Gradient algorithms for polygonal approximation of convex contours

The subjects of this paper are descent algorithms to optimally approximate a strictly convex contour with a polygon. This classic geometric problem is relevant in interpolation theory and data compression, and has potential applications in robotic sensor networks. We design gradient descent laws for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 45; číslo 2; s. 510 - 516
Hlavní autoři: Susca, Sara, Bullo, Francesco, Martínez, Sonia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.02.2009
Elsevier
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The subjects of this paper are descent algorithms to optimally approximate a strictly convex contour with a polygon. This classic geometric problem is relevant in interpolation theory and data compression, and has potential applications in robotic sensor networks. We design gradient descent laws for intuitive performance metrics such as the area of the inner, outer, and “outer minus inner” approximating polygons. The algorithms position the polygon vertices based on simple feedback ideas and on limited nearest-neighbor interaction.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2008.08.020