Differential Evolution with Level-Based Learning Mechanism
To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this approach, the whole population is sorted from the best to the worst at the beginning of each generation. Then, the population is partitioned...
Uloženo v:
| Vydáno v: | Complex System Modeling and Simulation Ročník 2; číslo 1; s. 35 - 58 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Tsinghua University Press
01.03.2022
|
| Témata: | |
| ISSN: | 2096-9929, 2096-9929 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this approach, the whole population is sorted from the best to the worst at the beginning of each generation. Then, the population is partitioned into multiple levels, and different levels are used to exert different functions. In each level, a control parameter is used to select excellent exemplars from upper levels for learning. In this case, the poorer individuals can choose more learning exemplars to improve their exploration ability, and excellent individuals can directly learn from the several best individuals to improve the quality of solutions. To accelerate the convergence speed, a difference vector selection method based on the level is developed. Furthermore, specific crossover rates are assigned to individuals at the lowest level to guarantee that the population can continue to update during the later evolutionary process. A comprehensive experiment is organized and conducted to obtain a deep insight into LBLDE and demonstrates the superiority of LBLDE in comparison with seven peer DE variants. |
|---|---|
| AbstractList | To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this approach, the whole population is sorted from the best to the worst at the beginning of each generation. Then, the population is partitioned into multiple levels, and different levels are used to exert different functions. In each level, a control parameter is used to select excellent exemplars from upper levels for learning. In this case, the poorer individuals can choose more learning exemplars to improve their exploration ability, and excellent individuals can directly learn from the several best individuals to improve the quality of solutions. To accelerate the convergence speed, a difference vector selection method based on the level is developed. Furthermore, specific crossover rates are assigned to individuals at the lowest level to guarantee that the population can continue to update during the later evolutionary process. A comprehensive experiment is organized and conducted to obtain a deep insight into LBLDE and demonstrates the superiority of LBLDE in comparison with seven peer DE variants. |
| Author | Liang, Jing Yue, Caitong Qiao, Kangjia Yu, Kunjie Qu, Boyang Song, Hui |
| Author_xml | – sequence: 1 givenname: Kangjia surname: Qiao fullname: Qiao, Kangjia organization: School of Electrical Engineering, Zhengzhou University,Zhengzhou,China,450001 – sequence: 2 givenname: Jing surname: Liang fullname: Liang, Jing organization: School of Electrical Engineering, Zhengzhou University,Zhengzhou,China,450001 – sequence: 3 givenname: Boyang surname: Qu fullname: Qu, Boyang organization: School of Electronic and Information, Zhongyuan University of Technology,Zhengzhou,China,450007 – sequence: 4 givenname: Kunjie surname: Yu fullname: Yu, Kunjie organization: School of Electrical Engineering, Zhengzhou University,Zhengzhou,China,450001 – sequence: 5 givenname: Caitong surname: Yue fullname: Yue, Caitong organization: School of Electrical Engineering, Zhengzhou University,Zhengzhou,China,450001 – sequence: 6 givenname: Hui surname: Song fullname: Song, Hui organization: School of Engineering, RMIT University,Melbourne,Australia,3000 |
| BookMark | eNp1kM1OwzAQhC1UJErpmWteIK1_YifmBqWFSq04FM6WY69bozRGTiji7UlakBASpx2tZka73yUa1KEGhK4JnlAmiZzONuvNhGJKJxjj7AwNKZYilZLKwS99gcZN40vMacG5YGKIbu69cxChbr2ukvkhVO-tD3Xy4dtdsoIDVOmdbsB2Wsfa19tkDWana9_sr9C501UD4-85Qi-L-fPsMV09PSxnt6vUsKxoU16WAEJL7ASYQgtHcyKkcaIURecwhtoMKDXO5p0mOO_cOebgABgRXLMRWp56bdCv6i36vY6fKmivjosQt0rH1psKFMfWWVYyDLzIuMwKkhOTGeZKywg2ruvipy4TQ9NEcMr4Vvcft1H7ShGsjjxVz1P1PFXPs8tN_-R-7vgv8QWdPnnM |
| CitedBy_id | crossref_primary_10_32604_cmes_2024_049044 crossref_primary_10_1016_j_swevo_2024_101572 crossref_primary_10_1016_j_measurement_2025_116721 crossref_primary_10_1016_j_eswa_2025_129528 crossref_primary_10_1109_ACCESS_2024_3460385 crossref_primary_10_1007_s42235_023_00416_z crossref_primary_10_1007_s12083_025_01991_0 crossref_primary_10_1109_TII_2024_3514155 crossref_primary_10_26599_TST_2023_9010138 crossref_primary_10_1109_TEVC_2022_3220424 crossref_primary_10_1007_s10586_024_05070_6 crossref_primary_10_1016_j_swevo_2025_101916 crossref_primary_10_1109_TEVC_2022_3186667 crossref_primary_10_1016_j_swevo_2024_101504 crossref_primary_10_3390_math12172641 crossref_primary_10_1016_j_ins_2024_121188 crossref_primary_10_1016_j_swevo_2024_101566 crossref_primary_10_1109_TSMC_2024_3427864 crossref_primary_10_1016_j_eswa_2025_128158 crossref_primary_10_1016_j_ins_2024_120522 crossref_primary_10_1016_j_swevo_2024_101822 crossref_primary_10_1016_j_eswa_2023_122076 crossref_primary_10_1109_ACCESS_2023_3300229 crossref_primary_10_1007_s13042_022_01647_y |
| Cites_doi | 10.1109/CEC.2014.6900380 10.1109/TEVC.2017.2754271 10.1016/j.ins.2014.03.083 10.1016/j.ins.2017.09.053 10.1109/TSMCA.2012.2226024 10.1109/TEVC.2022.3145582 10.1109/CEC.2004.1331145 10.1016/j.swevo.2017.11.002 10.1016/j.swevo.2018.03.008 10.1016/j.ins.2015.09.009 10.1016/j.ins.2012.04.027 10.1016/j.swevo.2019.03.003 10.1109/CEC.2013.6557794 10.1016/j.swevo.2016.01.004 10.1109/TEVC.2006.872133 10.1109/ACCESS.2019.2914963 10.1016/j.asoc.2010.04.024 10.1109/CEC.2017.7969307 10.1016/j.neucom.2020.09.007 10.1109/TEVC.2010.2083670 10.1007/978-3-642-00267-0_7 10.1016/j.ins.2021.01.031 10.1109/TIM.2020.2983233 10.1145/2576768.2598236 10.1016/j.solener.2020.06.100 10.1007/s12293-009-0008-9 10.1016/j.enconman.2020.112509 10.1007/s00500-017-2588-5 10.1109/CEC.2016.7744190 10.1016/j.swevo.2018.06.010 10.1007/s10489-007-0091-x 10.1109/TCYB.2020.3034427 10.1504/IJWMC.2016.081159 10.1007/s00500-019-04159-0 10.1007/978-3-642-30976-2_43 10.1023/A:1011375326814 10.1016/j.jocs.2017.07.010 10.1016/j.knosys.2020.106209 10.1007/s13042-017-0711-7 10.2991/ijcis.d.190711.001 10.1023/A:1008202821328 10.1109/TEVC.2019.2904900 10.1109/TEVC.2008.927706 10.1016/j.knosys.2021.107080 10.1007/s12293-021-00328-7 10.1109/ICIECS.2009.5365500 10.1016/j.swevo.2020.100788 10.1007/s10710-009-9089-y 10.1007/s00500-019-04154-5 10.1016/j.ins.2017.09.002 10.1109/TEVC.2009.2014613 10.1109/TEVC.2017.2743016 10.1109/TCYB.2013.2239988 10.1109/CEC.2013.6557555 10.1016/j.ins.2020.11.023 10.1007/s00500-017-2777-2 10.1109/TSMC.2018.2807785 10.1007/s10462-017-9562-6 10.1016/j.swevo.2018.08.017 10.1007/s00500-008-0357-1 10.1109/ISACV.2017.8054910 10.1016/j.knosys.2021.107653 10.1016/j.solener.2019.08.022 10.1109/TEVC.2002.800880 10.23919/CSMS.2021.0010 10.1109/TEVC.2010.2087271 10.1007/978-3-030-02357-7_21 10.23919/CSMS.2021.0002 10.1109/TCYB.2017.2676882 10.1109/TCYB.2013.2279211 10.1016/j.asoc.2009.02.012 10.1016/j.engappai.2020.103479 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.23919/CSMS.2022.0004 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2096-9929 |
| EndPage | 58 |
| ExternalDocumentID | oai_doaj_org_article_50dfd3b30e5845948171c4c3fbd310cf 10_23919_CSMS_2022_0004 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c348t-5bbee6a90f6ec8a6f27169cf6b68c34cc2d4e22cfd7cc2107ee6705efee3165a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544324900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2096-9929 |
| IngestDate | Fri Oct 03 12:44:44 EDT 2025 Tue Nov 18 22:15:37 EST 2025 Sat Nov 29 03:38:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-5bbee6a90f6ec8a6f27169cf6b68c34cc2d4e22cfd7cc2107ee6705efee3165a3 |
| OpenAccessLink | https://doaj.org/article/50dfd3b30e5845948171c4c3fbd310cf |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_50dfd3b30e5845948171c4c3fbd310cf crossref_citationtrail_10_23919_CSMS_2022_0004 crossref_primary_10_23919_CSMS_2022_0004 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-3-00 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-3-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Complex System Modeling and Simulation |
| PublicationYear | 2022 |
| Publisher | Tsinghua University Press |
| Publisher_xml | – name: Tsinghua University Press |
| References | ref57 ref13 ref56 ref12 wang (ref38) 2012 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref33 ref32 ref2 ref1 ref39 ref71 ref70 ref73 ref72 peng (ref60) 2009 ref68 ref24 ref67 ref23 ref26 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 pant (ref10) 2020; 90 ref28 ref27 ref29 awad (ref69) 2016 ref62 ref61 |
| References_xml | – ident: ref22 doi: 10.1109/CEC.2014.6900380 – ident: ref73 doi: 10.1109/TEVC.2017.2754271 – ident: ref49 doi: 10.1016/j.ins.2014.03.083 – ident: ref32 doi: 10.1016/j.ins.2017.09.053 – ident: ref67 doi: 10.1109/TSMCA.2012.2226024 – ident: ref74 doi: 10.1109/TEVC.2022.3145582 – ident: ref15 doi: 10.1109/CEC.2004.1331145 – ident: ref44 doi: 10.1016/j.swevo.2017.11.002 – ident: ref68 doi: 10.1016/j.swevo.2018.03.008 – ident: ref45 doi: 10.1016/j.ins.2015.09.009 – ident: ref48 doi: 10.1016/j.ins.2012.04.027 – ident: ref57 doi: 10.1016/j.swevo.2019.03.003 – ident: ref66 doi: 10.1109/CEC.2013.6557794 – ident: ref16 doi: 10.1016/j.swevo.2016.01.004 – ident: ref29 doi: 10.1109/TEVC.2006.872133 – ident: ref36 doi: 10.1109/ACCESS.2019.2914963 – ident: ref27 doi: 10.1016/j.asoc.2010.04.024 – ident: ref23 doi: 10.1109/CEC.2017.7969307 – ident: ref46 doi: 10.1016/j.neucom.2020.09.007 – ident: ref20 doi: 10.1109/TEVC.2010.2083670 – ident: ref65 doi: 10.1007/978-3-642-00267-0_7 – ident: ref25 doi: 10.1016/j.ins.2021.01.031 – ident: ref4 doi: 10.1109/TIM.2020.2983233 – ident: ref37 doi: 10.1145/2576768.2598236 – ident: ref53 doi: 10.1016/j.solener.2020.06.100 – ident: ref43 doi: 10.1007/s12293-009-0008-9 – ident: ref6 doi: 10.1016/j.enconman.2020.112509 – ident: ref33 doi: 10.1007/s00500-017-2588-5 – ident: ref56 doi: 10.1109/CEC.2016.7744190 – ident: ref11 doi: 10.1016/j.swevo.2018.06.010 – year: 2016 ident: ref69 publication-title: Evaluation criteria for the CEC 2017 special session and competition on single objective realparameter numerical optimization – ident: ref24 doi: 10.1007/s10489-007-0091-x – ident: ref31 doi: 10.1109/TCYB.2020.3034427 – ident: ref61 doi: 10.1504/IJWMC.2016.081159 – ident: ref72 doi: 10.1007/s00500-019-04159-0 – ident: ref41 doi: 10.1007/978-3-642-30976-2_43 – ident: ref12 doi: 10.1023/A:1011375326814 – ident: ref21 doi: 10.1016/j.jocs.2017.07.010 – ident: ref5 doi: 10.1016/j.knosys.2020.106209 – ident: ref34 doi: 10.1007/s13042-017-0711-7 – ident: ref39 doi: 10.2991/ijcis.d.190711.001 – ident: ref1 doi: 10.1023/A:1008202821328 – ident: ref58 doi: 10.1109/TEVC.2019.2904900 – ident: ref51 doi: 10.1109/TEVC.2008.927706 – ident: ref8 doi: 10.1016/j.knosys.2021.107080 – ident: ref75 doi: 10.1007/s12293-021-00328-7 – ident: ref14 doi: 10.1109/ICIECS.2009.5365500 – ident: ref7 doi: 10.1016/j.swevo.2020.100788 – ident: ref47 doi: 10.1007/s10710-009-9089-y – ident: ref18 doi: 10.1007/s00500-019-04154-5 – ident: ref35 doi: 10.1016/j.ins.2017.09.002 – ident: ref28 doi: 10.1109/TEVC.2009.2014613 – ident: ref30 doi: 10.1109/TEVC.2017.2743016 – ident: ref13 doi: 10.1109/TCYB.2013.2239988 – ident: ref62 doi: 10.1109/CEC.2013.6557555 – ident: ref59 doi: 10.1016/j.ins.2020.11.023 – ident: ref71 doi: 10.1007/s00500-017-2777-2 – ident: ref55 doi: 10.1109/TSMC.2018.2807785 – ident: ref52 doi: 10.1007/s10462-017-9562-6 – ident: ref9 doi: 10.1016/j.swevo.2018.08.017 – ident: ref42 doi: 10.1007/s00500-008-0357-1 – ident: ref50 doi: 10.1109/ISACV.2017.8054910 – ident: ref54 doi: 10.1016/j.knosys.2021.107653 – ident: ref40 doi: 10.1016/j.solener.2019.08.022 – ident: ref19 doi: 10.1109/TEVC.2002.800880 – start-page: 1889 year: 2009 ident: ref60 article-title: Multi-start jade with knowledge transfer for numerical optimization publication-title: Proc of IEEE Congress on Evolutionary Computation – ident: ref2 doi: 10.23919/CSMS.2021.0010 – ident: ref17 doi: 10.1109/TEVC.2010.2087271 – ident: ref70 doi: 10.1007/978-3-030-02357-7_21 – ident: ref3 doi: 10.23919/CSMS.2021.0002 – start-page: 1 year: 2012 ident: ref38 article-title: Multi-objective optimization using a hybrid differential evolution algorithm publication-title: Proc of IEEE Congress on Evolutionary Computation – ident: ref63 doi: 10.1109/TCYB.2017.2676882 – ident: ref64 doi: 10.1109/TCYB.2013.2279211 – ident: ref26 doi: 10.1016/j.asoc.2009.02.012 – volume: 90 start-page: 103479 year: 2020 ident: ref10 article-title: Differential evolution: A review of more than two decades of research publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103479 |
| SSID | ssib052855636 ssib053565417 |
| Score | 2.3361914 |
| Snippet | To address complex single objective global optimization problems, a new Level-Based Learning Differential Evolution (LBLDE) is developed in this study. In this... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 35 |
| SubjectTerms | differential evolution (de) exemplar selection level-based learning parameter adaptation |
| Title | Differential Evolution with Level-Based Learning Mechanism |
| URI | https://doaj.org/article/50dfd3b30e5845948171c4c3fbd310cf |
| Volume | 2 |
| WOSCitedRecordID | wos001544324900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2096-9929 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib053565417 issn: 2096-9929 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kePAiior1ixw8eFmb7GaTrDdbKx7aIlSht7Afs1KoVbT26G93JomlHsSLlxDCJGxmNpk3yex7jJ1brBqsU8Ct15KnidHcZsZyREgZuARM7CrVkkE-GhWTib5fk_qinrCaHrh2XEfFPnhpZQyYKitukTxxqZPBekQmLtDbN871WjGFM0mJgoivVolWSUV617R2WiBm5xpBQc3zI6ROdKc3Ho6xVhQ1eeePFLXG5F-lnNsdtt1gxei6HuMu24D5Hru6aSRN8NGcRf1lM3Ui-qAaDagFiHcxM_moYU59ioZAq3un78_77PG2_9C7440AAncyLRZcWQuQGR0H9FthsiCI28aFzGYFWjgnfApCuOBz3MdCDq3zWEEAkEmmjDxgrfnLHA5ZlKdGBu98EoNNPVgrFQIT5RGfGI9FTZtdft9z6Rp2cBKpmJVYJVROKslJJTmJflinbXaxOuG1Jsb43bRLTlyZEaN1dQDjXDZxLv-K89F_XOSYbdGo6h6yE9ZavH3AKdt0y8X0_e2smkK4HX72vwDvr8kH |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Evolution+with+Level-Based+Learning+Mechanism&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Kangjia+Qiao&rft.au=Jing+Liang&rft.au=Boyang+Qu&rft.au=Kunjie+Yu&rft.date=2022-03-01&rft.pub=Tsinghua+University+Press&rft.issn=2096-9929&rft.volume=2&rft.issue=1&rft.spage=35&rft.epage=58&rft_id=info:doi/10.23919%2FCSMS.2022.0004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_50dfd3b30e5845948171c4c3fbd310cf |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon |