Credit Based Scheduling Algorithm in Cloud Computing Environment

Cloud computing in today's world has become synonymous with good service policies. In order to achieve good services from a cloud, the need for a number of resources arose. But cloud providers are limited by the amount of resources they have, and are thus compelled to strive to maximum utilizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 46; S. 913 - 920
Hauptverfasser: Thomas, Antony, Krishnalal, G., Jagathy Raj, V.P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2015
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cloud computing in today's world has become synonymous with good service policies. In order to achieve good services from a cloud, the need for a number of resources arose. But cloud providers are limited by the amount of resources they have, and are thus compelled to strive to maximum utilization. Min-Min algorithm is used to reduce the make span of tasks by considering the task length. Keeping this in mind, cloud providers should achieve user satisfaction. Thus research favors scheduling algorithms that consider both user satisfaction and resources availability. In this paper an improved scheduling algorithm is introduced after analyzing the traditional algorithms which are based on user priority and task length. High prioritized tasks are not given any special importance when they arrive. The proposed approach considers all of these factors. The experimental results show a considerable improvement in the utilization of resources.
AbstractList Cloud computing in today's world has become synonymous with good service policies. In order to achieve good services from a cloud, the need for a number of resources arose. But cloud providers are limited by the amount of resources they have, and are thus compelled to strive to maximum utilization. Min-Min algorithm is used to reduce the make span of tasks by considering the task length. Keeping this in mind, cloud providers should achieve user satisfaction. Thus research favors scheduling algorithms that consider both user satisfaction and resources availability. In this paper an improved scheduling algorithm is introduced after analyzing the traditional algorithms which are based on user priority and task length. High prioritized tasks are not given any special importance when they arrive. The proposed approach considers all of these factors. The experimental results show a considerable improvement in the utilization of resources.
Author Thomas, Antony
Krishnalal, G.
Jagathy Raj, V.P.
Author_xml – sequence: 1
  givenname: Antony
  surname: Thomas
  fullname: Thomas, Antony
  email: antonythomas.info@gmail.com
  organization: Amal Jyothi College of Engineering,Mahatma Gandhi University, Kottayam, India
– sequence: 2
  givenname: G.
  surname: Krishnalal
  fullname: Krishnalal, G.
  organization: Amal Jyothi College of Engineering,Mahatma Gandhi University, Kottayam, India
– sequence: 3
  givenname: V.P.
  surname: Jagathy Raj
  fullname: Jagathy Raj, V.P.
  organization: School of Management Studies,Cochin University of Science And Technology, Cochin, India
BookMark eNqFkF1LwzAUhoNMcM79Am_6B1qTpm3SC8FZ5gcMvFCvQ5acbhltMpJs4L-3dV6IF3puzoHD88L7XKKJdRYQuiY4I5hUN7ts750KWY5JmeE8I1V-hqaEM5biEteTH_cFmoeww8NQzmvCpuiu8aBNTO5lAJ28qi3oQ2fsJll0G-dN3PaJsUnTuYNOGtfvD3F8Lu3ReGd7sPEKnbeyCzD_3jP0_rB8a57S1cvjc7NYpYoWPKYFlIzSNq8kK9uasxLrghaay7Wk5VpLDBUmkmNV6JatW1ZqqkiRK4C6zou6pTNET7nKuxA8tGLvTS_9hyBYjB7ETnx5EKMHgXMxeBio-helTJTROBu9NN0_7O2JhaHW0YAXQRmwavDlQUWhnfmT_wQ_IHzE
CitedBy_id crossref_primary_10_1016_j_seta_2021_101210
crossref_primary_10_1007_s13198_022_01685_3
crossref_primary_10_47164_ijngc_v13i5_950
crossref_primary_10_1080_23799927_2020_1854864
crossref_primary_10_1007_s10586_025_05363_4
crossref_primary_10_1007_s41870_017_0022_y
crossref_primary_10_3233_JIFS_189881
crossref_primary_10_1007_s11277_019_06960_4
crossref_primary_10_1016_j_iot_2022_100674
crossref_primary_10_1007_s10489_022_04081_3
crossref_primary_10_1016_j_engappai_2022_105345
crossref_primary_10_1007_s10586_017_1223_7
crossref_primary_10_1109_ACCESS_2021_3065308
crossref_primary_10_3390_info14050292
crossref_primary_10_1109_ACCESS_2020_3021948
crossref_primary_10_1109_ACCESS_2024_3352078
crossref_primary_10_1016_j_advengsoft_2022_103175
crossref_primary_10_1371_journal_pone_0176321
crossref_primary_10_1155_2022_4406809
crossref_primary_10_1007_s12046_019_1200_3
crossref_primary_10_1007_s11227_019_02936_0
crossref_primary_10_1016_j_procs_2017_12_093
crossref_primary_10_1016_j_jnca_2016_04_016
crossref_primary_10_1016_j_procs_2017_09_141
crossref_primary_10_1007_s12652_021_03545_7
crossref_primary_10_1002_spy2_252
crossref_primary_10_3233_JIFS_169987
crossref_primary_10_1007_s41870_020_00529_2
Cites_doi 10.1109/CIT.2010.237
10.5120/2403-3197
10.1109/CCGRID.2005.1558639
10.1109/HPCC.2008.172
10.1109/UCC.2012.33
10.1006/jpdc.2000.1714
10.1109/CSC.2011.6138559
10.1007/s00354-008-0081-5
10.1109/NOMS.2012.6212068
10.1016/j.future.2009.07.003
10.1109/ISSP.2013.6526925
10.1109/PDCAT.2011.1
ContentType Journal Article
Copyright 2015 The Authors
Copyright_xml – notice: 2015 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2015.02.162
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 920
ExternalDocumentID 10_1016_j_procs_2015_02_162
S1877050915002264
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c348t-4e5733f26a75f98750d434d8aba35bda0e601a80c4df7bf75d3c142cee99249f3
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360175900111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-0509
IngestDate Sat Nov 29 02:44:34 EST 2025
Tue Nov 18 22:26:16 EST 2025
Wed May 17 02:10:29 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cloud computing
Task priority
Task length
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-4e5733f26a75f98750d434d8aba35bda0e601a80c4df7bf75d3c142cee99249f3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2015.02.162
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_procs_2015_02_162
crossref_citationtrail_10_1016_j_procs_2015_02_162
elsevier_sciencedirect_doi_10_1016_j_procs_2015_02_162
PublicationCentury 2000
PublicationDate 2015
2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References K. Kambatla, A. Pathak, and H. Pucha. Towards optimizing Hadoop provisioning in the cloud in USENIX Workshop on Hot. Topics in Cloud Computing (HotCloud09); 2009.
J. Wang. Soft Real-Time Switched Ethernet: Best-Effort Packet Scheduling Algorithm, Implementation, and Feasibility Analysis. Master's thesis. Virginia Tech; 2002. .
Liang Luo, Wenjun Wu,Dichen Di, Fei Zhang, Yizhou Yan, Yaokuan Mao. A Resource Scheduling Algorithm of Cloud. Computing based on Energy Efficient Optimization Methods.
Chandrashekhar S. Pawar, Rajnikant B. Wagh. Priority Based Dynamic Resource Allocation in Cloud Computing with Modified Waiting Queue; 2013. International Conference on Intelligent Systems and Signal Processing (ISSP).
H. P. Borges, J. N de Souza, B. Schulze and A. R. Mury. Automatic generation of platforms in cloud computing in Proceedings of the IEEE Network Operations and Management Symposium (NOMS 12) 2012.pp. 1311-1318. .
J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters, in USENIX Symposium on Operating Systems Design and Implementation, San Francisco: CA; Dec 2004. pp. 137-150. .
Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal. Market-Oriented Cloud Computing: Vision, Hype, and Reality for. Delivering IT Services as Computing Utilities. GRIDS Lab Technical Report; August 2008.
Bo Yang, Xiaofei Xu, Feng Tan, Dong Ho Park. An Utility-Based Job Scheduling Algorithm for Cloud Computing Considering. Reliability Factor; 2011 International Conference on Cloud and Service Computing.
Braun T.D, Siegel H.J, Beck N, Boloni L.L, Maheswaran M, Reuther A.I, Robertson J.P.et al. A comparison of eleven static .heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed. Computing. Vol. 61. No. 6, pp.810-837; 2001.
Marcos D. Assuncao, Marco A. S. Netto, Fernando Koch, Silvia Bianchi. Context-aware Job Scheduling for. Cloud Computing Environments. 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing.
Lizhe Wang, Gregor von Laszewski, Andrew Younge, Xi He, Marcel Kunze, Jie Tao and Cheng Fu. Cloud Computing: a Perspective. Study. New Generation Computing. Volume 28, Number 2; 137-146.
Yong Dong .Power Measurements and Analyses of Massive Object Storage System. Computer and Information Technology (CIT); 2010. IEEE 10th International Conference pp. 1317-1322 ; 2010.
Qi cao,Zhi-bo Wei,Wen-mao Gong. An Optimized Algorithm for Task Scheduling Based On Activity Based Costing in Cloud Computing.
J Blythe, S Jain, E Deelman, Y Gil, K Vahi. Task scheduling strategies for workflow-based applications in grids. Cluster. Computing and the Grid; 2005.
Zhi Yang, Changqin Yin, Yan Liu. A Cost-based Resource Scheduling Paradigm in Cloud Computing. 2011-12th International Conference on Parallel and Distributed Computing. Applications and Technologies.
T Kokilavani, GA DI. Load Balanced Min-Min Algorithm for Static Meta-Task Scheduling in Grid Computing. International Journal of. Computer Applications. Number 2 - Article 7; 2011.
S. K. Garg, R. Buyya, and H. J. Siegel. Time and cost trade off management for scheduling parallel applications on utility grids. Future Generation Computer System. 26(8):1344-1355; 2010.
Dantong Yu and Thomas G. Robertazzi . Divisible Load Scheduling for Grid Computing. PDCS; 2003, 15th Int’l. Conf. Parallel and Distributed Computing and Systems. IASTED. pp. 1-9; 2003.
M. Armbrust et aI. Above the Clouds: A Berkeley View of Cloud Computing, technical report. Univ. of California, Berkeley; Feb 2009.
Hsin-Yu Shih, Jhih-Jia Huang, Jenq-Shiou Leu. Dynamic Slot-based Task Scheduling Based on Node. Workload in a MapReduce Computation Model.
10.1016/j.procs.2015.02.162_bib0090
10.1016/j.procs.2015.02.162_bib0005
10.1016/j.procs.2015.02.162_bib0015
10.1016/j.procs.2015.02.162_bib0045
10.1016/j.procs.2015.02.162_bib0100
10.1016/j.procs.2015.02.162_bib0055
10.1016/j.procs.2015.02.162_bib0025
10.1016/j.procs.2015.02.162_bib0035
10.1016/j.procs.2015.02.162_bib0030
10.1016/j.procs.2015.02.162_bib0085
10.1016/j.procs.2015.02.162_bib0040
10.1016/j.procs.2015.02.162_bib0095
10.1016/j.procs.2015.02.162_bib0010
10.1016/j.procs.2015.02.162_bib0065
10.1016/j.procs.2015.02.162_bib0020
10.1016/j.procs.2015.02.162_bib0075
10.1016/j.procs.2015.02.162_bib0070
10.1016/j.procs.2015.02.162_bib0080
10.1016/j.procs.2015.02.162_bib0050
10.1016/j.procs.2015.02.162_bib0060
References_xml – reference: Zhi Yang, Changqin Yin, Yan Liu. A Cost-based Resource Scheduling Paradigm in Cloud Computing. 2011-12th International Conference on Parallel and Distributed Computing. Applications and Technologies.
– reference: M. Armbrust et aI. Above the Clouds: A Berkeley View of Cloud Computing, technical report. Univ. of California, Berkeley; Feb 2009.
– reference: Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal. Market-Oriented Cloud Computing: Vision, Hype, and Reality for. Delivering IT Services as Computing Utilities. GRIDS Lab Technical Report; August 2008.
– reference: Bo Yang, Xiaofei Xu, Feng Tan, Dong Ho Park. An Utility-Based Job Scheduling Algorithm for Cloud Computing Considering. Reliability Factor; 2011 International Conference on Cloud and Service Computing.
– reference: Lizhe Wang, Gregor von Laszewski, Andrew Younge, Xi He, Marcel Kunze, Jie Tao and Cheng Fu. Cloud Computing: a Perspective. Study. New Generation Computing. Volume 28, Number 2; 137-146.
– reference: S. K. Garg, R. Buyya, and H. J. Siegel. Time and cost trade off management for scheduling parallel applications on utility grids. Future Generation Computer System. 26(8):1344-1355; 2010.
– reference: K. Kambatla, A. Pathak, and H. Pucha. Towards optimizing Hadoop provisioning in the cloud in USENIX Workshop on Hot. Topics in Cloud Computing (HotCloud09); 2009.
– reference: Braun T.D, Siegel H.J, Beck N, Boloni L.L, Maheswaran M, Reuther A.I, Robertson J.P.et al. A comparison of eleven static .heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed. Computing. Vol. 61. No. 6, pp.810-837; 2001.
– reference: J. Wang. Soft Real-Time Switched Ethernet: Best-Effort Packet Scheduling Algorithm, Implementation, and Feasibility Analysis. Master's thesis. Virginia Tech; 2002. .
– reference: H. P. Borges, J. N de Souza, B. Schulze and A. R. Mury. Automatic generation of platforms in cloud computing in Proceedings of the IEEE Network Operations and Management Symposium (NOMS 12) 2012.pp. 1311-1318. .
– reference: Marcos D. Assuncao, Marco A. S. Netto, Fernando Koch, Silvia Bianchi. Context-aware Job Scheduling for. Cloud Computing Environments. 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing.
– reference: Yong Dong .Power Measurements and Analyses of Massive Object Storage System. Computer and Information Technology (CIT); 2010. IEEE 10th International Conference pp. 1317-1322 ; 2010.
– reference: Liang Luo, Wenjun Wu,Dichen Di, Fei Zhang, Yizhou Yan, Yaokuan Mao. A Resource Scheduling Algorithm of Cloud. Computing based on Energy Efficient Optimization Methods.
– reference: Dantong Yu and Thomas G. Robertazzi . Divisible Load Scheduling for Grid Computing. PDCS; 2003, 15th Int’l. Conf. Parallel and Distributed Computing and Systems. IASTED. pp. 1-9; 2003.
– reference: Chandrashekhar S. Pawar, Rajnikant B. Wagh. Priority Based Dynamic Resource Allocation in Cloud Computing with Modified Waiting Queue; 2013. International Conference on Intelligent Systems and Signal Processing (ISSP).
– reference: Hsin-Yu Shih, Jhih-Jia Huang, Jenq-Shiou Leu. Dynamic Slot-based Task Scheduling Based on Node. Workload in a MapReduce Computation Model.
– reference: Qi cao,Zhi-bo Wei,Wen-mao Gong. An Optimized Algorithm for Task Scheduling Based On Activity Based Costing in Cloud Computing.
– reference: J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters, in USENIX Symposium on Operating Systems Design and Implementation, San Francisco: CA; Dec 2004. pp. 137-150. .
– reference: J Blythe, S Jain, E Deelman, Y Gil, K Vahi. Task scheduling strategies for workflow-based applications in grids. Cluster. Computing and the Grid; 2005.
– reference: T Kokilavani, GA DI. Load Balanced Min-Min Algorithm for Static Meta-Task Scheduling in Grid Computing. International Journal of. Computer Applications. Number 2 - Article 7; 2011.
– ident: 10.1016/j.procs.2015.02.162_bib0065
  doi: 10.1109/CIT.2010.237
– ident: 10.1016/j.procs.2015.02.162_bib0015
  doi: 10.5120/2403-3197
– ident: 10.1016/j.procs.2015.02.162_bib0045
– ident: 10.1016/j.procs.2015.02.162_bib0100
  doi: 10.1109/CCGRID.2005.1558639
– ident: 10.1016/j.procs.2015.02.162_bib0025
– ident: 10.1016/j.procs.2015.02.162_bib0030
– ident: 10.1016/j.procs.2015.02.162_bib0070
  doi: 10.1109/HPCC.2008.172
– ident: 10.1016/j.procs.2015.02.162_bib0085
– ident: 10.1016/j.procs.2015.02.162_bib0040
  doi: 10.1109/UCC.2012.33
– ident: 10.1016/j.procs.2015.02.162_bib0080
  doi: 10.1006/jpdc.2000.1714
– ident: 10.1016/j.procs.2015.02.162_bib0035
  doi: 10.1109/CSC.2011.6138559
– ident: 10.1016/j.procs.2015.02.162_bib0060
  doi: 10.1007/s00354-008-0081-5
– ident: 10.1016/j.procs.2015.02.162_bib0005
– ident: 10.1016/j.procs.2015.02.162_bib0055
– ident: 10.1016/j.procs.2015.02.162_bib0050
  doi: 10.1109/NOMS.2012.6212068
– ident: 10.1016/j.procs.2015.02.162_bib0075
– ident: 10.1016/j.procs.2015.02.162_bib0090
  doi: 10.1016/j.future.2009.07.003
– ident: 10.1016/j.procs.2015.02.162_bib0095
– ident: 10.1016/j.procs.2015.02.162_bib0010
  doi: 10.1109/ISSP.2013.6526925
– ident: 10.1016/j.procs.2015.02.162_bib0020
  doi: 10.1109/PDCAT.2011.1
SSID ssj0000388917
Score 2.2873333
Snippet Cloud computing in today's world has become synonymous with good service policies. In order to achieve good services from a cloud, the need for a number of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 913
SubjectTerms Cloud computing
Task length
Task priority
Title Credit Based Scheduling Algorithm in Cloud Computing Environment
URI https://dx.doi.org/10.1016/j.procs.2015.02.162
Volume 46
WOSCitedRecordID wos000360175900111&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF58Hbz4Ft_swZumpMkmm71ZRPEgIvjAW9jsJlqpaalVPPnbndndpJGKqOAltNtuNswM88p8M4TsZ7HQeaCUp6M4gQClUPiSUHpcBBIcaKG1mZ9ye84vLpK7O3HpIATPZpwAL8vk7U0M_pXVsAbMRujsL9hd3xQW4DMwHa7Adrj-iPHHQ7BHEPWDedLYZBNsiYGcd3r3_WF39PBkgH69_os-sCMd8MeTMd6t6a4aGAFIkKk8x-EPB85iNutJLCSsg8OI6_w86o4HeFRp53e16kIdeQ8uJ_j90rw1um1dtpp5B4u5tGmwCSiM0ZwJ5x42k7GG5Ys1p25ZU18KC0R1plcYXNykVrcJhke0KQpbrLcj7LPadmr8c7vsKzwUzwRP10eU8DSZDTiETVjW-T7Ov2EXHGEGMtdPWTWlMuV_E2d97bg0nJHrJbLgogjasdxfJlN5uUIWqwkd1CnsVXJkhYEaYaBjYaC1MNBuSY0w0FoYaEMY1sjN6cn18ZnnZmZ4KmTJyGM5NrgsgljyqBAQjPqahUwnMpNhlGnp5xCBy8RXTBc8K3ikQ9VmAbhKAiPxIlwnM2W_zDcIzeKQC1mInEvJIO7PWBKrKMyUlqHifrZJgoogqXIN5XGuSS-tKgcfU0PFFKmY-kEKVNwkh_Wmge2n8v3f44rSqRNw6-qlIBvfbdz668ZtMo_fbJZth8yMhi_5LplTr6Pu83DPyNAHVfSGjQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Credit+Based+Scheduling+Algorithm+in+Cloud+Computing+Environment&rft.jtitle=Procedia+computer+science&rft.au=Thomas%2C+Antony&rft.au=Krishnalal%2C+G.&rft.au=Jagathy+Raj%2C+V.P.&rft.date=2015&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=46&rft.spage=913&rft.epage=920&rft_id=info:doi/10.1016%2Fj.procs.2015.02.162&rft.externalDocID=S1877050915002264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon