi: 10.1016/j.ins.2012.04.027
– ident: ref57
  doi: 10.1016/j.swevo.2019.03.003
– ident: ref66
  doi: 10.1109/CEC.2013.6557794
– ident: ref16
  doi: 10.1016/j.swevo.2016.01.004
– ident: ref29
  doi: 10.1109/TEVC.2006.872133
– ident: ref36
  doi: 10.1109/ACCESS.2019.2914963
– ident: ref27
  doi: 10.1016/j.asoc.2010.04.024
– ident: ref23
  doi: 10.1109/CEC.2017.7969307
– ident: ref46
  doi: 10.1016/j.neucom.2020.09.007
– ident: ref20
  doi: 10.1109/TEVC.2010.2083670
– ident: ref65
  doi: 10.1007/978-3-642-00267-0_7
– ident: ref25
  doi: 10.1016/j.ins.2021.01.031
– ident: ref4
  doi: 10.1109/TIM.2020.2983233
– ident: ref37
  doi: 10.1145/2576768.2598236
– ident: ref53
  doi: 10.1016/j.solener.2020.06.100
– ident: ref43
  doi: 10.1007/s12293-009-0008-9
– ident: ref6
  doi: 10.1016/j.enconman.2020.112509
– ident: ref33
  doi: 10.1007/s00500-017-2588-5
– ident: ref56
  doi: 10.1109/CEC.2016.7744190
– ident: ref11
  doi: 10.1016/j.swevo.2018.06.010
– year: 2016
  ident: ref69
  publication-title: Evaluation criteria for the CEC 2017 special session and competition on single objective realparameter numerical optimization
– ident: ref24
  doi: 10.1007/s10489-007-0091-x
– ident: ref31
  doi: 10.1109/TCYB.2020.3034427
– ident: ref61
  doi: 10.1504/IJWMC.2016.081159
– ident: ref72
  doi: 10.1007/s00500-019-04159-0
– ident: ref41
  doi: 10.1007/978-3-642-30976-2_43
– ident: ref12
  doi: 10.1023/A:1011375326814
– ident: ref21
  doi: 10.1016/j.jocs.2017.07.010
– ident: ref5
  doi: 10.1016/j.knosys.2020.106209
– ident: ref34
  doi: 10.1007/s13042-017-0711-7
– ident: ref39
  doi: 10.2991/ijcis.d.190711.001
– ident: ref1
  doi: 10.1023/A:1008202821328
– ident: ref58
  doi: 10.1109/TEVC.2019.2904900
– ident: ref51
  doi: 10.1109/TEVC.2008.927706
– ident: ref8
  doi: 10.1016/j.knosys.2021.107080
– ident: ref75
  doi: 10.1007/s12293-021-00328-7
– ident: ref14
  doi: 10.1109/ICIECS.2009.5365500
– ident: ref7
  doi: 10.1016/j.swevo.2020.100788
– ident: ref47
  doi: 10.1007/s10710-009-9089-y
– ident: ref18
  doi: 10.1007/s00500-019-04154-5
– ident: ref35
  doi: 10.1016/j.ins.2017.09.002
– ident: ref28
  doi: 10.1109/TEVC.2009.2014613
– ident: ref30
  doi: 10.1109/TEVC.2017.2743016
– ident: ref13
  doi: 10.1109/TCYB.2013.2239988
– ident: ref62
  doi: 10.1109/CEC.2013.6557555
– ident: ref59
  doi: 10.1016/j.ins.2020.11.023
– ident: ref71
  doi: 10.1007/s00500-017-2777-2
– ident: ref55
  doi: 10.1109/TSMC.2018.2807785
– ident: ref52
  doi: 10.1007/s10462-017-9562-6
– ident: ref9
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref42
  doi: 10.1007/s00500-008-0357-1
– ident: ref50
  doi: 10.1109/ISACV.2017.8054910
– ident: ref54
  doi: 10.1016/j.knosys.2021.107653
– ident: ref40
  doi: 10.1016/j.solener.2019.08.022
– ident: ref19
  doi: 10.1109/TEVC.2002.800880
– start-page: 1889
  year: 2009
  ident: ref60
  article-title: Multi-start jade with knowledge transfer for numerical optimization
  publication-title: Proc of IEEE Congress on Evolutionary Computation
– ident: ref2
  doi: 10.23919/CSMS.2021.0010
– ident: ref17
  doi: 10.1109/TEVC.2010.2087271
– ident: ref70
  doi: 10.1007/978-3-030-02357-7_21
– ident: ref3
  doi: 10.23919/CSMS.2021.0002
– start-page: 1
  year: 2012
  ident: ref38
  article-title: Multi-objective optimization using a hybrid differential evolution algorithm
  publication-title: Proc of IEEE Congress on Evolutionary Computation
– ident: ref63
  doi: 10.1109/TCYB.2017.2676882
– ident: ref64
  doi: 10.1109/TCYB.2013.2279211
– ident: ref26
  doi: 10.1016/j.asoc.2009.02.012
– volume: 90
  start-page: 103479
  year: 2020
  ident: ref10
  article-title: Differential evolution: A review of more than two decades of research
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103479
SSID ssib052855636
ssib053565417
Score 2.3361914
Snippet To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 35
SubjectTerms differential evolution (de)
exemplar selection
level-based learning
parameter adaptation
Title Differential Evolution with Level-Based Learning Mechanism
URI https://doaj.org/article/50dfd3b30e5845948171c4c3fbd310cf
Volume 2
WOSCitedRecordID wos001544324900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2096-9929
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib053565417
  issn: 2096-9929
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCCQIAoX8rAwGKa2LHjsNHSiqGtkAqoW5TYZ1SpFNSWjvx27pJQlQGxsERRdImcO8fvzrl7x9ilcSoCHRmehOA5Lng5z0FZDq7sbuzjpKQUeu4nw6EZj9OHjVZflBNW0QNXimup0HknCxkCQmXJLZJENrbSFw49E-tp9Q2TdCOYwpmkhCHiqzXQKqmo3zXVTgv02XmKTkHF8yNkGqWtzmgwwlhRVOSdPyBqg8m_hJzeHtutfcXgthrjPtuC2QG7uatbmuCnOQ26q3rqBLShGvQpBYi3EZlcUDOnvgQDoOreyeL1kD31uo-de143QOBWxmbJVVEA6DwNvQZrcu0FcdtYrwttUMJa4WIQwnqX4DkGciidhAo8gIy0yuURa8zeZnDMglQbaRG6hXYYEcZhjp6ApvKQJFcmBd9k19_vnNmaHZyaVEwzjBJKJWWkpIyURD-s4ya7Wt_wXhFj_C7aJiWuxYjRuryAds5qO2d_2fnkPx5yynZoVFUO2RlrLOcfcM627Wo5WcwvyimEx8Fn9wsyXsbW
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Evolution+with+Level-Based+Learning+Mechanism&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Qiao%2C+Kangjia&rft.au=Liang%2C+Jing&rft.au=Qu%2C+Boyang&rft.au=Yu%2C+Kunjie&rft.date=2022-03-01&rft.issn=2096-9929&rft.eissn=2096-9929&rft.volume=2&rft.issue=1&rft.spage=35&rft.epage=58&rft_id=info:doi/10.23919%2FCSMS.2022.0004&rft.externalDBID=n%2Fa&rft.externalDocID=10_23919_CSMS_2022_0004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon