Operating windows for early evaluation of the applicability of advanced reactive distillation technologies
Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of operating windows with additional features to identify suitable operating limits for ARDT. Data needed to construct the operating windows are thermo...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering research & design Jg. 189; S. 485 - 499 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.01.2023
|
| Schlagworte: | |
| ISSN: | 0263-8762 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of operating windows with additional features to identify suitable operating limits for ARDT. Data needed to construct the operating windows are thermodynamic properties, kinetic parameters, constraints of materials and experimental methods, and heuristics. In addition, two new concepts are proposed to represent complex features: representative components and a sliding window. Results include the identification of suitable operating limits for ARDT to help assess their feasibility early in process design. The proposed approach is demonstrated by case studies. Methyl acetate production can be carried out at low pressures (0.5–3.6 atm), while lactic acid purification requires vacuum conditions (0.3–0.8 atm) to avoid thermal degradation. Tert-amyl methyl ether production was evaluated in two scenarios where the effect of side reactions is evidenced in a reduction of the reaction window due temperature limits to favour the main reaction over side reaction. This study is the first to evaluate advanced reactive distillation technologies using a graphical representation in an operating window to aid process synthesis, where the results provide key selection insights.
•Process intensification enabled via advanced reactive distillation technologies.•Operating windows construction to expand the applicability of reactive distillation.•Simplification strategies to represent multicomponent systems in operating windows. |
|---|---|
| AbstractList | Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of operating windows with additional features to identify suitable operating limits for ARDT. Data needed to construct the operating windows are thermodynamic properties, kinetic parameters, constraints of materials and experimental methods, and heuristics. In addition, two new concepts are proposed to represent complex features: representative components and a sliding window. Results include the identification of suitable operating limits for ARDT to help assess their feasibility early in process design. The proposed approach is demonstrated by case studies. Methyl acetate production can be carried out at low pressures (0.5–3.6 atm), while lactic acid purification requires vacuum conditions (0.3–0.8 atm) to avoid thermal degradation. Tert-amyl methyl ether production was evaluated in two scenarios where the effect of side reactions is evidenced in a reduction of the reaction window due temperature limits to favour the main reaction over side reaction. This study is the first to evaluate advanced reactive distillation technologies using a graphical representation in an operating window to aid process synthesis, where the results provide key selection insights.
•Process intensification enabled via advanced reactive distillation technologies.•Operating windows construction to expand the applicability of reactive distillation.•Simplification strategies to represent multicomponent systems in operating windows. |
| Author | Kiss, Anton A. Pazmiño-Mayorga, Isabel Jobson, Megan |
| Author_xml | – sequence: 1 givenname: Isabel orcidid: 0000-0001-9853-6396 surname: Pazmiño-Mayorga fullname: Pazmiño-Mayorga, Isabel email: isabel.pazminomayorga@manchester.ac.uk organization: Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom – sequence: 2 givenname: Megan orcidid: 0000-0001-9626-5879 surname: Jobson fullname: Jobson, Megan organization: Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom – sequence: 3 givenname: Anton A. surname: Kiss fullname: Kiss, Anton A. email: tonykiss@gmail.com organization: Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands |
| BookMark | eNqFkMtOwzAQRb0oEm3hC9j4BxL8yqMLFqjiJVXqBtaWY09aRyaObNOqf0_SsmIBq5FmdEb3ngWa9b4HhO4oySmh5X2X6z0EkzPCWE5pTkQ9Q3PCSp7VVcmu0SLGjhBCK1HPUbcdIKhk-x0-2t74Y8StDxhUcCcMB-W-xqPvsW9x2gNWw-CsVo11Np2mpTIH1WswOIDSyR4AGxuTde6CJdD73ju_sxBv0FWrXITbn7lEH89P7-vXbLN9eVs_bjLNRZ2ygjEBJWl5wdqqMYZXlNSsBjCCwoqbQghRFo0yVSU4aUpCVGVMS1lR6JaC4Uu0uvzVwccYoJXapnOcFJR1khI5iZKdPIuSkyhJqRxFjSz_xQ7Bfqpw-od6uFAw1jpYCDJqC5MWG0Anabz9k_8G84yKVw |
| CitedBy_id | crossref_primary_10_1016_j_cep_2025_110479 crossref_primary_10_1016_j_jlp_2025_105582 crossref_primary_10_1016_j_cherd_2023_06_060 crossref_primary_10_1002_jctb_7633 crossref_primary_10_1016_j_coche_2024_101071 crossref_primary_10_1016_j_energy_2023_127493 crossref_primary_10_1002_aic_18811 crossref_primary_10_1016_j_cherd_2023_06_022 crossref_primary_10_1080_15422119_2024_2414354 crossref_primary_10_3390_resources14090143 |
| Cites_doi | 10.1016/j.ijms.2010.11.003 10.1016/B978-0-323-85159-6.50107-X 10.1016/S1570-7946(03)80200-6 10.1021/op200264t 10.1016/j.cep.2015.03.026 10.1016/j.cep.2021.108402 10.1002/cite.202000057 10.1021/acs.iecr.8b05450 10.1002/aic.14827 10.1016/j.applthermaleng.2014.08.017 10.1016/S0255-2701(02)00087-9 10.1021/acs.jpca.7b02639 10.1016/j.cep.2015.05.002 10.1016/j.reactfunctpolym.2006.11.003 10.1016/j.seppur.2014.06.003 10.1021/ie990008l 10.1016/j.bej.2018.03.003 10.1016/j.apgeochem.2017.07.013 10.1021/ie500371c 10.1016/j.cep.2014.07.001 10.1021/ie502171q 10.1016/S0009-2509(96)00424-1 10.1016/j.cherd.2013.07.011 10.1016/j.compchemeng.2013.06.017 10.1080/01496390802151617 10.1016/j.jcat.2005.12.019 10.1016/j.seppur.2006.03.015 10.1016/j.energy.2009.12.008 10.1021/ie303192x 10.1007/s11244-018-1052-9 10.1016/j.compchemeng.2015.03.014 10.1016/S0009-2509(02)00415-3 10.1016/j.cep.2011.12.005 10.1007/s11814-017-0009-1 10.1016/j.cherd.2016.05.015 10.1021/ie0007419 10.1016/j.procbio.2012.07.011 10.1021/ie970454d 10.1016/j.ces.2013.04.052 10.1205/cherd05007 10.1016/j.cep.2014.10.017 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.cherd.2022.11.048 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 499 |
| ExternalDocumentID | 10_1016_j_cherd_2022_11_048 S0263876222006815 |
| GroupedDBID | --K --M -QF -~X .~1 0R~ 1B1 1~. 1~5 29B 3EH 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXKI AAXUO ABDBF ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ACDAQ ACGFO ACIWK ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHPOS AI. AIAGR AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EJD ENUVR EO9 EP2 EP3 ESX FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KOM M41 ML- MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSR SSZ T5K T9H TUS UNMZH VH1 ~02 ~8M ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACUHS ACVFH ADCNI ADMLS ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c348t-5224e60f352f7bdd3710828eed41e93d544465bad77430b600a7ddf1255cf1ed3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000974496800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8762 |
| IngestDate | Sat Nov 29 02:04:03 EST 2025 Tue Nov 18 21:49:22 EST 2025 Wed Dec 04 16:46:12 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Reactive distillation Process intensification Process synthesis Operating windows |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-5224e60f352f7bdd3710828eed41e93d544465bad77430b600a7ddf1255cf1ed3 |
| ORCID | 0000-0001-9853-6396 0000-0001-9626-5879 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cherd.2022.11.048 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cherd_2022_11_048 crossref_primary_10_1016_j_cherd_2022_11_048 elsevier_sciencedirect_doi_10_1016_j_cherd_2022_11_048 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering research & design |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – sequence: 0 name: Elsevier Ltd |
| References | Kiss (bib19) 2017 Patrut, Bildea, Lita, Kiss (bib65) 2014; 125 Pérez Cisneros, Gani, Michelsen (bib41) 1997; 52 Smith, Hong-Shum (bib49) 2003 Su, Yu, Chien, Ward (bib55) 2013; 52 Luyben, Yu (bib31) 2008 Morton, Weber, Zhang (bib35) 2011; 306 Al-Arfaj, Luyben (bib1) 2002; 57 Cruz, Bringué, Cunill, Izquierdo, Tejero, Iborra, Fité (bib8) 2006; 238 Leng, Emonds, Hamilton, Ringer (bib26) 2012; 16 Pulido, Martínez, Maciel, Filho (bib44) 2011; 24 Steimel, Harrmann, Schembecker, Engell (bib53) 2014; 115 Lutze, Gorak (bib29) 2013; 91 Stankiewicz, Gerven, Stefanidis (bib51) 2019 Harmsen, Verkerk (bib12) 2020 Recker, Skiborowski, Redepenning, Marquardt (bib46) 2015; 81 Sundmacher, Kienle (bib57) 2003 Gao, Wang, Li, Li (bib11) 2014; 132 Riese, Grünewald (bib47) 2020; 92 Kim, Kim, Lee (bib17) 2017; 34 Miller, Fosmer, Rush, McMullin, Beacom, Suominen (bib34) 2017 Kiss, Olujić (bib22) 2014; 86 Azapagic, Millington, Collett (bib4) 2006; 84 Pazmiño-Mayorga, Jobson, Kiss (bib39) 2021; 164 Holtbruegge, Kuhlmann, Lutze (bib14) 2014; 53 Pazmiño-Mayorga, Kiss, Jobson (bib40) 2022 Tylko, Barkmann, Sand, Schembecker, Engell (bib60) 2006 Kiss (bib18) 2019; 62 Kiss, Jobson, Gao (bib21) 2019; 58 Khunnonkwao, Boontawan, Haltrich, Maischberger, Boontawan (bib16) 2012; 47 Alves de Oliveira, Komesu, Vaz Rossell, Maciel Filho (bib2) 2018; 133 Babi, Lutze, Woodley, Gani (bib5) 2014; 86 Marcilly (bib33) 2005 Joglekar, Rahman, Babu, Kulkarni, Joshi (bib15) 2006; 52 European Commission, 2006. European Union Risk Assessment Report: 2-methoxy-2-methylbutane (TAME). European Commission – Joint Research Centre, Italy. Li, Zhou, Li, Ma, Chen, Wu, Zhang (bib28) 2017; 84 Maleta, Shevchenko, Bedryk, Kiss (bib32) 2015; 61 Starr, Westhoff (bib52) 2014 Kiss (bib20) 2013 Moulijn, Stankiewicz (bib36) 2017 Kiviranta-Pääkkönen, Struckmann, Linnekoski, Krause (bib23) 1998; 37 Berre, Serp, Kalck, Torrence (bib6) 2014 Wacker, 2022. Methyl acetate [WWW Document]. Wacker. URL https://www.wacker.com/h/en-gb/solvents/methyl-acetate-metac-97/p/000000209 (accessed 8.11.22). Smith (bib50) 2016 Luyben (bib30) 2013 Hessel, Kralisch, Kockmann (bib13) 2014 Steimel, Harrmann, Schembecker, Engell (bib54) 2013; 59 Zuo, Pan, Cao, Li, Zhang (bib64) 2014; 53 Werth, Lutze, Kiss, Stankiewicz, Stefanidis, Górak (bib63) 2015; 93 Pöpken, Steinigeweg, Gmehling (bib42) 2001; 40 Vanaki, Eslamloueyan (bib61) 2012; 52 Pasetti, Invernizzi, Iora (bib38) 2014; 73 Turton (bib59) 2018 An, Cai, Xia, Zhang, Wang (bib3) 2015; 92 Klöker, Kenig, Górak, Fraczek, Salacki, Orlikowski (bib24) 2003 Li, Meng, Li, Gao (bib27) 2016; 111 Subawalla, Fair (bib56) 1999; 38 Kraume, Enders, Drews, Schomäcker, Engell, Sundmacher (bib25) 2022 Campbell, Wigal, Van Brunt, Kline (bib7) 2008; 43 Schembecker, Tlatlik (bib48) 2003; 42 Porterfield, Bross, Ruscic, Thorpe, Nguyen, Baraban, Stanton, Daily, Ellison (bib43) 2017; 121 Cruz, Izquierdo, Cunill, Tejero, Iborra, Fité, Bringué (bib9) 2007; 67 Suphanit (bib58) 2010; 35 Orjuela, Santaella, Molano (bib37) 2016 Quarderer, G.J., Trent, D.L., Stewart, E.J., Tirtowidjojo, D., Mehta, A.J., Tirtowidjojo, C.A., 2000. Method for synthesis of hypohalous acid. US6048513A. Li (10.1016/j.cherd.2022.11.048_bib27) 2016; 111 Kiss (10.1016/j.cherd.2022.11.048_bib20) 2013 Miller (10.1016/j.cherd.2022.11.048_bib34) 2017 Patrut (10.1016/j.cherd.2022.11.048_bib65) 2014; 125 Turton (10.1016/j.cherd.2022.11.048_bib59) 2018 Tylko (10.1016/j.cherd.2022.11.048_bib60) 2006 Porterfield (10.1016/j.cherd.2022.11.048_bib43) 2017; 121 10.1016/j.cherd.2022.11.048_bib62 Pazmiño-Mayorga (10.1016/j.cherd.2022.11.048_bib40) 2022 Leng (10.1016/j.cherd.2022.11.048_bib26) 2012; 16 Lutze (10.1016/j.cherd.2022.11.048_bib29) 2013; 91 Suphanit (10.1016/j.cherd.2022.11.048_bib58) 2010; 35 Stankiewicz (10.1016/j.cherd.2022.11.048_bib51) 2019 Subawalla (10.1016/j.cherd.2022.11.048_bib56) 1999; 38 Azapagic (10.1016/j.cherd.2022.11.048_bib4) 2006; 84 Harmsen (10.1016/j.cherd.2022.11.048_bib12) 2020 Vanaki (10.1016/j.cherd.2022.11.048_bib61) 2012; 52 Orjuela (10.1016/j.cherd.2022.11.048_bib37) 2016 Berre (10.1016/j.cherd.2022.11.048_bib6) 2014 Steimel (10.1016/j.cherd.2022.11.048_bib54) 2013; 59 Zuo (10.1016/j.cherd.2022.11.048_bib64) 2014; 53 Marcilly (10.1016/j.cherd.2022.11.048_bib33) 2005 Recker (10.1016/j.cherd.2022.11.048_bib46) 2015; 81 Starr (10.1016/j.cherd.2022.11.048_bib52) 2014 An (10.1016/j.cherd.2022.11.048_bib3) 2015; 92 Smith (10.1016/j.cherd.2022.11.048_bib49) 2003 Smith (10.1016/j.cherd.2022.11.048_bib50) 2016 Luyben (10.1016/j.cherd.2022.11.048_bib30) 2013 Babi (10.1016/j.cherd.2022.11.048_bib5) 2014; 86 Maleta (10.1016/j.cherd.2022.11.048_bib32) 2015; 61 Campbell (10.1016/j.cherd.2022.11.048_bib7) 2008; 43 Riese (10.1016/j.cherd.2022.11.048_bib47) 2020; 92 Luyben (10.1016/j.cherd.2022.11.048_bib31) 2008 Pazmiño-Mayorga (10.1016/j.cherd.2022.11.048_bib39) 2021; 164 Kiss (10.1016/j.cherd.2022.11.048_bib19) 2017 Kraume (10.1016/j.cherd.2022.11.048_bib25) 2022 Pöpken (10.1016/j.cherd.2022.11.048_bib42) 2001; 40 Moulijn (10.1016/j.cherd.2022.11.048_bib36) 2017 10.1016/j.cherd.2022.11.048_bib45 Klöker (10.1016/j.cherd.2022.11.048_bib24) 2003 Sundmacher (10.1016/j.cherd.2022.11.048_bib57) 2003 Kiss (10.1016/j.cherd.2022.11.048_bib21) 2019; 58 Su (10.1016/j.cherd.2022.11.048_bib55) 2013; 52 Morton (10.1016/j.cherd.2022.11.048_bib35) 2011; 306 Kiss (10.1016/j.cherd.2022.11.048_bib18) 2019; 62 Werth (10.1016/j.cherd.2022.11.048_bib63) 2015; 93 Gao (10.1016/j.cherd.2022.11.048_bib11) 2014; 132 Schembecker (10.1016/j.cherd.2022.11.048_bib48) 2003; 42 Joglekar (10.1016/j.cherd.2022.11.048_bib15) 2006; 52 Alves de Oliveira (10.1016/j.cherd.2022.11.048_bib2) 2018; 133 Pasetti (10.1016/j.cherd.2022.11.048_bib38) 2014; 73 Cruz (10.1016/j.cherd.2022.11.048_bib9) 2007; 67 Li (10.1016/j.cherd.2022.11.048_bib28) 2017; 84 Pérez Cisneros (10.1016/j.cherd.2022.11.048_bib41) 1997; 52 Pulido (10.1016/j.cherd.2022.11.048_bib44) 2011; 24 Kim (10.1016/j.cherd.2022.11.048_bib17) 2017; 34 10.1016/j.cherd.2022.11.048_bib10 Kiss (10.1016/j.cherd.2022.11.048_bib22) 2014; 86 Khunnonkwao (10.1016/j.cherd.2022.11.048_bib16) 2012; 47 Cruz (10.1016/j.cherd.2022.11.048_bib8) 2006; 238 Hessel (10.1016/j.cherd.2022.11.048_bib13) 2014 Al-Arfaj (10.1016/j.cherd.2022.11.048_bib1) 2002; 57 Holtbruegge (10.1016/j.cherd.2022.11.048_bib14) 2014; 53 Kiviranta-Pääkkönen (10.1016/j.cherd.2022.11.048_bib23) 1998; 37 Steimel (10.1016/j.cherd.2022.11.048_bib53) 2014; 115 |
| References_xml | – year: 2003 ident: bib57 article-title: Reactive Distillation: Status and Future Directions – volume: 238 start-page: 330 year: 2006 end-page: 341 ident: bib8 article-title: Conversion, selectivity and kinetics of the liquid-phase dimerisation of isoamylenes in the presence of C1 to C5 alcohols catalysed by a macroporous ion-exchange resin publication-title: J. Catal. – reference: Quarderer, G.J., Trent, D.L., Stewart, E.J., Tirtowidjojo, D., Mehta, A.J., Tirtowidjojo, C.A., 2000. Method for synthesis of hypohalous acid. US6048513A. – year: 2017 ident: bib34 article-title: Industrial production of lactic acid publication-title: Reference Module in Life Sciences – volume: 111 start-page: 479 year: 2016 end-page: 491 ident: bib27 article-title: A fixed point methodology for the design of reactive distillation columns publication-title: Chem. Eng. Res. Des. – year: 2014 ident: bib13 article-title: Novel Process Windows: Innovative Gates to Intensified and Sustainable Chemical Processes – volume: 61 start-page: 2581 year: 2015 end-page: 2591 ident: bib32 article-title: Pilot-scale studies of process intensification by cyclic distillation publication-title: AIChE J. – year: 2008 ident: bib31 article-title: Reactive Distillation Design and Control – volume: 306 start-page: 210 year: 2011 end-page: 218 ident: bib35 article-title: Thermal decomposition of t-amyl methyl ether (TAME) studied by flash pyrolysis/supersonic expansion/vacuum ultraviolet photoionization time-of-flight mass spectrometry publication-title: Int. J. Mass Spectrom. – volume: 84 start-page: 306 year: 2017 end-page: 313 ident: bib28 article-title: Experimental study of the decomposition of acetic acid under conditions relevant to deep reservoirs publication-title: Appl. Geochem. – volume: 40 start-page: 1566 year: 2001 end-page: 1574 ident: bib42 article-title: Synthesis and hydrolysis of methyl acetate by reactive distillation using structured catalytic packings: Experiments and simulation publication-title: Ind. Eng. Chem. Res. – volume: 133 start-page: 219 year: 2018 end-page: 239 ident: bib2 article-title: Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects publication-title: Biochem. Eng. J. – reference: European Commission, 2006. European Union Risk Assessment Report: 2-methoxy-2-methylbutane (TAME). European Commission – Joint Research Centre, Italy. – start-page: 509 year: 2017 end-page: 518 ident: bib36 article-title: Process Intensification publication-title: Encyclopedia of Sustainable Technologies – volume: 52 start-page: 1 year: 2006 end-page: 17 ident: bib15 article-title: Comparative assessment of downstream processing options for lactic acid publication-title: Sep. Purif. Technol. – volume: 132 start-page: 468 year: 2014 end-page: 478 ident: bib11 article-title: Heat-integrated reactive distillation process for TAME synthesis publication-title: Sep. Purif. Technol. – volume: 53 start-page: 13412 year: 2014 end-page: 13429 ident: bib14 article-title: Conceptual design of flowsheet options based on thermodynamic insights for (reaction−) separation processes applying process intensification publication-title: Ind. Eng. Chem. Res. – volume: 58 start-page: 5909 year: 2019 end-page: 5918 ident: bib21 article-title: Reactive distillation: stepping up to the next level of process intensification publication-title: Ind. Eng. Chem. Res. – year: 2003 ident: bib49 article-title: Food Additives Data Book – volume: 47 start-page: 1948 year: 2012 end-page: 1956 ident: bib16 article-title: Purification of l-(+)-lactic acid from pre-treated fermentation broth using vapor permeation-assisted esterification publication-title: Process Biochem. – volume: 115 start-page: 225 year: 2014 end-page: 237 ident: bib53 article-title: A framework for the modeling and optimization of process superstructures under uncertainty publication-title: Chem. Eng. Sci. – volume: 84 start-page: 439 year: 2006 end-page: 452 ident: bib4 article-title: A methodology for integrating sustainability considerations into process design publication-title: Chem. Eng. Res. Des. – volume: 52 start-page: 527 year: 1997 end-page: 543 ident: bib41 article-title: Reactive separation systems—I. Computation of physical and chemical equilibrium publication-title: Chem. Eng. Sci. – year: 2017 ident: bib19 article-title: 4. Process intensification by reactive distillation publication-title: Process Synthesis and Process Intensification Methodological Approaches – volume: 62 start-page: 1132 year: 2019 end-page: 1148 ident: bib18 article-title: Novel catalytic reactive distillation processes for a sustainable chemical industry publication-title: Top. Catal. – volume: 125 start-page: 326 year: 2014 end-page: 336 ident: bib65 article-title: Cyclic distillation - Design, control and applications, Separation & Purification Technology – start-page: 1 year: 2014 end-page: 34 ident: bib6 article-title: Acetic Acid – volume: 92 start-page: 45 year: 2015 end-page: 60 ident: bib3 article-title: Design and control of reactive dividing-wall column for the production of methyl acetate publication-title: Chem. Eng. Process. Process. Intensif. – start-page: 1 year: 2014 end-page: 8 ident: bib52 article-title: Lactic Acid publication-title: Ullmann’s Encyclopedia of Industrial Chemistry – volume: 16 start-page: 415 year: 2012 end-page: 424 ident: bib26 article-title: Holistic route selection publication-title: Org. Process Res. Dev. – year: 2013 ident: bib30 publication-title: Distillation Design and Control Using Aspen Simulation – volume: 35 start-page: 1505 year: 2010 end-page: 1514 ident: bib58 article-title: Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution publication-title: Energy – volume: 67 start-page: 210 year: 2007 end-page: 224 ident: bib9 article-title: Kinetic modelling of the liquid-phase dimerization of isoamylenes on Amberlyst 35 publication-title: React. Funct. Polym. – year: 2013 ident: bib20 article-title: Advanced Distillation Technologies: Design Control, and Applications – reference: Wacker, 2022. Methyl acetate [WWW Document]. Wacker. URL https://www.wacker.com/h/en-gb/solvents/methyl-acetate-metac-97/p/000000209 (accessed 8.11.22). – volume: 37 start-page: 18 year: 1998 end-page: 24 ident: bib23 article-title: Dehydration of the alcohol in the etherification of isoamylenes with methanol and ethanol publication-title: Ind. Eng. Chem. Res. – volume: 81 start-page: 260 year: 2015 end-page: 271 ident: bib46 article-title: A unifying framework for optimization-based design of integrated reaction–separation processes publication-title: Comput. Chem. Eng. – volume: 121 start-page: 4658 year: 2017 end-page: 4677 ident: bib43 article-title: Thermal decomposition of potential ester biofuels. Part I: Methyl acetate and methyl butanoate publication-title: J. Phys. Chem. A – volume: 34 start-page: 1310 year: 2017 end-page: 1318 ident: bib17 article-title: Process simulation for the recovery of lactic acid using thermally coupled distillation columns to mitigate the remixing effect publication-title: Korean J. Chem. Eng. – volume: 53 start-page: 10540 year: 2014 end-page: 10548 ident: bib64 article-title: Catalysts, kinetics, and reactive distillation for methyl acetate synthesis publication-title: Ind. Eng. Chem. Res. – volume: 43 start-page: 2269 year: 2008 end-page: 2297 ident: bib7 article-title: Comparison of energy usage for the vacuum separation of acetic acid/acetic anhydride using an internally heat integrated distillation column (HIDiC) publication-title: Sep. Sci. Technol. – volume: 57 start-page: 5039 year: 2002 end-page: 5050 ident: bib1 article-title: Comparative control study of ideal and methyl acetate reactive distillation publication-title: Chem. Eng. Sci. – volume: 86 start-page: 125 year: 2014 end-page: 144 ident: bib22 article-title: A review on process intensification in internally heat-integrated distillation columns publication-title: Chem. Eng. Process. Process. Intensif. – year: 2005 ident: bib33 article-title: Acido-basic Catalysis: Application to Refining and Petrochemistry – year: 2019 ident: bib51 article-title: The fundamentals of process intensification – start-page: 643 year: 2022 end-page: 648 ident: bib40 article-title: Synthesis of advanced reactive distillation technologies: Early-stage assessment based on thermodynamic properties and kinetics publication-title: Computer Aided Chemical Engineering, 14 International Symposium on Process Systems Engineering – year: 2016 ident: bib50 publication-title: Chemical process design and integration – year: 2020 ident: bib12 article-title: Process Intensification: Breakthrough in Design, Industrial Innovation Practices, and Education – volume: 91 start-page: 1978 year: 2013 end-page: 1997 ident: bib29 article-title: Reactive and membrane-assisted distillation: recent developments and perspective publication-title: Chem. Eng. Res. Des. – volume: 92 start-page: 1887 year: 2020 end-page: 1897 ident: bib47 article-title: Challenges and opportunities to enhance flexibility in design and operation of chemical processes publication-title: Chem. -Ing. -Tech. – volume: 86 start-page: 173 year: 2014 end-page: 195 ident: bib5 article-title: A process synthesis-intensification framework for the development of sustainable membrane-based operations publication-title: Chem. Eng. Process. Process. Intensif. – volume: 164 year: 2021 ident: bib39 article-title: Conceptual design of a dual reactive dividing wall column for downstream processing of lactic acid publication-title: Chem. Eng. Process. - Process. Intensif. – volume: 73 start-page: 764 year: 2014 end-page: 774 ident: bib38 article-title: Thermal stability of working fluids for organic Rankine cycles: an improved survey method and experimental results for cyclopentane, isopentane and n-butane publication-title: Appl. Therm. Eng. – volume: 93 start-page: 87 year: 2015 end-page: 97 ident: bib63 article-title: A systematic investigation of microwave-assisted reactive distillation: Influence of microwaves on separation and reaction publication-title: Chem. Eng. Process. Process. Intensif. – start-page: 7 year: 2006 end-page: 94 ident: bib60 article-title: Synthesis of reactive separation processes publication-title: Integrated Reaction and Separation Operations: Modelling and Experimental Validation – start-page: 713 year: 2003 end-page: 718 ident: bib24 article-title: Experimental and theoretical studies of the TAME synthesis by reactive distillation publication-title: Computer Aided Chemical Engineering, European Symposium on Computer Aided Process Engineering-13 – start-page: 131 year: 2016 end-page: 181 ident: bib37 article-title: Process intensification by reactive distillation publication-title: Process Intensification in Chemical Engineering: Design, Optimization and Control – volume: 24 start-page: 1303 year: 2011 end-page: 1308 ident: bib44 article-title: Heat integrated reactive distillation column (r-HIDiC): Implementing a new technology distillation publication-title: Chem. Eng. Trans. – volume: 52 start-page: 11070 year: 2013 end-page: 11083 ident: bib55 article-title: Plant-wide economic comparison of lactic acid recovery processes by reactive distillation with different alcohols publication-title: Ind. Eng. Chem. Res. – volume: 52 start-page: 21 year: 2012 end-page: 27 ident: bib61 article-title: Steady-state simulation of a reactive internally heat integrated distillation column (R-HIDiC) for synthesis of tertiary-amyl methyl ether (TAME) publication-title: Chem. Eng. Process. Process. Intensif. – volume: 42 start-page: 179 year: 2003 end-page: 189 ident: bib48 article-title: Process synthesis for reactive separations publication-title: Chem. Eng. Process. Process. Intensif. – year: 2018 ident: bib59 article-title: Analysis, synthesis publication-title: and design of chemical processes – volume: 38 start-page: 3696 year: 1999 end-page: 3709 ident: bib56 article-title: Design guidelines for solid-catalyzed reactive distillation systems publication-title: Ind. Eng. Chem. Res. – year: 2022 ident: bib25 article-title: Integrated Chemical Processes in Liquid Multiphase Systems: From Chemical Reaction To Process Design and Operation – volume: 59 start-page: 63 year: 2013 end-page: 73 ident: bib54 article-title: Model-based conceptual design and optimization tool support for the early stage development of chemical processes under uncertainty publication-title: Comput. Chem. Eng. – year: 2022 ident: 10.1016/j.cherd.2022.11.048_bib25 – volume: 306 start-page: 210 year: 2011 ident: 10.1016/j.cherd.2022.11.048_bib35 article-title: Thermal decomposition of t-amyl methyl ether (TAME) studied by flash pyrolysis/supersonic expansion/vacuum ultraviolet photoionization time-of-flight mass spectrometry publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2010.11.003 – start-page: 1 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib52 article-title: Lactic Acid – start-page: 643 year: 2022 ident: 10.1016/j.cherd.2022.11.048_bib40 article-title: Synthesis of advanced reactive distillation technologies: Early-stage assessment based on thermodynamic properties and kinetics doi: 10.1016/B978-0-323-85159-6.50107-X – start-page: 713 year: 2003 ident: 10.1016/j.cherd.2022.11.048_bib24 article-title: Experimental and theoretical studies of the TAME synthesis by reactive distillation doi: 10.1016/S1570-7946(03)80200-6 – volume: 16 start-page: 415 year: 2012 ident: 10.1016/j.cherd.2022.11.048_bib26 article-title: Holistic route selection publication-title: Org. Process Res. Dev. doi: 10.1021/op200264t – year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib13 – start-page: 1 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib6 article-title: Acetic Acid – start-page: 509 year: 2017 ident: 10.1016/j.cherd.2022.11.048_bib36 article-title: Process Intensification – volume: 92 start-page: 45 year: 2015 ident: 10.1016/j.cherd.2022.11.048_bib3 article-title: Design and control of reactive dividing-wall column for the production of methyl acetate publication-title: Chem. Eng. Process. Process. Intensif. doi: 10.1016/j.cep.2015.03.026 – volume: 24 start-page: 1303 year: 2011 ident: 10.1016/j.cherd.2022.11.048_bib44 article-title: Heat integrated reactive distillation column (r-HIDiC): Implementing a new technology distillation publication-title: Chem. Eng. Trans. – year: 2020 ident: 10.1016/j.cherd.2022.11.048_bib12 – year: 2013 ident: 10.1016/j.cherd.2022.11.048_bib30 – volume: 164 year: 2021 ident: 10.1016/j.cherd.2022.11.048_bib39 article-title: Conceptual design of a dual reactive dividing wall column for downstream processing of lactic acid publication-title: Chem. Eng. Process. - Process. Intensif. doi: 10.1016/j.cep.2021.108402 – volume: 92 start-page: 1887 year: 2020 ident: 10.1016/j.cherd.2022.11.048_bib47 article-title: Challenges and opportunities to enhance flexibility in design and operation of chemical processes publication-title: Chem. -Ing. -Tech. doi: 10.1002/cite.202000057 – volume: 58 start-page: 5909 year: 2019 ident: 10.1016/j.cherd.2022.11.048_bib21 article-title: Reactive distillation: stepping up to the next level of process intensification publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05450 – volume: 61 start-page: 2581 year: 2015 ident: 10.1016/j.cherd.2022.11.048_bib32 article-title: Pilot-scale studies of process intensification by cyclic distillation publication-title: AIChE J. doi: 10.1002/aic.14827 – volume: 73 start-page: 764 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib38 article-title: Thermal stability of working fluids for organic Rankine cycles: an improved survey method and experimental results for cyclopentane, isopentane and n-butane publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.08.017 – volume: 42 start-page: 179 year: 2003 ident: 10.1016/j.cherd.2022.11.048_bib48 article-title: Process synthesis for reactive separations publication-title: Chem. Eng. Process. Process. Intensif. doi: 10.1016/S0255-2701(02)00087-9 – volume: 121 start-page: 4658 year: 2017 ident: 10.1016/j.cherd.2022.11.048_bib43 article-title: Thermal decomposition of potential ester biofuels. Part I: Methyl acetate and methyl butanoate publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b02639 – volume: 93 start-page: 87 year: 2015 ident: 10.1016/j.cherd.2022.11.048_bib63 article-title: A systematic investigation of microwave-assisted reactive distillation: Influence of microwaves on separation and reaction publication-title: Chem. Eng. Process. Process. Intensif. doi: 10.1016/j.cep.2015.05.002 – volume: 125 start-page: 326 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib65 article-title: Cyclic distillation - Design, control and applications, Separation & Purification Technology – volume: 67 start-page: 210 year: 2007 ident: 10.1016/j.cherd.2022.11.048_bib9 article-title: Kinetic modelling of the liquid-phase dimerization of isoamylenes on Amberlyst 35 publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2006.11.003 – year: 2017 ident: 10.1016/j.cherd.2022.11.048_bib34 article-title: Industrial production of lactic acid – volume: 132 start-page: 468 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib11 article-title: Heat-integrated reactive distillation process for TAME synthesis publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.06.003 – year: 2019 ident: 10.1016/j.cherd.2022.11.048_bib51 – volume: 38 start-page: 3696 year: 1999 ident: 10.1016/j.cherd.2022.11.048_bib56 article-title: Design guidelines for solid-catalyzed reactive distillation systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990008l – volume: 133 start-page: 219 year: 2018 ident: 10.1016/j.cherd.2022.11.048_bib2 article-title: Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.03.003 – volume: 84 start-page: 306 year: 2017 ident: 10.1016/j.cherd.2022.11.048_bib28 article-title: Experimental study of the decomposition of acetic acid under conditions relevant to deep reservoirs publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2017.07.013 – volume: 53 start-page: 10540 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib64 article-title: Catalysts, kinetics, and reactive distillation for methyl acetate synthesis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie500371c – volume: 86 start-page: 173 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib5 article-title: A process synthesis-intensification framework for the development of sustainable membrane-based operations publication-title: Chem. Eng. Process. Process. Intensif. doi: 10.1016/j.cep.2014.07.001 – volume: 53 start-page: 13412 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib14 article-title: Conceptual design of flowsheet options based on thermodynamic insights for (reaction−) separation processes applying process intensification publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie502171q – volume: 52 start-page: 527 year: 1997 ident: 10.1016/j.cherd.2022.11.048_bib41 article-title: Reactive separation systems—I. Computation of physical and chemical equilibrium publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(96)00424-1 – start-page: 7 year: 2006 ident: 10.1016/j.cherd.2022.11.048_bib60 article-title: Synthesis of reactive separation processes – year: 2018 ident: 10.1016/j.cherd.2022.11.048_bib59 article-title: Analysis, synthesis – volume: 91 start-page: 1978 year: 2013 ident: 10.1016/j.cherd.2022.11.048_bib29 article-title: Reactive and membrane-assisted distillation: recent developments and perspective publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.07.011 – year: 2016 ident: 10.1016/j.cherd.2022.11.048_bib50 – volume: 59 start-page: 63 year: 2013 ident: 10.1016/j.cherd.2022.11.048_bib54 article-title: Model-based conceptual design and optimization tool support for the early stage development of chemical processes under uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.06.017 – volume: 43 start-page: 2269 year: 2008 ident: 10.1016/j.cherd.2022.11.048_bib7 article-title: Comparison of energy usage for the vacuum separation of acetic acid/acetic anhydride using an internally heat integrated distillation column (HIDiC) publication-title: Sep. Sci. Technol. doi: 10.1080/01496390802151617 – volume: 238 start-page: 330 year: 2006 ident: 10.1016/j.cherd.2022.11.048_bib8 article-title: Conversion, selectivity and kinetics of the liquid-phase dimerisation of isoamylenes in the presence of C1 to C5 alcohols catalysed by a macroporous ion-exchange resin publication-title: J. Catal. doi: 10.1016/j.jcat.2005.12.019 – volume: 52 start-page: 1 year: 2006 ident: 10.1016/j.cherd.2022.11.048_bib15 article-title: Comparative assessment of downstream processing options for lactic acid publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2006.03.015 – volume: 35 start-page: 1505 year: 2010 ident: 10.1016/j.cherd.2022.11.048_bib58 article-title: Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution publication-title: Energy doi: 10.1016/j.energy.2009.12.008 – volume: 52 start-page: 11070 year: 2013 ident: 10.1016/j.cherd.2022.11.048_bib55 article-title: Plant-wide economic comparison of lactic acid recovery processes by reactive distillation with different alcohols publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie303192x – volume: 62 start-page: 1132 year: 2019 ident: 10.1016/j.cherd.2022.11.048_bib18 article-title: Novel catalytic reactive distillation processes for a sustainable chemical industry publication-title: Top. Catal. doi: 10.1007/s11244-018-1052-9 – volume: 81 start-page: 260 year: 2015 ident: 10.1016/j.cherd.2022.11.048_bib46 article-title: A unifying framework for optimization-based design of integrated reaction–separation processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.03.014 – volume: 57 start-page: 5039 year: 2002 ident: 10.1016/j.cherd.2022.11.048_bib1 article-title: Comparative control study of ideal and methyl acetate reactive distillation publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00415-3 – volume: 52 start-page: 21 year: 2012 ident: 10.1016/j.cherd.2022.11.048_bib61 article-title: Steady-state simulation of a reactive internally heat integrated distillation column (R-HIDiC) for synthesis of tertiary-amyl methyl ether (TAME) publication-title: Chem. Eng. Process. Process. Intensif. doi: 10.1016/j.cep.2011.12.005 – volume: 34 start-page: 1310 year: 2017 ident: 10.1016/j.cherd.2022.11.048_bib17 article-title: Process simulation for the recovery of lactic acid using thermally coupled distillation columns to mitigate the remixing effect publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0009-1 – year: 2013 ident: 10.1016/j.cherd.2022.11.048_bib20 – volume: 111 start-page: 479 year: 2016 ident: 10.1016/j.cherd.2022.11.048_bib27 article-title: A fixed point methodology for the design of reactive distillation columns publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.05.015 – year: 2005 ident: 10.1016/j.cherd.2022.11.048_bib33 – volume: 40 start-page: 1566 year: 2001 ident: 10.1016/j.cherd.2022.11.048_bib42 article-title: Synthesis and hydrolysis of methyl acetate by reactive distillation using structured catalytic packings: Experiments and simulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0007419 – volume: 47 start-page: 1948 year: 2012 ident: 10.1016/j.cherd.2022.11.048_bib16 article-title: Purification of l-(+)-lactic acid from pre-treated fermentation broth using vapor permeation-assisted esterification publication-title: Process Biochem. doi: 10.1016/j.procbio.2012.07.011 – year: 2003 ident: 10.1016/j.cherd.2022.11.048_bib57 – start-page: 131 year: 2016 ident: 10.1016/j.cherd.2022.11.048_bib37 article-title: Process intensification by reactive distillation – year: 2017 ident: 10.1016/j.cherd.2022.11.048_bib19 article-title: 4. Process intensification by reactive distillation – year: 2003 ident: 10.1016/j.cherd.2022.11.048_bib49 – ident: 10.1016/j.cherd.2022.11.048_bib10 – year: 2008 ident: 10.1016/j.cherd.2022.11.048_bib31 – ident: 10.1016/j.cherd.2022.11.048_bib45 – volume: 37 start-page: 18 year: 1998 ident: 10.1016/j.cherd.2022.11.048_bib23 article-title: Dehydration of the alcohol in the etherification of isoamylenes with methanol and ethanol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie970454d – volume: 115 start-page: 225 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib53 article-title: A framework for the modeling and optimization of process superstructures under uncertainty publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.04.052 – ident: 10.1016/j.cherd.2022.11.048_bib62 – volume: 84 start-page: 439 year: 2006 ident: 10.1016/j.cherd.2022.11.048_bib4 article-title: A methodology for integrating sustainability considerations into process design publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd05007 – volume: 86 start-page: 125 year: 2014 ident: 10.1016/j.cherd.2022.11.048_bib22 article-title: A review on process intensification in internally heat-integrated distillation columns publication-title: Chem. Eng. Process. Process. Intensif. doi: 10.1016/j.cep.2014.10.017 |
| SSID | ssj0001748 |
| Score | 2.4160364 |
| Snippet | Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 485 |
| SubjectTerms | Operating windows Process intensification Process synthesis Reactive distillation |
| Title | Operating windows for early evaluation of the applicability of advanced reactive distillation technologies |
| URI | https://dx.doi.org/10.1016/j.cherd.2022.11.048 |
| Volume | 189 |
| WOSCitedRecordID | wos000974496800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0263-8762 databaseCode: AIEXJ dateStart: 19961101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001748 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4oJaHKIXKB24lq42d53FBRVCppRJF2lsUxzZ0VZJVN_TBr-And8aPJNtWFSBxiVbWeh15vrW_GY-_IeQNyyohBbipsahEEMVcB3kseRCyknORpbnKpCk2kR4eZrNZfjQa_fZ3Yc5P07rOLi_zxX81NbSBsfHq7F-Yu_tRaIDPYHR4gtnh-UeG_7xAnWQbY61lc7G0qt5GyLjX9va5Ae4A26TIXq0kBQCbNGshnuG0WJvIdGt9KN4nH3qVAy88oHqBw12nJPTd4Euu5Ioclb9-nOAp_buwCQ7KK6wuZdarZSlUl_Wx3_jy5gfqWzlIGLCl3qdYAHl3Oh6GLhi_Ebro7tT0CUxLIwXL71ij88EqG9kqP27DjmyFpVt7gQ1LzMcIftSEZWyMeq1W2POGyPYXHBUHZRhiyVC1YJ2lcQ7r5Pr0095sv9vdwYPLbNzOvqVXsjI5g7eGupvtDBjM8QZ57FwPOrWQ2SQjVT8hjwaClE_JvAMPdeChAB5qwEN78NBGUwAPXQEPNnrwUA8eOgQPHYLnGfn6Ye_4_cfAVeMIKh5lbQBEPVLJRANj16mQkgM3BXcdOFYUqpzLOELtPVFKcCj4RACRLlMpNRDouNKhkvw5WaubWr0glCWKJSXPhdYyUjwRoUbRKD3hmnHB-BZhftaKyknVY8WU08LnJM4LM9UFTjU4sQVM9RZ523VaWKWW-7-eeHMUjmxaElkAfu7r-PJfO26Th_2f4BVZa89-qtfkQXXenizPdhzOrgHV9qmN |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operating+windows+for+early+evaluation+of+the+applicability+of+advanced+reactive+distillation+technologies&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Pazmi%C3%B1o-Mayorga%2C+Isabel&rft.au=Jobson%2C+Megan&rft.au=Kiss%2C+Anton+A.&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8762&rft.volume=189&rft.spage=485&rft.epage=499&rft_id=info:doi/10.1016%2Fj.cherd.2022.11.048&rft.externalDocID=S0263876222006815 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon |