Bistable Biorders: A Sequential Domain Theory

We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order -- the extensional order -- and a bistable coherence, which captures equivalence of program behaviour, up to permutation of top...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 3, Issue 2
Hlavní autor: Laird, James
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 15.05.2007
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order -- the extensional order -- and a bistable coherence, which captures equivalence of program behaviour, up to permutation of top (error) and bottom (divergence). We show that monotone and bistable functions (which are required to preserve bistably bounded meets and joins) are strongly sequential, and use this fact to prove universality results for the bistable biorder semantics of the simply-typed lambda-calculus (with atomic constants), and an extension with arithmetic and recursion. We also construct a bistable model of SPCF, a higher-order functional programming language with non-local control. We use our universality result for the lambda-calculus to show that the semantics of SPCF is fully abstract. We then establish a direct correspondence between bistable functions and sequential algorithms by showing that sequential data structures give rise to bistable biorders, and that each bistable function between such biorders is computed by a sequential algorithm.
AbstractList We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order -- the extensional order -- and a bistable coherence, which captures equivalence of program behaviour, up to permutation of top (error) and bottom (divergence). We show that monotone and bistable functions (which are required to preserve bistably bounded meets and joins) are strongly sequential, and use this fact to prove universality results for the bistable biorder semantics of the simply-typed lambda-calculus (with atomic constants), and an extension with arithmetic and recursion. We also construct a bistable model of SPCF, a higher-order functional programming language with non-local control. We use our universality result for the lambda-calculus to show that the semantics of SPCF is fully abstract. We then establish a direct correspondence between bistable functions and sequential algorithms by showing that sequential data structures give rise to bistable biorders, and that each bistable function between such biorders is computed by a sequential algorithm.
We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order -- the extensional order -- and a bistable coherence, which captures equivalence of program behaviour, up to permutation of top (error) and bottom (divergence). We show that monotone and bistable functions (which are required to preserve bistably bounded meets and joins) are strongly sequential, and use this fact to prove universality results for the bistable biorder semantics of the simply-typed lambda-calculus (with atomic constants), and an extension with arithmetic and recursion. We also construct a bistable model of SPCF, a higher-order functional programming language with non-local control. We use our universality result for the lambda-calculus to show that the semantics of SPCF is fully abstract. We then establish a direct correspondence between bistable functions and sequential algorithms by showing that sequential data structures give rise to bistable biorders, and that each bistable function between such biorders is computed by a sequential algorithm.
Author Laird, James
Author_xml – sequence: 1
  givenname: James
  surname: Laird
  fullname: Laird, James
BookMark eNp1kE1LAzEQhoMoWGvPXveoh7VJdvPVW1u_ChUPreeQTbKast1oEg_996ZWQQTnMsPA-8zwnIHj3vcWgAsErzGifLx8nK_K6hJPyBWGkB2BAeIUlkSw-vjXfApGMW5grqpCHNMBKGcuJtV0tpg5H4wNcVJMi5V9_7B9cqorbvxWub5Yv1ofdufgpFVdtKPvPgTPd7fr-UO5fLpfzKfLUlc1TyUhpmEctTVqRCsItEjUllltDCVQWIKUYBoZCFvNEKZKYEItMqRSRMOaiWoIFgeu8Woj34LbqrCTXjn5tfDhRaqQnO6sNJljMMWYNbiGXCuRqRDnu5lPeJNZ5MDSwccYbCu1Syo536egXCcRlHuFcq9QVhJLIvcKc278J_fzx3-JTx8lcxk
CitedBy_id crossref_primary_10_1016_j_entcs_2007_02_035
crossref_primary_10_1016_j_entcs_2015_12_017
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2168/LMCS-3(2:5)2007
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_d1d0d26227b2408ca90fc029f9d0058b
10_2168_LMCS_3_2_5_2007
GroupedDBID 29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c348t-55db781f41b9f950e194e7ecdd6509e51a97c1d00fc7126a9256e1d53a5c04793
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262497200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:50:32 EDT 2025
Tue Nov 18 21:52:30 EST 2025
Sat Nov 29 06:21:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://arxiv.org/licenses/assumed-1991-2003
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-55db781f41b9f950e194e7ecdd6509e51a97c1d00fc7126a9256e1d53a5c04793
OpenAccessLink https://doaj.org/article/d1d0d26227b2408ca90fc029f9d0058b
ParticipantIDs doaj_primary_oai_doaj_org_article_d1d0d26227b2408ca90fc029f9d0058b
crossref_citationtrail_10_2168_LMCS_3_2_5_2007
crossref_primary_10_2168_LMCS_3_2_5_2007
PublicationCentury 2000
PublicationDate 2007-05-15
PublicationDateYYYYMMDD 2007-05-15
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-15
  day: 15
PublicationDecade 2000
PublicationTitle Logical methods in computer science
PublicationYear 2007
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 1.711484
Snippet We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a...
We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms computer science - logic in computer science
computer science - programming languages
f.3.2
Title Bistable Biorders: A Sequential Domain Theory
URI https://doaj.org/article/d1d0d26227b2408ca90fc029f9d0058b
Volume 3, Issue 2
WOSCitedRecordID wos000262497200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmDhjSgveWAog2lsx3HcrS2tGNoKqSB1s_yUKpUWtYWR346dpFUZEAtLhsiJcnfx3XeO830A3FltRJ4SjLyiFKWpz1COVYY858J7nGfOFuz6fT4c5uOxeN6S-op7wkp64NJxDYttYklGCNeRjcsokXiTEOGFjZJ4OmbfhIutZqrIwZRG4Fxy-RCc5Y3-oDNCtE6a7D4uz_0oQ1ts_UVZ6R2BgwoPwlb5HMdgx81OwOFaawFWU-8UoHYEenrqYHtS0GUum7AFR8VG6DBJp_Bx_haafFj-a38GXnvdl84TqqQOkKFpvkKMWc1z7FOsg2UscVikjjtjbWS4cwwrwU3wRLCdY5IpEZCKw5ZRxUwkiafnYHc2n7kLAFMeMIdg2gZoFqp1onSihA8JUev4jVXUwMPacmkqHvAoRzGVoR-IrpLRVZJKIlkUqeQ1UN9c8F5SYPw-tB1duRkWuauLEyGisoqo_Cuil_9xkyuwX67CMoTZNdhdLT7cDdgzn6vJcnFbvCzhOPjqfgOPicEY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bistable+Biorders%3A+A+Sequential+Domain+Theory&rft.jtitle=Logical+methods+in+computer+science&rft.au=James+Laird&rft.date=2007-05-15&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=3%2C+Issue+2&rft_id=info:doi/10.2168%2FLMCS-3%282%3A5%292007&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d1d0d26227b2408ca90fc029f9d0058b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon