Operating windows for early evaluation of the applicability of advanced reactive distillation technologies

Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of operating windows with additional features to identify suitable operating limits for ARDT. Data needed to construct the operating windows are thermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design Jg. 189; S. 485 - 499
Hauptverfasser: Pazmiño-Mayorga, Isabel, Jobson, Megan, Kiss, Anton A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2023
Schlagworte:
ISSN:0263-8762
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of operating windows with additional features to identify suitable operating limits for ARDT. Data needed to construct the operating windows are thermodynamic properties, kinetic parameters, constraints of materials and experimental methods, and heuristics. In addition, two new concepts are proposed to represent complex features: representative components and a sliding window. Results include the identification of suitable operating limits for ARDT to help assess their feasibility early in process design. The proposed approach is demonstrated by case studies. Methyl acetate production can be carried out at low pressures (0.5–3.6 atm), while lactic acid purification requires vacuum conditions (0.3–0.8 atm) to avoid thermal degradation. Tert-amyl methyl ether production was evaluated in two scenarios where the effect of side reactions is evidenced in a reduction of the reaction window due temperature limits to favour the main reaction over side reaction. This study is the first to evaluate advanced reactive distillation technologies using a graphical representation in an operating window to aid process synthesis, where the results provide key selection insights. •Process intensification enabled via advanced reactive distillation technologies.•Operating windows construction to expand the applicability of reactive distillation.•Simplification strategies to represent multicomponent systems in operating windows.
AbstractList Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of operating windows with additional features to identify suitable operating limits for ARDT. Data needed to construct the operating windows are thermodynamic properties, kinetic parameters, constraints of materials and experimental methods, and heuristics. In addition, two new concepts are proposed to represent complex features: representative components and a sliding window. Results include the identification of suitable operating limits for ARDT to help assess their feasibility early in process design. The proposed approach is demonstrated by case studies. Methyl acetate production can be carried out at low pressures (0.5–3.6 atm), while lactic acid purification requires vacuum conditions (0.3–0.8 atm) to avoid thermal degradation. Tert-amyl methyl ether production was evaluated in two scenarios where the effect of side reactions is evidenced in a reduction of the reaction window due temperature limits to favour the main reaction over side reaction. This study is the first to evaluate advanced reactive distillation technologies using a graphical representation in an operating window to aid process synthesis, where the results provide key selection insights. •Process intensification enabled via advanced reactive distillation technologies.•Operating windows construction to expand the applicability of reactive distillation.•Simplification strategies to represent multicomponent systems in operating windows.
Author Kiss, Anton A.
Pazmiño-Mayorga, Isabel
Jobson, Megan
Author_xml – sequence: 1
  givenname: Isabel
  orcidid: 0000-0001-9853-6396
  surname: Pazmiño-Mayorga
  fullname: Pazmiño-Mayorga, Isabel
  email: isabel.pazminomayorga@manchester.ac.uk
  organization: Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
– sequence: 2
  givenname: Megan
  orcidid: 0000-0001-9626-5879
  surname: Jobson
  fullname: Jobson, Megan
  organization: Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
– sequence: 3
  givenname: Anton A.
  surname: Kiss
  fullname: Kiss, Anton A.
  email: tonykiss@gmail.com
  organization: Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
BookMark eNqFkMtOwzAQRb0oEm3hC9j4BxL8yqMLFqjiJVXqBtaWY09aRyaObNOqf0_SsmIBq5FmdEb3ngWa9b4HhO4oySmh5X2X6z0EkzPCWE5pTkQ9Q3PCSp7VVcmu0SLGjhBCK1HPUbcdIKhk-x0-2t74Y8StDxhUcCcMB-W-xqPvsW9x2gNWw-CsVo11Np2mpTIH1WswOIDSyR4AGxuTde6CJdD73ju_sxBv0FWrXITbn7lEH89P7-vXbLN9eVs_bjLNRZ2ygjEBJWl5wdqqMYZXlNSsBjCCwoqbQghRFo0yVSU4aUpCVGVMS1lR6JaC4Uu0uvzVwccYoJXapnOcFJR1khI5iZKdPIuSkyhJqRxFjSz_xQ7Bfqpw-od6uFAw1jpYCDJqC5MWG0Anabz9k_8G84yKVw
CitedBy_id crossref_primary_10_1016_j_cep_2025_110479
crossref_primary_10_1016_j_jlp_2025_105582
crossref_primary_10_1016_j_cherd_2023_06_060
crossref_primary_10_1002_jctb_7633
crossref_primary_10_1016_j_coche_2024_101071
crossref_primary_10_1016_j_energy_2023_127493
crossref_primary_10_1002_aic_18811
crossref_primary_10_1016_j_cherd_2023_06_022
crossref_primary_10_1080_15422119_2024_2414354
crossref_primary_10_3390_resources14090143
Cites_doi 10.1016/j.ijms.2010.11.003
10.1016/B978-0-323-85159-6.50107-X
10.1016/S1570-7946(03)80200-6
10.1021/op200264t
10.1016/j.cep.2015.03.026
10.1016/j.cep.2021.108402
10.1002/cite.202000057
10.1021/acs.iecr.8b05450
10.1002/aic.14827
10.1016/j.applthermaleng.2014.08.017
10.1016/S0255-2701(02)00087-9
10.1021/acs.jpca.7b02639
10.1016/j.cep.2015.05.002
10.1016/j.reactfunctpolym.2006.11.003
10.1016/j.seppur.2014.06.003
10.1021/ie990008l
10.1016/j.bej.2018.03.003
10.1016/j.apgeochem.2017.07.013
10.1021/ie500371c
10.1016/j.cep.2014.07.001
10.1021/ie502171q
10.1016/S0009-2509(96)00424-1
10.1016/j.cherd.2013.07.011
10.1016/j.compchemeng.2013.06.017
10.1080/01496390802151617
10.1016/j.jcat.2005.12.019
10.1016/j.seppur.2006.03.015
10.1016/j.energy.2009.12.008
10.1021/ie303192x
10.1007/s11244-018-1052-9
10.1016/j.compchemeng.2015.03.014
10.1016/S0009-2509(02)00415-3
10.1016/j.cep.2011.12.005
10.1007/s11814-017-0009-1
10.1016/j.cherd.2016.05.015
10.1021/ie0007419
10.1016/j.procbio.2012.07.011
10.1021/ie970454d
10.1016/j.ces.2013.04.052
10.1205/cherd05007
10.1016/j.cep.2014.10.017
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cherd.2022.11.048
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 499
ExternalDocumentID 10_1016_j_cherd_2022_11_048
S0263876222006815
GroupedDBID --K
--M
-QF
-~X
.~1
0R~
1B1
1~.
1~5
29B
3EH
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABDBF
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFO
ACIWK
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KOM
M41
ML-
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSR
SSZ
T5K
T9H
TUS
UNMZH
VH1
~02
~8M
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACUHS
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c348t-5224e60f352f7bdd3710828eed41e93d544465bad77430b600a7ddf1255cf1ed3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000974496800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8762
IngestDate Sat Nov 29 02:04:03 EST 2025
Tue Nov 18 21:49:22 EST 2025
Wed Dec 04 16:46:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Reactive distillation
Process intensification
Process synthesis
Operating windows
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-5224e60f352f7bdd3710828eed41e93d544465bad77430b600a7ddf1255cf1ed3
ORCID 0000-0001-9853-6396
0000-0001-9626-5879
OpenAccessLink https://dx.doi.org/10.1016/j.cherd.2022.11.048
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_cherd_2022_11_048
crossref_primary_10_1016_j_cherd_2022_11_048
elsevier_sciencedirect_doi_10_1016_j_cherd_2022_11_048
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Chemical engineering research & design
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Kiss (bib19) 2017
Patrut, Bildea, Lita, Kiss (bib65) 2014; 125
Pérez Cisneros, Gani, Michelsen (bib41) 1997; 52
Smith, Hong-Shum (bib49) 2003
Su, Yu, Chien, Ward (bib55) 2013; 52
Luyben, Yu (bib31) 2008
Morton, Weber, Zhang (bib35) 2011; 306
Al-Arfaj, Luyben (bib1) 2002; 57
Cruz, Bringué, Cunill, Izquierdo, Tejero, Iborra, Fité (bib8) 2006; 238
Leng, Emonds, Hamilton, Ringer (bib26) 2012; 16
Pulido, Martínez, Maciel, Filho (bib44) 2011; 24
Steimel, Harrmann, Schembecker, Engell (bib53) 2014; 115
Lutze, Gorak (bib29) 2013; 91
Stankiewicz, Gerven, Stefanidis (bib51) 2019
Harmsen, Verkerk (bib12) 2020
Recker, Skiborowski, Redepenning, Marquardt (bib46) 2015; 81
Sundmacher, Kienle (bib57) 2003
Gao, Wang, Li, Li (bib11) 2014; 132
Riese, Grünewald (bib47) 2020; 92
Kim, Kim, Lee (bib17) 2017; 34
Miller, Fosmer, Rush, McMullin, Beacom, Suominen (bib34) 2017
Kiss, Olujić (bib22) 2014; 86
Azapagic, Millington, Collett (bib4) 2006; 84
Pazmiño-Mayorga, Jobson, Kiss (bib39) 2021; 164
Holtbruegge, Kuhlmann, Lutze (bib14) 2014; 53
Pazmiño-Mayorga, Kiss, Jobson (bib40) 2022
Tylko, Barkmann, Sand, Schembecker, Engell (bib60) 2006
Kiss (bib18) 2019; 62
Kiss, Jobson, Gao (bib21) 2019; 58
Khunnonkwao, Boontawan, Haltrich, Maischberger, Boontawan (bib16) 2012; 47
Alves de Oliveira, Komesu, Vaz Rossell, Maciel Filho (bib2) 2018; 133
Babi, Lutze, Woodley, Gani (bib5) 2014; 86
Marcilly (bib33) 2005
Joglekar, Rahman, Babu, Kulkarni, Joshi (bib15) 2006; 52
European Commission, 2006. European Union Risk Assessment Report: 2-methoxy-2-methylbutane (TAME). European Commission – Joint Research Centre, Italy.
Li, Zhou, Li, Ma, Chen, Wu, Zhang (bib28) 2017; 84
Maleta, Shevchenko, Bedryk, Kiss (bib32) 2015; 61
Starr, Westhoff (bib52) 2014
Kiss (bib20) 2013
Moulijn, Stankiewicz (bib36) 2017
Kiviranta-Pääkkönen, Struckmann, Linnekoski, Krause (bib23) 1998; 37
Berre, Serp, Kalck, Torrence (bib6) 2014
Wacker, 2022. Methyl acetate [WWW Document]. Wacker. URL https://www.wacker.com/h/en-gb/solvents/methyl-acetate-metac-97/p/000000209 (accessed 8.11.22).
Smith (bib50) 2016
Luyben (bib30) 2013
Hessel, Kralisch, Kockmann (bib13) 2014
Steimel, Harrmann, Schembecker, Engell (bib54) 2013; 59
Zuo, Pan, Cao, Li, Zhang (bib64) 2014; 53
Werth, Lutze, Kiss, Stankiewicz, Stefanidis, Górak (bib63) 2015; 93
Pöpken, Steinigeweg, Gmehling (bib42) 2001; 40
Vanaki, Eslamloueyan (bib61) 2012; 52
Pasetti, Invernizzi, Iora (bib38) 2014; 73
Turton (bib59) 2018
An, Cai, Xia, Zhang, Wang (bib3) 2015; 92
Klöker, Kenig, Górak, Fraczek, Salacki, Orlikowski (bib24) 2003
Li, Meng, Li, Gao (bib27) 2016; 111
Subawalla, Fair (bib56) 1999; 38
Kraume, Enders, Drews, Schomäcker, Engell, Sundmacher (bib25) 2022
Campbell, Wigal, Van Brunt, Kline (bib7) 2008; 43
Schembecker, Tlatlik (bib48) 2003; 42
Porterfield, Bross, Ruscic, Thorpe, Nguyen, Baraban, Stanton, Daily, Ellison (bib43) 2017; 121
Cruz, Izquierdo, Cunill, Tejero, Iborra, Fité, Bringué (bib9) 2007; 67
Suphanit (bib58) 2010; 35
Orjuela, Santaella, Molano (bib37) 2016
Quarderer, G.J., Trent, D.L., Stewart, E.J., Tirtowidjojo, D., Mehta, A.J., Tirtowidjojo, C.A., 2000. Method for synthesis of hypohalous acid. US6048513A.
Li (10.1016/j.cherd.2022.11.048_bib27) 2016; 111
Kiss (10.1016/j.cherd.2022.11.048_bib20) 2013
Miller (10.1016/j.cherd.2022.11.048_bib34) 2017
Patrut (10.1016/j.cherd.2022.11.048_bib65) 2014; 125
Turton (10.1016/j.cherd.2022.11.048_bib59) 2018
Tylko (10.1016/j.cherd.2022.11.048_bib60) 2006
Porterfield (10.1016/j.cherd.2022.11.048_bib43) 2017; 121
10.1016/j.cherd.2022.11.048_bib62
Pazmiño-Mayorga (10.1016/j.cherd.2022.11.048_bib40) 2022
Leng (10.1016/j.cherd.2022.11.048_bib26) 2012; 16
Lutze (10.1016/j.cherd.2022.11.048_bib29) 2013; 91
Suphanit (10.1016/j.cherd.2022.11.048_bib58) 2010; 35
Stankiewicz (10.1016/j.cherd.2022.11.048_bib51) 2019
Subawalla (10.1016/j.cherd.2022.11.048_bib56) 1999; 38
Azapagic (10.1016/j.cherd.2022.11.048_bib4) 2006; 84
Harmsen (10.1016/j.cherd.2022.11.048_bib12) 2020
Vanaki (10.1016/j.cherd.2022.11.048_bib61) 2012; 52
Orjuela (10.1016/j.cherd.2022.11.048_bib37) 2016
Berre (10.1016/j.cherd.2022.11.048_bib6) 2014
Steimel (10.1016/j.cherd.2022.11.048_bib54) 2013; 59
Zuo (10.1016/j.cherd.2022.11.048_bib64) 2014; 53
Marcilly (10.1016/j.cherd.2022.11.048_bib33) 2005
Recker (10.1016/j.cherd.2022.11.048_bib46) 2015; 81
Starr (10.1016/j.cherd.2022.11.048_bib52) 2014
An (10.1016/j.cherd.2022.11.048_bib3) 2015; 92
Smith (10.1016/j.cherd.2022.11.048_bib49) 2003
Smith (10.1016/j.cherd.2022.11.048_bib50) 2016
Luyben (10.1016/j.cherd.2022.11.048_bib30) 2013
Babi (10.1016/j.cherd.2022.11.048_bib5) 2014; 86
Maleta (10.1016/j.cherd.2022.11.048_bib32) 2015; 61
Campbell (10.1016/j.cherd.2022.11.048_bib7) 2008; 43
Riese (10.1016/j.cherd.2022.11.048_bib47) 2020; 92
Luyben (10.1016/j.cherd.2022.11.048_bib31) 2008
Pazmiño-Mayorga (10.1016/j.cherd.2022.11.048_bib39) 2021; 164
Kiss (10.1016/j.cherd.2022.11.048_bib19) 2017
Kraume (10.1016/j.cherd.2022.11.048_bib25) 2022
Pöpken (10.1016/j.cherd.2022.11.048_bib42) 2001; 40
Moulijn (10.1016/j.cherd.2022.11.048_bib36) 2017
10.1016/j.cherd.2022.11.048_bib45
Klöker (10.1016/j.cherd.2022.11.048_bib24) 2003
Sundmacher (10.1016/j.cherd.2022.11.048_bib57) 2003
Kiss (10.1016/j.cherd.2022.11.048_bib21) 2019; 58
Su (10.1016/j.cherd.2022.11.048_bib55) 2013; 52
Morton (10.1016/j.cherd.2022.11.048_bib35) 2011; 306
Kiss (10.1016/j.cherd.2022.11.048_bib18) 2019; 62
Werth (10.1016/j.cherd.2022.11.048_bib63) 2015; 93
Gao (10.1016/j.cherd.2022.11.048_bib11) 2014; 132
Schembecker (10.1016/j.cherd.2022.11.048_bib48) 2003; 42
Joglekar (10.1016/j.cherd.2022.11.048_bib15) 2006; 52
Alves de Oliveira (10.1016/j.cherd.2022.11.048_bib2) 2018; 133
Pasetti (10.1016/j.cherd.2022.11.048_bib38) 2014; 73
Cruz (10.1016/j.cherd.2022.11.048_bib9) 2007; 67
Li (10.1016/j.cherd.2022.11.048_bib28) 2017; 84
Pérez Cisneros (10.1016/j.cherd.2022.11.048_bib41) 1997; 52
Pulido (10.1016/j.cherd.2022.11.048_bib44) 2011; 24
Kim (10.1016/j.cherd.2022.11.048_bib17) 2017; 34
10.1016/j.cherd.2022.11.048_bib10
Kiss (10.1016/j.cherd.2022.11.048_bib22) 2014; 86
Khunnonkwao (10.1016/j.cherd.2022.11.048_bib16) 2012; 47
Cruz (10.1016/j.cherd.2022.11.048_bib8) 2006; 238
Hessel (10.1016/j.cherd.2022.11.048_bib13) 2014
Al-Arfaj (10.1016/j.cherd.2022.11.048_bib1) 2002; 57
Holtbruegge (10.1016/j.cherd.2022.11.048_bib14) 2014; 53
Kiviranta-Pääkkönen (10.1016/j.cherd.2022.11.048_bib23) 1998; 37
Steimel (10.1016/j.cherd.2022.11.048_bib53) 2014; 115
References_xml – year: 2003
  ident: bib57
  article-title: Reactive Distillation: Status and Future Directions
– volume: 238
  start-page: 330
  year: 2006
  end-page: 341
  ident: bib8
  article-title: Conversion, selectivity and kinetics of the liquid-phase dimerisation of isoamylenes in the presence of C1 to C5 alcohols catalysed by a macroporous ion-exchange resin
  publication-title: J. Catal.
– reference: Quarderer, G.J., Trent, D.L., Stewart, E.J., Tirtowidjojo, D., Mehta, A.J., Tirtowidjojo, C.A., 2000. Method for synthesis of hypohalous acid. US6048513A.
– year: 2017
  ident: bib34
  article-title: Industrial production of lactic acid
  publication-title: Reference Module in Life Sciences
– volume: 111
  start-page: 479
  year: 2016
  end-page: 491
  ident: bib27
  article-title: A fixed point methodology for the design of reactive distillation columns
  publication-title: Chem. Eng. Res. Des.
– year: 2014
  ident: bib13
  article-title: Novel Process Windows: Innovative Gates to Intensified and Sustainable Chemical Processes
– volume: 61
  start-page: 2581
  year: 2015
  end-page: 2591
  ident: bib32
  article-title: Pilot-scale studies of process intensification by cyclic distillation
  publication-title: AIChE J.
– year: 2008
  ident: bib31
  article-title: Reactive Distillation Design and Control
– volume: 306
  start-page: 210
  year: 2011
  end-page: 218
  ident: bib35
  article-title: Thermal decomposition of t-amyl methyl ether (TAME) studied by flash pyrolysis/supersonic expansion/vacuum ultraviolet photoionization time-of-flight mass spectrometry
  publication-title: Int. J. Mass Spectrom.
– volume: 84
  start-page: 306
  year: 2017
  end-page: 313
  ident: bib28
  article-title: Experimental study of the decomposition of acetic acid under conditions relevant to deep reservoirs
  publication-title: Appl. Geochem.
– volume: 40
  start-page: 1566
  year: 2001
  end-page: 1574
  ident: bib42
  article-title: Synthesis and hydrolysis of methyl acetate by reactive distillation using structured catalytic packings: Experiments and simulation
  publication-title: Ind. Eng. Chem. Res.
– volume: 133
  start-page: 219
  year: 2018
  end-page: 239
  ident: bib2
  article-title: Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects
  publication-title: Biochem. Eng. J.
– reference: European Commission, 2006. European Union Risk Assessment Report: 2-methoxy-2-methylbutane (TAME). European Commission – Joint Research Centre, Italy.
– start-page: 509
  year: 2017
  end-page: 518
  ident: bib36
  article-title: Process Intensification
  publication-title: Encyclopedia of Sustainable Technologies
– volume: 52
  start-page: 1
  year: 2006
  end-page: 17
  ident: bib15
  article-title: Comparative assessment of downstream processing options for lactic acid
  publication-title: Sep. Purif. Technol.
– volume: 132
  start-page: 468
  year: 2014
  end-page: 478
  ident: bib11
  article-title: Heat-integrated reactive distillation process for TAME synthesis
  publication-title: Sep. Purif. Technol.
– volume: 53
  start-page: 13412
  year: 2014
  end-page: 13429
  ident: bib14
  article-title: Conceptual design of flowsheet options based on thermodynamic insights for (reaction−) separation processes applying process intensification
  publication-title: Ind. Eng. Chem. Res.
– volume: 58
  start-page: 5909
  year: 2019
  end-page: 5918
  ident: bib21
  article-title: Reactive distillation: stepping up to the next level of process intensification
  publication-title: Ind. Eng. Chem. Res.
– year: 2003
  ident: bib49
  article-title: Food Additives Data Book
– volume: 47
  start-page: 1948
  year: 2012
  end-page: 1956
  ident: bib16
  article-title: Purification of l-(+)-lactic acid from pre-treated fermentation broth using vapor permeation-assisted esterification
  publication-title: Process Biochem.
– volume: 115
  start-page: 225
  year: 2014
  end-page: 237
  ident: bib53
  article-title: A framework for the modeling and optimization of process superstructures under uncertainty
  publication-title: Chem. Eng. Sci.
– volume: 84
  start-page: 439
  year: 2006
  end-page: 452
  ident: bib4
  article-title: A methodology for integrating sustainability considerations into process design
  publication-title: Chem. Eng. Res. Des.
– volume: 52
  start-page: 527
  year: 1997
  end-page: 543
  ident: bib41
  article-title: Reactive separation systems—I. Computation of physical and chemical equilibrium
  publication-title: Chem. Eng. Sci.
– year: 2017
  ident: bib19
  article-title: 4. Process intensification by reactive distillation
  publication-title: Process Synthesis and Process Intensification Methodological Approaches
– volume: 62
  start-page: 1132
  year: 2019
  end-page: 1148
  ident: bib18
  article-title: Novel catalytic reactive distillation processes for a sustainable chemical industry
  publication-title: Top. Catal.
– volume: 125
  start-page: 326
  year: 2014
  end-page: 336
  ident: bib65
  article-title: Cyclic distillation - Design, control and applications, Separation & Purification Technology
– start-page: 1
  year: 2014
  end-page: 34
  ident: bib6
  article-title: Acetic Acid
– volume: 92
  start-page: 45
  year: 2015
  end-page: 60
  ident: bib3
  article-title: Design and control of reactive dividing-wall column for the production of methyl acetate
  publication-title: Chem. Eng. Process. Process. Intensif.
– start-page: 1
  year: 2014
  end-page: 8
  ident: bib52
  article-title: Lactic Acid
  publication-title: Ullmann’s Encyclopedia of Industrial Chemistry
– volume: 16
  start-page: 415
  year: 2012
  end-page: 424
  ident: bib26
  article-title: Holistic route selection
  publication-title: Org. Process Res. Dev.
– year: 2013
  ident: bib30
  publication-title: Distillation Design and Control Using Aspen Simulation
– volume: 35
  start-page: 1505
  year: 2010
  end-page: 1514
  ident: bib58
  article-title: Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution
  publication-title: Energy
– volume: 67
  start-page: 210
  year: 2007
  end-page: 224
  ident: bib9
  article-title: Kinetic modelling of the liquid-phase dimerization of isoamylenes on Amberlyst 35
  publication-title: React. Funct. Polym.
– year: 2013
  ident: bib20
  article-title: Advanced Distillation Technologies: Design Control, and Applications
– reference: Wacker, 2022. Methyl acetate [WWW Document]. Wacker. URL https://www.wacker.com/h/en-gb/solvents/methyl-acetate-metac-97/p/000000209 (accessed 8.11.22).
– volume: 37
  start-page: 18
  year: 1998
  end-page: 24
  ident: bib23
  article-title: Dehydration of the alcohol in the etherification of isoamylenes with methanol and ethanol
  publication-title: Ind. Eng. Chem. Res.
– volume: 81
  start-page: 260
  year: 2015
  end-page: 271
  ident: bib46
  article-title: A unifying framework for optimization-based design of integrated reaction–separation processes
  publication-title: Comput. Chem. Eng.
– volume: 121
  start-page: 4658
  year: 2017
  end-page: 4677
  ident: bib43
  article-title: Thermal decomposition of potential ester biofuels. Part I: Methyl acetate and methyl butanoate
  publication-title: J. Phys. Chem. A
– volume: 34
  start-page: 1310
  year: 2017
  end-page: 1318
  ident: bib17
  article-title: Process simulation for the recovery of lactic acid using thermally coupled distillation columns to mitigate the remixing effect
  publication-title: Korean J. Chem. Eng.
– volume: 53
  start-page: 10540
  year: 2014
  end-page: 10548
  ident: bib64
  article-title: Catalysts, kinetics, and reactive distillation for methyl acetate synthesis
  publication-title: Ind. Eng. Chem. Res.
– volume: 43
  start-page: 2269
  year: 2008
  end-page: 2297
  ident: bib7
  article-title: Comparison of energy usage for the vacuum separation of acetic acid/acetic anhydride using an internally heat integrated distillation column (HIDiC)
  publication-title: Sep. Sci. Technol.
– volume: 57
  start-page: 5039
  year: 2002
  end-page: 5050
  ident: bib1
  article-title: Comparative control study of ideal and methyl acetate reactive distillation
  publication-title: Chem. Eng. Sci.
– volume: 86
  start-page: 125
  year: 2014
  end-page: 144
  ident: bib22
  article-title: A review on process intensification in internally heat-integrated distillation columns
  publication-title: Chem. Eng. Process. Process. Intensif.
– year: 2005
  ident: bib33
  article-title: Acido-basic Catalysis: Application to Refining and Petrochemistry
– year: 2019
  ident: bib51
  article-title: The fundamentals of process intensification
– start-page: 643
  year: 2022
  end-page: 648
  ident: bib40
  article-title: Synthesis of advanced reactive distillation technologies: Early-stage assessment based on thermodynamic properties and kinetics
  publication-title: Computer Aided Chemical Engineering, 14 International Symposium on Process Systems Engineering
– year: 2016
  ident: bib50
  publication-title: Chemical process design and integration
– year: 2020
  ident: bib12
  article-title: Process Intensification: Breakthrough in Design, Industrial Innovation Practices, and Education
– volume: 91
  start-page: 1978
  year: 2013
  end-page: 1997
  ident: bib29
  article-title: Reactive and membrane-assisted distillation: recent developments and perspective
  publication-title: Chem. Eng. Res. Des.
– volume: 92
  start-page: 1887
  year: 2020
  end-page: 1897
  ident: bib47
  article-title: Challenges and opportunities to enhance flexibility in design and operation of chemical processes
  publication-title: Chem. -Ing. -Tech.
– volume: 86
  start-page: 173
  year: 2014
  end-page: 195
  ident: bib5
  article-title: A process synthesis-intensification framework for the development of sustainable membrane-based operations
  publication-title: Chem. Eng. Process. Process. Intensif.
– volume: 164
  year: 2021
  ident: bib39
  article-title: Conceptual design of a dual reactive dividing wall column for downstream processing of lactic acid
  publication-title: Chem. Eng. Process. - Process. Intensif.
– volume: 73
  start-page: 764
  year: 2014
  end-page: 774
  ident: bib38
  article-title: Thermal stability of working fluids for organic Rankine cycles: an improved survey method and experimental results for cyclopentane, isopentane and n-butane
  publication-title: Appl. Therm. Eng.
– volume: 93
  start-page: 87
  year: 2015
  end-page: 97
  ident: bib63
  article-title: A systematic investigation of microwave-assisted reactive distillation: Influence of microwaves on separation and reaction
  publication-title: Chem. Eng. Process. Process. Intensif.
– start-page: 7
  year: 2006
  end-page: 94
  ident: bib60
  article-title: Synthesis of reactive separation processes
  publication-title: Integrated Reaction and Separation Operations: Modelling and Experimental Validation
– start-page: 713
  year: 2003
  end-page: 718
  ident: bib24
  article-title: Experimental and theoretical studies of the TAME synthesis by reactive distillation
  publication-title: Computer Aided Chemical Engineering, European Symposium on Computer Aided Process Engineering-13
– start-page: 131
  year: 2016
  end-page: 181
  ident: bib37
  article-title: Process intensification by reactive distillation
  publication-title: Process Intensification in Chemical Engineering: Design, Optimization and Control
– volume: 24
  start-page: 1303
  year: 2011
  end-page: 1308
  ident: bib44
  article-title: Heat integrated reactive distillation column (r-HIDiC): Implementing a new technology distillation
  publication-title: Chem. Eng. Trans.
– volume: 52
  start-page: 11070
  year: 2013
  end-page: 11083
  ident: bib55
  article-title: Plant-wide economic comparison of lactic acid recovery processes by reactive distillation with different alcohols
  publication-title: Ind. Eng. Chem. Res.
– volume: 52
  start-page: 21
  year: 2012
  end-page: 27
  ident: bib61
  article-title: Steady-state simulation of a reactive internally heat integrated distillation column (R-HIDiC) for synthesis of tertiary-amyl methyl ether (TAME)
  publication-title: Chem. Eng. Process. Process. Intensif.
– volume: 42
  start-page: 179
  year: 2003
  end-page: 189
  ident: bib48
  article-title: Process synthesis for reactive separations
  publication-title: Chem. Eng. Process. Process. Intensif.
– year: 2018
  ident: bib59
  article-title: Analysis, synthesis
  publication-title: and design of chemical processes
– volume: 38
  start-page: 3696
  year: 1999
  end-page: 3709
  ident: bib56
  article-title: Design guidelines for solid-catalyzed reactive distillation systems
  publication-title: Ind. Eng. Chem. Res.
– year: 2022
  ident: bib25
  article-title: Integrated Chemical Processes in Liquid Multiphase Systems: From Chemical Reaction To Process Design and Operation
– volume: 59
  start-page: 63
  year: 2013
  end-page: 73
  ident: bib54
  article-title: Model-based conceptual design and optimization tool support for the early stage development of chemical processes under uncertainty
  publication-title: Comput. Chem. Eng.
– year: 2022
  ident: 10.1016/j.cherd.2022.11.048_bib25
– volume: 306
  start-page: 210
  year: 2011
  ident: 10.1016/j.cherd.2022.11.048_bib35
  article-title: Thermal decomposition of t-amyl methyl ether (TAME) studied by flash pyrolysis/supersonic expansion/vacuum ultraviolet photoionization time-of-flight mass spectrometry
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2010.11.003
– start-page: 1
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib52
  article-title: Lactic Acid
– start-page: 643
  year: 2022
  ident: 10.1016/j.cherd.2022.11.048_bib40
  article-title: Synthesis of advanced reactive distillation technologies: Early-stage assessment based on thermodynamic properties and kinetics
  doi: 10.1016/B978-0-323-85159-6.50107-X
– start-page: 713
  year: 2003
  ident: 10.1016/j.cherd.2022.11.048_bib24
  article-title: Experimental and theoretical studies of the TAME synthesis by reactive distillation
  doi: 10.1016/S1570-7946(03)80200-6
– volume: 16
  start-page: 415
  year: 2012
  ident: 10.1016/j.cherd.2022.11.048_bib26
  article-title: Holistic route selection
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op200264t
– year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib13
– start-page: 1
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib6
  article-title: Acetic Acid
– start-page: 509
  year: 2017
  ident: 10.1016/j.cherd.2022.11.048_bib36
  article-title: Process Intensification
– volume: 92
  start-page: 45
  year: 2015
  ident: 10.1016/j.cherd.2022.11.048_bib3
  article-title: Design and control of reactive dividing-wall column for the production of methyl acetate
  publication-title: Chem. Eng. Process. Process. Intensif.
  doi: 10.1016/j.cep.2015.03.026
– volume: 24
  start-page: 1303
  year: 2011
  ident: 10.1016/j.cherd.2022.11.048_bib44
  article-title: Heat integrated reactive distillation column (r-HIDiC): Implementing a new technology distillation
  publication-title: Chem. Eng. Trans.
– year: 2020
  ident: 10.1016/j.cherd.2022.11.048_bib12
– year: 2013
  ident: 10.1016/j.cherd.2022.11.048_bib30
– volume: 164
  year: 2021
  ident: 10.1016/j.cherd.2022.11.048_bib39
  article-title: Conceptual design of a dual reactive dividing wall column for downstream processing of lactic acid
  publication-title: Chem. Eng. Process. - Process. Intensif.
  doi: 10.1016/j.cep.2021.108402
– volume: 92
  start-page: 1887
  year: 2020
  ident: 10.1016/j.cherd.2022.11.048_bib47
  article-title: Challenges and opportunities to enhance flexibility in design and operation of chemical processes
  publication-title: Chem. -Ing. -Tech.
  doi: 10.1002/cite.202000057
– volume: 58
  start-page: 5909
  year: 2019
  ident: 10.1016/j.cherd.2022.11.048_bib21
  article-title: Reactive distillation: stepping up to the next level of process intensification
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b05450
– volume: 61
  start-page: 2581
  year: 2015
  ident: 10.1016/j.cherd.2022.11.048_bib32
  article-title: Pilot-scale studies of process intensification by cyclic distillation
  publication-title: AIChE J.
  doi: 10.1002/aic.14827
– volume: 73
  start-page: 764
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib38
  article-title: Thermal stability of working fluids for organic Rankine cycles: an improved survey method and experimental results for cyclopentane, isopentane and n-butane
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.08.017
– volume: 42
  start-page: 179
  year: 2003
  ident: 10.1016/j.cherd.2022.11.048_bib48
  article-title: Process synthesis for reactive separations
  publication-title: Chem. Eng. Process. Process. Intensif.
  doi: 10.1016/S0255-2701(02)00087-9
– volume: 121
  start-page: 4658
  year: 2017
  ident: 10.1016/j.cherd.2022.11.048_bib43
  article-title: Thermal decomposition of potential ester biofuels. Part I: Methyl acetate and methyl butanoate
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.7b02639
– volume: 93
  start-page: 87
  year: 2015
  ident: 10.1016/j.cherd.2022.11.048_bib63
  article-title: A systematic investigation of microwave-assisted reactive distillation: Influence of microwaves on separation and reaction
  publication-title: Chem. Eng. Process. Process. Intensif.
  doi: 10.1016/j.cep.2015.05.002
– volume: 125
  start-page: 326
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib65
  article-title: Cyclic distillation - Design, control and applications, Separation & Purification Technology
– volume: 67
  start-page: 210
  year: 2007
  ident: 10.1016/j.cherd.2022.11.048_bib9
  article-title: Kinetic modelling of the liquid-phase dimerization of isoamylenes on Amberlyst 35
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2006.11.003
– year: 2017
  ident: 10.1016/j.cherd.2022.11.048_bib34
  article-title: Industrial production of lactic acid
– volume: 132
  start-page: 468
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib11
  article-title: Heat-integrated reactive distillation process for TAME synthesis
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2014.06.003
– year: 2019
  ident: 10.1016/j.cherd.2022.11.048_bib51
– volume: 38
  start-page: 3696
  year: 1999
  ident: 10.1016/j.cherd.2022.11.048_bib56
  article-title: Design guidelines for solid-catalyzed reactive distillation systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990008l
– volume: 133
  start-page: 219
  year: 2018
  ident: 10.1016/j.cherd.2022.11.048_bib2
  article-title: Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.03.003
– volume: 84
  start-page: 306
  year: 2017
  ident: 10.1016/j.cherd.2022.11.048_bib28
  article-title: Experimental study of the decomposition of acetic acid under conditions relevant to deep reservoirs
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2017.07.013
– volume: 53
  start-page: 10540
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib64
  article-title: Catalysts, kinetics, and reactive distillation for methyl acetate synthesis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie500371c
– volume: 86
  start-page: 173
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib5
  article-title: A process synthesis-intensification framework for the development of sustainable membrane-based operations
  publication-title: Chem. Eng. Process. Process. Intensif.
  doi: 10.1016/j.cep.2014.07.001
– volume: 53
  start-page: 13412
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib14
  article-title: Conceptual design of flowsheet options based on thermodynamic insights for (reaction−) separation processes applying process intensification
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie502171q
– volume: 52
  start-page: 527
  year: 1997
  ident: 10.1016/j.cherd.2022.11.048_bib41
  article-title: Reactive separation systems—I. Computation of physical and chemical equilibrium
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(96)00424-1
– start-page: 7
  year: 2006
  ident: 10.1016/j.cherd.2022.11.048_bib60
  article-title: Synthesis of reactive separation processes
– year: 2018
  ident: 10.1016/j.cherd.2022.11.048_bib59
  article-title: Analysis, synthesis
– volume: 91
  start-page: 1978
  year: 2013
  ident: 10.1016/j.cherd.2022.11.048_bib29
  article-title: Reactive and membrane-assisted distillation: recent developments and perspective
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.07.011
– year: 2016
  ident: 10.1016/j.cherd.2022.11.048_bib50
– volume: 59
  start-page: 63
  year: 2013
  ident: 10.1016/j.cherd.2022.11.048_bib54
  article-title: Model-based conceptual design and optimization tool support for the early stage development of chemical processes under uncertainty
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.06.017
– volume: 43
  start-page: 2269
  year: 2008
  ident: 10.1016/j.cherd.2022.11.048_bib7
  article-title: Comparison of energy usage for the vacuum separation of acetic acid/acetic anhydride using an internally heat integrated distillation column (HIDiC)
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496390802151617
– volume: 238
  start-page: 330
  year: 2006
  ident: 10.1016/j.cherd.2022.11.048_bib8
  article-title: Conversion, selectivity and kinetics of the liquid-phase dimerisation of isoamylenes in the presence of C1 to C5 alcohols catalysed by a macroporous ion-exchange resin
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.12.019
– volume: 52
  start-page: 1
  year: 2006
  ident: 10.1016/j.cherd.2022.11.048_bib15
  article-title: Comparative assessment of downstream processing options for lactic acid
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2006.03.015
– volume: 35
  start-page: 1505
  year: 2010
  ident: 10.1016/j.cherd.2022.11.048_bib58
  article-title: Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.008
– volume: 52
  start-page: 11070
  year: 2013
  ident: 10.1016/j.cherd.2022.11.048_bib55
  article-title: Plant-wide economic comparison of lactic acid recovery processes by reactive distillation with different alcohols
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie303192x
– volume: 62
  start-page: 1132
  year: 2019
  ident: 10.1016/j.cherd.2022.11.048_bib18
  article-title: Novel catalytic reactive distillation processes for a sustainable chemical industry
  publication-title: Top. Catal.
  doi: 10.1007/s11244-018-1052-9
– volume: 81
  start-page: 260
  year: 2015
  ident: 10.1016/j.cherd.2022.11.048_bib46
  article-title: A unifying framework for optimization-based design of integrated reaction–separation processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.03.014
– volume: 57
  start-page: 5039
  year: 2002
  ident: 10.1016/j.cherd.2022.11.048_bib1
  article-title: Comparative control study of ideal and methyl acetate reactive distillation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(02)00415-3
– volume: 52
  start-page: 21
  year: 2012
  ident: 10.1016/j.cherd.2022.11.048_bib61
  article-title: Steady-state simulation of a reactive internally heat integrated distillation column (R-HIDiC) for synthesis of tertiary-amyl methyl ether (TAME)
  publication-title: Chem. Eng. Process. Process. Intensif.
  doi: 10.1016/j.cep.2011.12.005
– volume: 34
  start-page: 1310
  year: 2017
  ident: 10.1016/j.cherd.2022.11.048_bib17
  article-title: Process simulation for the recovery of lactic acid using thermally coupled distillation columns to mitigate the remixing effect
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-017-0009-1
– year: 2013
  ident: 10.1016/j.cherd.2022.11.048_bib20
– volume: 111
  start-page: 479
  year: 2016
  ident: 10.1016/j.cherd.2022.11.048_bib27
  article-title: A fixed point methodology for the design of reactive distillation columns
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.05.015
– year: 2005
  ident: 10.1016/j.cherd.2022.11.048_bib33
– volume: 40
  start-page: 1566
  year: 2001
  ident: 10.1016/j.cherd.2022.11.048_bib42
  article-title: Synthesis and hydrolysis of methyl acetate by reactive distillation using structured catalytic packings: Experiments and simulation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0007419
– volume: 47
  start-page: 1948
  year: 2012
  ident: 10.1016/j.cherd.2022.11.048_bib16
  article-title: Purification of l-(+)-lactic acid from pre-treated fermentation broth using vapor permeation-assisted esterification
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2012.07.011
– year: 2003
  ident: 10.1016/j.cherd.2022.11.048_bib57
– start-page: 131
  year: 2016
  ident: 10.1016/j.cherd.2022.11.048_bib37
  article-title: Process intensification by reactive distillation
– year: 2017
  ident: 10.1016/j.cherd.2022.11.048_bib19
  article-title: 4. Process intensification by reactive distillation
– year: 2003
  ident: 10.1016/j.cherd.2022.11.048_bib49
– ident: 10.1016/j.cherd.2022.11.048_bib10
– year: 2008
  ident: 10.1016/j.cherd.2022.11.048_bib31
– ident: 10.1016/j.cherd.2022.11.048_bib45
– volume: 37
  start-page: 18
  year: 1998
  ident: 10.1016/j.cherd.2022.11.048_bib23
  article-title: Dehydration of the alcohol in the etherification of isoamylenes with methanol and ethanol
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie970454d
– volume: 115
  start-page: 225
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib53
  article-title: A framework for the modeling and optimization of process superstructures under uncertainty
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.04.052
– ident: 10.1016/j.cherd.2022.11.048_bib62
– volume: 84
  start-page: 439
  year: 2006
  ident: 10.1016/j.cherd.2022.11.048_bib4
  article-title: A methodology for integrating sustainability considerations into process design
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd05007
– volume: 86
  start-page: 125
  year: 2014
  ident: 10.1016/j.cherd.2022.11.048_bib22
  article-title: A review on process intensification in internally heat-integrated distillation columns
  publication-title: Chem. Eng. Process. Process. Intensif.
  doi: 10.1016/j.cep.2014.10.017
SSID ssj0001748
Score 2.4160364
Snippet Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms Operating windows
Process intensification
Process synthesis
Reactive distillation
Title Operating windows for early evaluation of the applicability of advanced reactive distillation technologies
URI https://dx.doi.org/10.1016/j.cherd.2022.11.048
Volume 189
WOSCitedRecordID wos000974496800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0263-8762
  databaseCode: AIEXJ
  dateStart: 19961101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001748
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4oJaHKIXKB24lq42d53FBRVCppRJF2lsUxzZ0VZJVN_TBr-And8aPJNtWFSBxiVbWeh15vrW_GY-_IeQNyyohBbipsahEEMVcB3kseRCyknORpbnKpCk2kR4eZrNZfjQa_fZ3Yc5P07rOLi_zxX81NbSBsfHq7F-Yu_tRaIDPYHR4gtnh-UeG_7xAnWQbY61lc7G0qt5GyLjX9va5Ae4A26TIXq0kBQCbNGshnuG0WJvIdGt9KN4nH3qVAy88oHqBw12nJPTd4Euu5Ioclb9-nOAp_buwCQ7KK6wuZdarZSlUl_Wx3_jy5gfqWzlIGLCl3qdYAHl3Oh6GLhi_Ebro7tT0CUxLIwXL71ij88EqG9kqP27DjmyFpVt7gQ1LzMcIftSEZWyMeq1W2POGyPYXHBUHZRhiyVC1YJ2lcQ7r5Pr0095sv9vdwYPLbNzOvqVXsjI5g7eGupvtDBjM8QZ57FwPOrWQ2SQjVT8hjwaClE_JvAMPdeChAB5qwEN78NBGUwAPXQEPNnrwUA8eOgQPHYLnGfn6Ye_4_cfAVeMIKh5lbQBEPVLJRANj16mQkgM3BXcdOFYUqpzLOELtPVFKcCj4RACRLlMpNRDouNKhkvw5WaubWr0glCWKJSXPhdYyUjwRoUbRKD3hmnHB-BZhftaKyknVY8WU08LnJM4LM9UFTjU4sQVM9RZ523VaWKWW-7-eeHMUjmxaElkAfu7r-PJfO26Th_2f4BVZa89-qtfkQXXenizPdhzOrgHV9qmN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operating+windows+for+early+evaluation+of+the+applicability+of+advanced+reactive+distillation+technologies&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Pazmi%C3%B1o-Mayorga%2C+Isabel&rft.au=Jobson%2C+Megan&rft.au=Kiss%2C+Anton+A.&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8762&rft.volume=189&rft.spage=485&rft.epage=499&rft_id=info:doi/10.1016%2Fj.cherd.2022.11.048&rft.externalDocID=S0263876222006815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon