Gradient algorithms for polygonal approximation of convex contours
The subjects of this paper are descent algorithms to optimally approximate a strictly convex contour with a polygon. This classic geometric problem is relevant in interpolation theory and data compression, and has potential applications in robotic sensor networks. We design gradient descent laws for...
Uložené v:
| Vydané v: | Automatica (Oxford) Ročník 45; číslo 2; s. 510 - 516 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
01.02.2009
Elsevier |
| Predmet: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The subjects of this paper are descent algorithms to optimally approximate a strictly convex contour with a polygon. This classic geometric problem is relevant in interpolation theory and data compression, and has potential applications in robotic sensor networks. We design gradient descent laws for intuitive performance metrics such as the area of the inner, outer, and “outer minus inner” approximating polygons. The algorithms position the polygon vertices based on simple feedback ideas and on limited nearest-neighbor interaction. |
|---|---|
| ISSN: | 0005-1098 1873-2836 |
| DOI: | 10.1016/j.automatica.2008.08.020 |