Quantum-Assisted Cluster Analysis on a Quantum Annealing Device

We present an algorithm for quantum-assisted cluster analysis that makes use of the topological properties of a D-Wave 2000Q quantum processing unit. Clustering is a form of unsupervised machine learning, where instances are organized into groups whose members share similarities. The assignments are...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in physics Ročník 6
Hlavní autori: Neukart, Florian, Dollen, David Von, Seidel, Christian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 14.06.2018
Predmet:
ISSN:2296-424X, 2296-424X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present an algorithm for quantum-assisted cluster analysis that makes use of the topological properties of a D-Wave 2000Q quantum processing unit. Clustering is a form of unsupervised machine learning, where instances are organized into groups whose members share similarities. The assignments are, in contrast to classification, not known a priori, but generated by the algorithm. We explain how the problem can be expressed as a quadratic unconstrained binary optimization problem and show that the introduced quantum-assisted clustering algorithm is, regarding accuracy, equivalent to commonly used classical clustering algorithms. Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems [1], have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization, sampling, and clustering [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical clustering algorithm.
AbstractList We present an algorithm for quantum-assisted cluster analysis that makes use of the topological properties of a D-Wave 2000Q quantum processing unit. Clustering is a form of unsupervised machine learning, where instances are organized into groups whose members share similarities. The assignments are, in contrast to classification, not known a priori, but generated by the algorithm. We explain how the problem can be expressed as a quadratic unconstrained binary optimization problem and show that the introduced quantum-assisted clustering algorithm is, regarding accuracy, equivalent to commonly used classical clustering algorithms. Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems [1], have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization, sampling, and clustering [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical clustering algorithm.
Author Neukart, Florian
Dollen, David Von
Seidel, Christian
Author_xml – sequence: 1
  givenname: Florian
  surname: Neukart
  fullname: Neukart, Florian
– sequence: 2
  givenname: David Von
  surname: Dollen
  fullname: Dollen, David Von
– sequence: 3
  givenname: Christian
  surname: Seidel
  fullname: Seidel, Christian
BookMark eNp1kFtLAzEQhYNUsNY--7p_YNvcNps8Sam3QkEEBd_CbJKtKdtsSbZC_73biyCCT2c4M-cwfNdoENrgELoleMKYVNN6-7mfUEzkBGNcFBdoSKkSOaf8Y_BrvkLjlNb9CaGFkpQP0d3rDkK32-SzlHzqnM3mza7XmM0CNPvey9qQQXY-693goPFhld27L2_cDbqsoUlufNYRen98eJs_58uXp8V8tswN47LLC-yoEcZKybAQTEhHBZSipMBsZSopSi4Nx8oSWYGredWvCqW4Ytgpjms2QotTr21hrbfRbyDudQteH402rjTEzpvGaUtoSaQCWRPgJWeKUmExSANgC8FU31WcukxsU4qu1sZ30Pk2dBF8ownWB6j6AFUfoOoj1D43_ZP7-eO_xDd_V3rv
CitedBy_id crossref_primary_10_1007_s11128_021_03240_8
crossref_primary_10_1007_s11128_023_03867_9
crossref_primary_10_1007_s42484_024_00179_8
crossref_primary_10_1007_s42484_021_00042_0
crossref_primary_10_1088_1361_6633_ac8c54
crossref_primary_10_1007_s11831_023_09973_2
crossref_primary_10_1016_j_iintel_2024_100126
crossref_primary_10_1038_s41598_022_06559_z
crossref_primary_10_1371_journal_pone_0227538
crossref_primary_10_1016_j_jksuci_2023_101831
Cites_doi 10.1038/nphys2900
10.1140/epjst/e2015-02347-y
10.1007/978-3-658-16176-7_3
10.1103/PhysRevLett.117.180402
10.1007/s11128-014-0892-x
10.3389/fict.2017.00029
10.1007/3-540-33752-0
10.3389/fphy.2014.00005
10.1103/PhysRevLett.118.066802
10.1103/PhysRevX.5.031040
10.1007/978-3-658-16176-7_8
10.3389/fphy.2014.00052
10.1016/0009-2614(94)00117-0
10.1103/PhysRevX.4.021041
10.1007/s11128-017-1527-9
10.1140/epjst/e2015-02349-9
10.3389/fphy.2017.00071
10.1038/srep00571
10.1007/978-3-540-79739-5
10.1103/PhysRevA.94.022308
10.1016/j.proeng.2014.03.148
10.1145/3084688
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fphy.2018.00055
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_d127189a8f1a47439226d0a8caad5639
10_3389_fphy_2018_00055
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c348t-50e2c6cd883066368e26a7672a3dbcb86748c409d18baef4b6725994930e940f3
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435374000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-424X
IngestDate Fri Oct 03 12:50:40 EDT 2025
Tue Nov 18 21:50:59 EST 2025
Sat Nov 29 05:42:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-50e2c6cd883066368e26a7672a3dbcb86748c409d18baef4b6725994930e940f3
OpenAccessLink https://doaj.org/article/d127189a8f1a47439226d0a8caad5639
ParticipantIDs doaj_primary_oai_doaj_org_article_d127189a8f1a47439226d0a8caad5639
crossref_citationtrail_10_3389_fphy_2018_00055
crossref_primary_10_3389_fphy_2018_00055
PublicationCentury 2000
PublicationDate 2018-06-14
PublicationDateYYYYMMDD 2018-06-14
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-14
  day: 14
PublicationDecade 2010
PublicationTitle Frontiers in physics
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Neukart (B15) 2018; 5
Finilla (B29) 1994; 219
Von Dollen (B17) 2017
Neukart (B25) 2013; 2
Lanting (B20) 2013; 4
Neukart (B28) 2017; 4
Anderberg (B31) 1973
Neukart (B23) 2014; 69
MacQueen (B33) 1967
Perdomo-Ortiz (B10) 2014; 224
Neukart (B19) 2017
Smolin (B13) 2013; 2
Jiang (B5) 2015; 16
B34
Kumar (B21) 2018
Pedregosa (B36) 2011; 12
Rieffel (B8) 2014; 14
Korenkevych (B24) 2016
B16
Smelyanskiy (B3) 2015; 118
Venturelli (B9) 2014
B18
Isakov (B6) 2015; 117
Babbush (B12) 2012
Kramer (B37) 2009
Ritter (B35) 1991
B1
Venturelli (B4) 2015
Benedetti (B2) 2015; 94
Chamoni (B32) 2006
Levit (B26) 2017
Lucas (B22) 2014; 2
O'Gorman (B7) 2015; 224
Neukart (B30) 2017
Perdomo-Ortiz (B14) 2012; 2
Crawford (B27) 2016
Boixo (B11) 2014; 10
References_xml – volume: 10
  start-page: 218
  year: 2014
  ident: B11
  article-title: Evidence for quantum annealing with more than one hundred qubits
  publication-title: Nat Phys.
  doi: 10.1038/nphys2900
– volume-title: Neuronale Netze. Eine Einführung in die Neuroinformatik selbstorganisierender Netzwerke
  year: 1991
  ident: B35
– volume: 224
  start-page: 131
  year: 2014
  ident: B10
  article-title: A quantum annealing approach for fault detection and diagnosis of graph-based systems
  publication-title: Eur Phys J Spec Top.
  doi: 10.1140/epjst/e2015-02347-y
– start-page: 91
  volume-title: Reverse Engineering the Mind
  year: 2017
  ident: B30
  article-title: An outline of artificial neural networks
  doi: 10.1007/978-3-658-16176-7_3
– volume: 117
  start-page: 180402
  year: 2015
  ident: B6
  article-title: Understanding Quantum Tunneling through Quantum Monte Carlo Simulations
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.117.180402
– volume: 14
  start-page: 1
  year: 2014
  ident: B8
  article-title: A case study in programming a quantum annealer for hard operational planning problems
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-014-0892-x
– year: 2016
  ident: B27
  article-title: Reinforcement learning using quantum boltzmann machines
– year: 2018
  ident: B21
  article-title: III. Quantum annealing for combinatorial clustering
– volume: 4
  start-page: 29
  year: 2017
  ident: B28
  article-title: Traffic flow optimization using a quantum annealer
  publication-title: Front ICT
  doi: 10.3389/fict.2017.00029
– year: 2017
  ident: B26
  article-title: Free-Energy-based Reinforcement Learning Using a Quantum Processor
– year: 2017
  ident: B17
  article-title: identifying similarities in epileptic patients for drug resistance prediction
– volume-title: Analytische Informationssysteme: Business Intelligence- Technologien und –Anwendungen, 3rd Edn
  year: 2006
  ident: B32
  doi: 10.1007/3-540-33752-0
– ident: B18
– ident: B16
– start-page: 281
  volume-title: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability
  year: 1967
  ident: B33
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 2
  start-page: 5
  year: 2014
  ident: B22
  article-title: Ising formulations of many NP problems
  publication-title: Front Phys.
  doi: 10.3389/fphy.2014.00005
– year: 2015
  ident: B4
  article-title: Quantum Annealing Implementation of Job-Shop Scheduling
– volume: 118
  start-page: 066802
  year: 2015
  ident: B3
  article-title: Quantum annealing via environment-mediated quantum diffusion
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.118.066802
– start-page: 031040
  year: 2014
  ident: B9
  article-title: Quantum optimization of fully-connected spin glasses
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.5.031040
– start-page: 221
  volume-title: Reverse Engineering the Mind
  year: 2017
  ident: B19
  article-title: Quantum physics and the biological brain
  doi: 10.1007/978-3-658-16176-7_8
– volume: 2
  start-page: 52
  year: 2013
  ident: B13
  article-title: Classical signature of quantum annealing
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2014.00052
– volume: 12
  start-page: 2825
  year: 2011
  ident: B36
  article-title: scikit-learn: machine learning in python
  publication-title: JMLR
– volume: 219
  start-page: 343
  year: 1994
  ident: B29
  article-title: Quantum annealing: A new method for minimizing multidimensional functions
  publication-title: Chem Phys Lett
  doi: 10.1016/0009-2614(94)00117-0
– volume: 4
  start-page: 021041
  year: 2013
  ident: B20
  article-title: Entanglement in a quantum annealing processor
  publication-title: Phys. Rev. X.
  doi: 10.1103/PhysRevX.4.021041
– volume: 16
  start-page: 89
  year: 2015
  ident: B5
  article-title: Non-commuting two-local Hamiltonians for quantum error suppression
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-017-1527-9
– volume: 224
  start-page: 163
  year: 2015
  ident: B7
  article-title: Bayesian network structure learning using quantum annealing
  publication-title: Eur Phys J Spec Top
  doi: 10.1140/epjst/e2015-02349-9
– volume: 5
  start-page: 71
  year: 2018
  ident: B15
  article-title: Quantum-Enhanced reinforcement learning for finite-episode games with discrete state spaces
  publication-title: Front Phys.
  doi: 10.3389/fphy.2017.00071
– volume: 2
  start-page: 571
  year: 2012
  ident: B14
  article-title: Finding low-energy conformations of lattice protein models by quantum annealing
  publication-title: Sci Rep.
  doi: 10.1038/srep00571
– volume-title: Cluster Analysis for Applications
  year: 1973
  ident: B31
– volume-title: Computational Intelligence: Eine Einführung
  year: 2009
  ident: B37
  doi: 10.1007/978-3-540-79739-5
– volume: 94
  start-page: 022308
  year: 2015
  ident: B2
  article-title: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning
  publication-title: Phys Rev A.
  doi: 10.1103/PhysRevA.94.022308
– volume: 2
  start-page: 1
  year: 2013
  ident: B25
  article-title: On quantum computers and artificial neural networks
  publication-title: Signal Process Res.
– year: 2016
  ident: B24
  article-title: Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines
– ident: B34
  publication-title: O-Cluster: Scalable Clustering of Large High Dimensional Datasets [2018-02-28]
– volume: 69
  start-page: 1509
  year: 2014
  ident: B23
  article-title: Operations on quantum physical artificial neural structures
  publication-title: Proced Eng.
  doi: 10.1016/j.proeng.2014.03.148
– ident: B1
  doi: 10.1145/3084688
– year: 2012
  ident: B12
  article-title: Construction of Energy Functions for Lattice Heteropolymer Models: efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing Advances in Chemical Physics
SSID ssj0001259824
Score 2.1548028
Snippet We present an algorithm for quantum-assisted cluster analysis that makes use of the topological properties of a D-Wave 2000Q quantum processing unit....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms clustering
machine learning
quantum algorithms
quantum computing
quantum physics
quantum-assisted
Title Quantum-Assisted Cluster Analysis on a Quantum Annealing Device
URI https://doaj.org/article/d127189a8f1a47439226d0a8caad5639
Volume 6
WOSCitedRecordID wos000435374000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQBRIL4inKSx4YWEKT2E7sCfFoxUIFEkjdLMcPCamkqG0Y-e3cJWmVBbGwZHAukfOd4_suunxHyKVy3MDi9RGSj4gLJyIVWwXvlSi4dTI3rGk2kY_HcjJRz51WX1gT1sgDN8ANXJLC9qmMDInhyJ6BL7jYSGuMExBecfcF1tNJppqvKyhMxxstH8jC1CDArLGSC0snY_yxrxOGOmr9dVgZ7ZKdlg_S22Yee2TDl_tkq67LtIsDcvNSwaNXHxHAiA5x9H5aobYBXamJ0FlJDW3NYLQE5gfhiD543AMOydto-Hr_GLU9DyLLuFxGIvapzQAkyZAMZNKnmcmzPDXMFbaQ2BvEQk7mElkYH3gBp4RSXLHYKx4HdkR65az0x4RmIbdpAMS88DzNAyoDZgygE8oz47I-uV5BoG0rCI59KaYaEgPETCNmGjHTNWZ9crW-4LPRwvjd9A4xXZuhiHU9AK7VrWv1X649-Y-bnJJtnBZWdyX8jPSW88qfk037tXxfzC_qVQPHp-_hD-koxPc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-Assisted+Cluster+Analysis+on+a+Quantum+Annealing+Device&rft.jtitle=Frontiers+in+physics&rft.au=Florian+Neukart&rft.au=David+Von+Dollen&rft.au=Christian+Seidel&rft.date=2018-06-14&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=6&rft_id=info:doi/10.3389%2Ffphy.2018.00055&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d127189a8f1a47439226d0a8caad5639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon