Bistable Biorders: A Sequential Domain Theory

We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order -- the extensional order -- and a bistable coherence, which captures equivalence of program behaviour, up to permutation of top...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Logical methods in computer science Ročník 3, Issue 2
Hlavný autor: Laird, James
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Logical Methods in Computer Science e.V 15.05.2007
Predmet:
ISSN:1860-5974, 1860-5974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order -- the extensional order -- and a bistable coherence, which captures equivalence of program behaviour, up to permutation of top (error) and bottom (divergence). We show that monotone and bistable functions (which are required to preserve bistably bounded meets and joins) are strongly sequential, and use this fact to prove universality results for the bistable biorder semantics of the simply-typed lambda-calculus (with atomic constants), and an extension with arithmetic and recursion. We also construct a bistable model of SPCF, a higher-order functional programming language with non-local control. We use our universality result for the lambda-calculus to show that the semantics of SPCF is fully abstract. We then establish a direct correspondence between bistable functions and sequential algorithms by showing that sequential data structures give rise to bistable biorders, and that each bistable function between such biorders is computed by a sequential algorithm.
ISSN:1860-5974
1860-5974
DOI:10.2168/LMCS-3(2:5)2007