Parameter estimation for Gipps’ car following model in a Bayesian framework

Car following model is an important part in traffic modelling and has attracted a lot of attentions in the literature. As the proposed car following models become more complex with more components, reliably estimating their parameters becomes crucial to enhance model predictive performance. While mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica A Ročník 639; s. 129671
Hlavní autoři: Ting, Samson, Lymburn, Thomas, Stemler, Thomas, Sun, Yuchao, Small, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2024
Témata:
ISSN:0378-4371, 1873-2119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Car following model is an important part in traffic modelling and has attracted a lot of attentions in the literature. As the proposed car following models become more complex with more components, reliably estimating their parameters becomes crucial to enhance model predictive performance. While most studies adopt an optimisation-based approach for parameters estimation, we present a statistically rigorous method that quantifies uncertainty of the estimates. We present a Bayesian approach to estimate parameters using the popular Gipps’ car following model as demonstration, which allows proper uncertainty quantification and propagation. Since the parameters of the car following model enter the statistical model through the solution of a delay-differential equation, the posterior is analytically intractable so we implemented an adaptive Markov Chain Monte Carlo algorithm to sample from it. Our results show that predictive uncertainty using a point estimator versus a full Bayesian approach are similar with sufficient data. In the absence of adequate data, the former can make over-confident predictions while such uncertainty is more appropriately incorporated in a Bayesian framework. Furthermore, we found that the congested flow parameters in the Gipps’ car following model are strongly correlated in the posterior, which not only causes issues for sampling efficiency but more so suggests the potential ineffectiveness of a point estimator in an optimisation-based approach. Lastly, an application of the Bayesian approach to a car following episode in the NGISM dataset is presented. •Inference for Gipps’ car following model is performed using Bayesian methods.•An adaptive Metropolis-within-Gibbs sampler is implemented.•Strong correlation between congested flow behavioural parameters was found.•Parameter uncertainty in Bayesian approach is beneficial if data is not abundant.
AbstractList Car following model is an important part in traffic modelling and has attracted a lot of attentions in the literature. As the proposed car following models become more complex with more components, reliably estimating their parameters becomes crucial to enhance model predictive performance. While most studies adopt an optimisation-based approach for parameters estimation, we present a statistically rigorous method that quantifies uncertainty of the estimates. We present a Bayesian approach to estimate parameters using the popular Gipps’ car following model as demonstration, which allows proper uncertainty quantification and propagation. Since the parameters of the car following model enter the statistical model through the solution of a delay-differential equation, the posterior is analytically intractable so we implemented an adaptive Markov Chain Monte Carlo algorithm to sample from it. Our results show that predictive uncertainty using a point estimator versus a full Bayesian approach are similar with sufficient data. In the absence of adequate data, the former can make over-confident predictions while such uncertainty is more appropriately incorporated in a Bayesian framework. Furthermore, we found that the congested flow parameters in the Gipps’ car following model are strongly correlated in the posterior, which not only causes issues for sampling efficiency but more so suggests the potential ineffectiveness of a point estimator in an optimisation-based approach. Lastly, an application of the Bayesian approach to a car following episode in the NGISM dataset is presented. •Inference for Gipps’ car following model is performed using Bayesian methods.•An adaptive Metropolis-within-Gibbs sampler is implemented.•Strong correlation between congested flow behavioural parameters was found.•Parameter uncertainty in Bayesian approach is beneficial if data is not abundant.
ArticleNumber 129671
Author Ting, Samson
Lymburn, Thomas
Stemler, Thomas
Small, Michael
Sun, Yuchao
Author_xml – sequence: 1
  givenname: Samson
  orcidid: 0000-0002-7165-0444
  surname: Ting
  fullname: Ting, Samson
  email: samson.ting@research.uwa.edu.au
  organization: The Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Perth, Western Australia, Australia
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0002-3208-9383
  surname: Lymburn
  fullname: Lymburn, Thomas
  organization: The Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Perth, Western Australia, Australia
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0003-2485-6666
  surname: Stemler
  fullname: Stemler, Thomas
  organization: The Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Perth, Western Australia, Australia
– sequence: 4
  givenname: Yuchao
  orcidid: 0000-0001-8165-3932
  surname: Sun
  fullname: Sun, Yuchao
  organization: The Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Perth, Western Australia, Australia
– sequence: 5
  givenname: Michael
  orcidid: 0000-0001-5378-1582
  surname: Small
  fullname: Small, Michael
  organization: The Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Perth, Western Australia, Australia
BookMark eNqFkEFOwzAQRS1UJErhBGxygQQ7dm1nwQIqKEhFsIC15YxtcEnjyI6ouuMaXI-TkLasWMBqpNG8r_nvGI3a0FqEzgguCCb8fFl0r5ukixKXrCBlxQU5QGMiBc1LQqoRGmMqZM6oIEfoOKUlxpgIWo7R_aOOemV7GzOber_SvQ9t5kLM5r7r0tfHZwY6DoumCWvfvmSrYGyT-TbT2ZXe2OT1cL6NWIf4doIOnW6SPf2ZE_R8c_00u80XD_O72eUiB8pknzOY6hpqLIAJgmvBHZfSTKXhzEmjS-YMOEahpJJzjqmscK0BjGTSAUhDJ4jucyGGlKJ1qovD73GjCFZbI2qpdkbU1ojaGxmo6hcFvt8V7qP2zT_sxZ61Q613b6NK4G0L1vhooVcm-D_5b0qlgf0
CitedBy_id crossref_primary_10_1080_02286203_2025_2518591
crossref_primary_10_1016_j_displa_2025_103041
Cites_doi 10.1198/jasa.2009.tm08393
10.1016/j.physa.2022.128196
10.3141/2088-16
10.1214/aoap/1034625254
10.1093/biomet/57.1.97
10.1146/annurev-statistics-022513-115540
10.3141/2315-02
10.1016/0191-2615(81)90037-0
10.1016/j.physa.2019.122967
10.1016/j.physa.2023.129324
10.1007/s11116-007-9156-2
10.3141/2124-04
10.3141/1855-10
10.1177/0361198105193400102
10.1016/j.physa.2023.129259
10.3141/1876-07
10.3141/1852-17
10.1239/jap/1183667414
10.1016/j.trc.2021.103165
10.1177/0361198105193400122
10.2307/3318737
10.1201/b10905-6
10.1109/TPAMI.1984.4767596
10.3141/1852-16
10.3141/2088-13
10.3141/2315-10
10.1063/1.1699114
10.1103/PhysRevE.62.1805
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.physa.2024.129671
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2024_129671
S0378437124001808
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
6I.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
M38
M41
MVM
NDZJH
R2-
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c348t-4c5abcb07c4710b76f688d58d64f8da24fdcf43c23866603890baccd848fcc8d3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001299957400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Tue Nov 18 21:15:02 EST 2025
Sat Nov 29 07:11:52 EST 2025
Sat Apr 13 16:39:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Adaptive Markov chain Monte Carlo
Uncertainty quantification
Bayesian inference
Model calibration and validation
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-4c5abcb07c4710b76f688d58d64f8da24fdcf43c23866603890baccd848fcc8d3
ORCID 0000-0002-7165-0444
0000-0001-8165-3932
0000-0002-3208-9383
0000-0001-5378-1582
0000-0003-2485-6666
OpenAccessLink https://dx.doi.org/10.1016/j.physa.2024.129671
ParticipantIDs crossref_primary_10_1016_j_physa_2024_129671
crossref_citationtrail_10_1016_j_physa_2024_129671
elsevier_sciencedirect_doi_10_1016_j_physa_2024_129671
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Rilett (b6) 2003; 1855
Ciuffo, Punzo, Montanino (b16) 2012; 2315
Hollander, Liu (b9) 2008; 35
Ting, Lymburn, Stemler, Sun, Small (b13) 2023
Ossen, Hoogendoorn (b18) 2008; 2088
Martin, Frazier, Robert (b21) 2023; 1
Craiu, Rosenthal, Yang (b31) 2009; 104
Peng, Liu, Dennis (b1) 2020; 538
Ossen, Hoogendoorn (b7) 2005; 1934
Treiber, Hennecke, Helbing (b37) 2000; 62
U.S. Department of Transportation Federal Highway Administration (b36) 2016
Gelman, Rubin (b28) 1992
Haario, Saksman, Tamminen (b29) 2001
Craiu, Rosenthal (b24) 2014; 1
Park, Qi (b8) 2005; 1934
Brockfeld, Kühne, Wagner (b4) 2004; 1876
Hourdakis, Michalopoulos, Kottommannil (b5) 2003; 1852
R.M. Neal, et al., Mcmc using hamiltonian dynamics, in: Handbook of markov chain monte carlo, Vol. 2, 2011, p. 2, (11).
Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (b23) 2013
Bradbury, Frostig, Hawkins, Johnson, Leary, Maclaurin, Necula, Paszke, VanderPlas, Wanderman-Milne, Zhang (b35) 2018
Gipps (b14) 1981; 15
Geman, Geman (b27) 1984
Punzo, Zheng, Montanino (b11) 2021; 128
Ossen, Hoogendoorn (b19) 2009; 2124
Roberts, Rosenthal (b30) 2007; 44
Pan, Zhang, Tian, Cui, Wang (b12) 2023; 632
Punzo, Ciuffo, Montanino (b20) 2012; 2315
Cui, Wang, Ci, Yang, Yao (b3) 2023; 630
Hoffman, Gelman (b34) 2014; 15
Lücken (b15) 2019
Wang, Liu, Ci, Wu (b2) 2022; 607
Kesting, Treiber (b10) 2008; 2088
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b25) 1953; 21
Brockfeld, Kühne, Skabardonis, Wagner (b17) 2003; 1852
Givens, Hoeting (b22) 2012
Hastings (b26) 1970; 57
Gelman, Gilks, Roberts (b32) 1997; 7
Hollander (10.1016/j.physa.2024.129671_b9) 2008; 35
U.S. Department of Transportation Federal Highway Administration (10.1016/j.physa.2024.129671_b36) 2016
Gelman (10.1016/j.physa.2024.129671_b28) 1992
Bradbury (10.1016/j.physa.2024.129671_b35) 2018
Gipps (10.1016/j.physa.2024.129671_b14) 1981; 15
Gelman (10.1016/j.physa.2024.129671_b23) 2013
Kesting (10.1016/j.physa.2024.129671_b10) 2008; 2088
Brockfeld (10.1016/j.physa.2024.129671_b17) 2003; 1852
Peng (10.1016/j.physa.2024.129671_b1) 2020; 538
Ossen (10.1016/j.physa.2024.129671_b18) 2008; 2088
Hourdakis (10.1016/j.physa.2024.129671_b5) 2003; 1852
Ciuffo (10.1016/j.physa.2024.129671_b16) 2012; 2315
Geman (10.1016/j.physa.2024.129671_b27) 1984
Park (10.1016/j.physa.2024.129671_b8) 2005; 1934
Roberts (10.1016/j.physa.2024.129671_b30) 2007; 44
Ossen (10.1016/j.physa.2024.129671_b19) 2009; 2124
Punzo (10.1016/j.physa.2024.129671_b11) 2021; 128
Hastings (10.1016/j.physa.2024.129671_b26) 1970; 57
Ossen (10.1016/j.physa.2024.129671_b7) 2005; 1934
Lücken (10.1016/j.physa.2024.129671_b15) 2019
Pan (10.1016/j.physa.2024.129671_b12) 2023; 632
Givens (10.1016/j.physa.2024.129671_b22) 2012
Craiu (10.1016/j.physa.2024.129671_b24) 2014; 1
Martin (10.1016/j.physa.2024.129671_b21) 2023; 1
Punzo (10.1016/j.physa.2024.129671_b20) 2012; 2315
Haario (10.1016/j.physa.2024.129671_b29) 2001
Kim (10.1016/j.physa.2024.129671_b6) 2003; 1855
Ting (10.1016/j.physa.2024.129671_b13) 2023
Craiu (10.1016/j.physa.2024.129671_b31) 2009; 104
10.1016/j.physa.2024.129671_b33
Cui (10.1016/j.physa.2024.129671_b3) 2023; 630
Brockfeld (10.1016/j.physa.2024.129671_b4) 2004; 1876
Wang (10.1016/j.physa.2024.129671_b2) 2022; 607
Gelman (10.1016/j.physa.2024.129671_b32) 1997; 7
Hoffman (10.1016/j.physa.2024.129671_b34) 2014; 15
Metropolis (10.1016/j.physa.2024.129671_b25) 1953; 21
Treiber (10.1016/j.physa.2024.129671_b37) 2000; 62
References_xml – volume: 15
  start-page: 1593
  year: 2014
  end-page: 1623
  ident: b34
  article-title: The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo
  publication-title: J. Mach. Learn. Res.
– volume: 2088
  start-page: 117
  year: 2008
  end-page: 125
  ident: b18
  article-title: Validity of trajectory-based calibration approach of car-following models in presence of measurement errors
  publication-title: Transp. Res. Rec.
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: b26
  article-title: Monte carlo sampling methods using markov chains and their applications
  publication-title: Biometrika
– start-page: 457
  year: 1992
  end-page: 472
  ident: b28
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat. Sci.
– volume: 104
  start-page: 1454
  year: 2009
  end-page: 1466
  ident: b31
  article-title: Learn from thy neighbor: Parallel-chain and regional adaptive mcmc
  publication-title: J. Amer. Statist. Assoc.
– year: 2023
  ident: b13
  article-title: Model calibration and validation from a statistical inference perspective
– volume: 1934
  start-page: 13
  year: 2005
  end-page: 21
  ident: b7
  article-title: Car-following behavior analysis from microscopic trajectory data
  publication-title: Transp. Res. Rec.
– volume: 1934
  start-page: 208
  year: 2005
  end-page: 217
  ident: b8
  article-title: Development and evaluation of a procedure for the calibration of simulation models
  publication-title: Transp. Res. Rec.
– volume: 630
  year: 2023
  ident: b3
  article-title: Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow
  publication-title: Physica A
– volume: 35
  start-page: 347
  year: 2008
  end-page: 362
  ident: b9
  article-title: The principles of calibrating traffic microsimulation models
  publication-title: Transportation
– volume: 128
  year: 2021
  ident: b11
  article-title: About calibration of car-following dynamics of automated and human-driven vehicles: Methodology, guidelines and codes
  publication-title: Transp. Res. C
– volume: 632
  year: 2023
  ident: b12
  article-title: Analysis of car–following behaviors based on data–driven and theory–driven car–following models: Heterogeneity and asymmetry
  publication-title: Physica A
– volume: 1
  start-page: 179
  year: 2014
  end-page: 201
  ident: b24
  article-title: Bayesian computation via markov chain monte carlo
  publication-title: Annu. Rev. Stat. Appl.
– volume: 607
  year: 2022
  ident: b2
  article-title: Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis
  publication-title: Physica A
– volume: 1852
  start-page: 130
  year: 2003
  end-page: 139
  ident: b5
  article-title: Practical procedure for calibrating microscopic traffic simulation models
  publication-title: Transp. Res. Rec.
– year: 2018
  ident: b35
  article-title: JAX: composable transformations of python+numpy programs
– volume: 1
  start-page: 1
  year: 2023
  end-page: 17
  ident: b21
  article-title: Computing bayes: From then ‘til now
  publication-title: Statist. Sci.
– start-page: 223
  year: 2001
  end-page: 242
  ident: b29
  article-title: An adaptive metropolis algorithm
  publication-title: Bernoulli
– year: 2016
  ident: b36
  article-title: Next generation simulation (NGSIM) vehicle trajectories and supporting data, provided by ITS DataHub through data.transportation.gov
– volume: 15
  start-page: 105
  year: 1981
  end-page: 111
  ident: b14
  article-title: A behavioural car-following model for computer simulation
  publication-title: Transp. Res. B
– reference: R.M. Neal, et al., Mcmc using hamiltonian dynamics, in: Handbook of markov chain monte carlo, Vol. 2, 2011, p. 2, (11).
– volume: 62
  start-page: 1805
  year: 2000
  ident: b37
  article-title: Congested traffic states in empirical observations and microscopic simulations
  publication-title: Phys. Rev. E
– volume: 2315
  start-page: 89
  year: 2012
  end-page: 99
  ident: b16
  article-title: Thirty years of gipps’ car-following model: Applications, developments, and new features
  publication-title: Transp. Res. Rec.
– year: 2019
  ident: b15
  article-title: Resolving collisions for the gipps car-following model
– volume: 1876
  start-page: 62
  year: 2004
  end-page: 70
  ident: b4
  article-title: Calibration and validation of microscopic traffic flow models
  publication-title: Transp. Res. Rec.
– volume: 2315
  start-page: 11
  year: 2012
  end-page: 24
  ident: b20
  article-title: Can results of car-following model calibration based on trajectory data be trusted?
  publication-title: Transp. Res. Rec.
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b25
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– year: 2013
  ident: b23
  article-title: Bayesian Data Analysis
– volume: 538
  year: 2020
  ident: b1
  article-title: An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view
  publication-title: Phys. A
– volume: 2088
  start-page: 148
  year: 2008
  end-page: 156
  ident: b10
  article-title: Calibrating car-following models by using trajectory data: Methodological study
  publication-title: Transp. Res. Rec.
– year: 2012
  ident: b22
  publication-title: Computational Statistics
– volume: 1855
  start-page: 80
  year: 2003
  end-page: 89
  ident: b6
  article-title: Simplex-based calibration of traffic microsimulation models with intelligent transportation systems data
  publication-title: Transp. Res. Rec.
– volume: 2124
  start-page: 36
  year: 2009
  end-page: 44
  ident: b19
  article-title: Reliability of parameter values estimated using trajectory observations
  publication-title: Transp. Res. Rec.
– volume: 7
  start-page: 110
  year: 1997
  end-page: 120
  ident: b32
  article-title: Weak convergence and optimal scaling of random walk metropolis algorithms
  publication-title: Ann. Appl. Probab.
– volume: 1852
  start-page: 124
  year: 2003
  end-page: 129
  ident: b17
  article-title: Toward benchmarking of microscopic traffic flow models
  publication-title: Transp. Res. Rec.
– start-page: 721
  year: 1984
  end-page: 741
  ident: b27
  article-title: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 44
  start-page: 458
  year: 2007
  end-page: 475
  ident: b30
  article-title: Coupling and ergodicity of adaptive markov chain monte carlo algorithms
  publication-title: J. Appl. Probab.
– year: 2012
  ident: 10.1016/j.physa.2024.129671_b22
– volume: 104
  start-page: 1454
  issue: 488
  year: 2009
  ident: 10.1016/j.physa.2024.129671_b31
  article-title: Learn from thy neighbor: Parallel-chain and regional adaptive mcmc
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/jasa.2009.tm08393
– year: 2016
  ident: 10.1016/j.physa.2024.129671_b36
– volume: 607
  year: 2022
  ident: 10.1016/j.physa.2024.129671_b2
  article-title: Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.128196
– year: 2018
  ident: 10.1016/j.physa.2024.129671_b35
– year: 2023
  ident: 10.1016/j.physa.2024.129671_b13
– volume: 2088
  start-page: 148
  issue: 1
  year: 2008
  ident: 10.1016/j.physa.2024.129671_b10
  article-title: Calibrating car-following models by using trajectory data: Methodological study
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2088-16
– start-page: 457
  year: 1992
  ident: 10.1016/j.physa.2024.129671_b28
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat. Sci.
– volume: 1
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.physa.2024.129671_b21
  article-title: Computing bayes: From then ‘til now
  publication-title: Statist. Sci.
– volume: 7
  start-page: 110
  issue: 1
  year: 1997
  ident: 10.1016/j.physa.2024.129671_b32
  article-title: Weak convergence and optimal scaling of random walk metropolis algorithms
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1034625254
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  ident: 10.1016/j.physa.2024.129671_b26
  article-title: Monte carlo sampling methods using markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 1
  start-page: 179
  year: 2014
  ident: 10.1016/j.physa.2024.129671_b24
  article-title: Bayesian computation via markov chain monte carlo
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-022513-115540
– volume: 2315
  start-page: 11
  issue: 1
  year: 2012
  ident: 10.1016/j.physa.2024.129671_b20
  article-title: Can results of car-following model calibration based on trajectory data be trusted?
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2315-02
– volume: 15
  start-page: 1593
  issue: 1
  year: 2014
  ident: 10.1016/j.physa.2024.129671_b34
  article-title: The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 105
  issue: 2
  year: 1981
  ident: 10.1016/j.physa.2024.129671_b14
  article-title: A behavioural car-following model for computer simulation
  publication-title: Transp. Res. B
  doi: 10.1016/0191-2615(81)90037-0
– volume: 538
  year: 2020
  ident: 10.1016/j.physa.2024.129671_b1
  article-title: An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view
  publication-title: Phys. A
  doi: 10.1016/j.physa.2019.122967
– volume: 632
  year: 2023
  ident: 10.1016/j.physa.2024.129671_b12
  article-title: Analysis of car–following behaviors based on data–driven and theory–driven car–following models: Heterogeneity and asymmetry
  publication-title: Physica A
  doi: 10.1016/j.physa.2023.129324
– year: 2013
  ident: 10.1016/j.physa.2024.129671_b23
– volume: 35
  start-page: 347
  issue: 3
  year: 2008
  ident: 10.1016/j.physa.2024.129671_b9
  article-title: The principles of calibrating traffic microsimulation models
  publication-title: Transportation
  doi: 10.1007/s11116-007-9156-2
– volume: 2124
  start-page: 36
  issue: 1
  year: 2009
  ident: 10.1016/j.physa.2024.129671_b19
  article-title: Reliability of parameter values estimated using trajectory observations
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2124-04
– volume: 1855
  start-page: 80
  issue: 1
  year: 2003
  ident: 10.1016/j.physa.2024.129671_b6
  article-title: Simplex-based calibration of traffic microsimulation models with intelligent transportation systems data
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1855-10
– volume: 1934
  start-page: 13
  issue: 1
  year: 2005
  ident: 10.1016/j.physa.2024.129671_b7
  article-title: Car-following behavior analysis from microscopic trajectory data
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198105193400102
– volume: 630
  year: 2023
  ident: 10.1016/j.physa.2024.129671_b3
  article-title: Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow
  publication-title: Physica A
  doi: 10.1016/j.physa.2023.129259
– volume: 1876
  start-page: 62
  issue: 1
  year: 2004
  ident: 10.1016/j.physa.2024.129671_b4
  article-title: Calibration and validation of microscopic traffic flow models
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1876-07
– volume: 1852
  start-page: 130
  issue: 1
  year: 2003
  ident: 10.1016/j.physa.2024.129671_b5
  article-title: Practical procedure for calibrating microscopic traffic simulation models
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1852-17
– volume: 44
  start-page: 458
  issue: 2
  year: 2007
  ident: 10.1016/j.physa.2024.129671_b30
  article-title: Coupling and ergodicity of adaptive markov chain monte carlo algorithms
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1183667414
– volume: 128
  year: 2021
  ident: 10.1016/j.physa.2024.129671_b11
  article-title: About calibration of car-following dynamics of automated and human-driven vehicles: Methodology, guidelines and codes
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2021.103165
– volume: 1934
  start-page: 208
  issue: 1
  year: 2005
  ident: 10.1016/j.physa.2024.129671_b8
  article-title: Development and evaluation of a procedure for the calibration of simulation models
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198105193400122
– start-page: 223
  year: 2001
  ident: 10.1016/j.physa.2024.129671_b29
  article-title: An adaptive metropolis algorithm
  publication-title: Bernoulli
  doi: 10.2307/3318737
– ident: 10.1016/j.physa.2024.129671_b33
  doi: 10.1201/b10905-6
– year: 2019
  ident: 10.1016/j.physa.2024.129671_b15
– start-page: 721
  issue: 6
  year: 1984
  ident: 10.1016/j.physa.2024.129671_b27
  article-title: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1984.4767596
– volume: 1852
  start-page: 124
  issue: 1
  year: 2003
  ident: 10.1016/j.physa.2024.129671_b17
  article-title: Toward benchmarking of microscopic traffic flow models
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1852-16
– volume: 2088
  start-page: 117
  issue: 1
  year: 2008
  ident: 10.1016/j.physa.2024.129671_b18
  article-title: Validity of trajectory-based calibration approach of car-following models in presence of measurement errors
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2088-13
– volume: 2315
  start-page: 89
  issue: 1
  year: 2012
  ident: 10.1016/j.physa.2024.129671_b16
  article-title: Thirty years of gipps’ car-following model: Applications, developments, and new features
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2315-10
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.physa.2024.129671_b25
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 62
  start-page: 1805
  issue: 2
  year: 2000
  ident: 10.1016/j.physa.2024.129671_b37
  article-title: Congested traffic states in empirical observations and microscopic simulations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.1805
SSID ssj0001732
Score 2.4454725
Snippet Car following model is an important part in traffic modelling and has attracted a lot of attentions in the literature. As the proposed car following models...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129671
SubjectTerms Adaptive Markov chain Monte Carlo
Bayesian inference
Model calibration and validation
Uncertainty quantification
Title Parameter estimation for Gipps’ car following model in a Bayesian framework
URI https://dx.doi.org/10.1016/j.physa.2024.129671
Volume 639
WOSCitedRecordID wos001299957400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLagHRIXNGAThYF82A1SZYmTOMcylQFiUyWK1J0i24m1Vm1aNS20N_4N_j3-Ep5_JCktqtYDlyhyHCfK--S89_z5ewidh2mshIkix5U8cAjlrsO45I5PiJfFQUbDgOtiE9HNDR0M4p5daC90OYEoz-lqFc_-q6mhDYytts4eYO5qUGiAczA6HMHscLyX4XtM8a2U9qES0JjUZMKr4WxWlOSGWGlSQ_N4PP2hsgW6Io5KfrC379k601srZUnc2vRge8awdQ60b6uifGWTol7T_7KegLnyLQ6SIRBP7O7DrQtL3ft2Ke7YdDMZ4W1yWOwmLAhKiW-qqpQTbGjkiuwUCQ5GaK7vzN4mkTBqq6SO0oTySLvu_bdW9tY_rGIWlqS1UaIHSdQgiRnkIWp6URDD1NfsfOoOPlc_7IvIN4tN9t1LcSpNA9x5l387MBtOSf8YPbHRBO4YFDxFD7L8GXpkTFQ8R9cVFnCNBQxYwBoLv3_-woACXKEAaxTgYY4ZLlGAKxScoG8fuv3Lj46tn-EIn9CFQ0TAuOBuJMADcXkUypDSNKBpSCRNmUdkKiTxBXhtEMQqpUWXMyFSSqgUgqb-KWrk0zx7gbByw31VkgXib-JmHpdC8TIoi2IWQFDcQl75URJhxeVVjZNxsscgLfSuumlmtFX2dw_Lr51Y99C4fQngZ9-NLw97ziv0uIb2GWos5svsNToS3xfDYv7GgucPXQuGGw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+for+Gipps%E2%80%99+car+following+model+in+a+Bayesian+framework&rft.jtitle=Physica+A&rft.au=Ting%2C+Samson&rft.au=Lymburn%2C+Thomas&rft.au=Stemler%2C+Thomas&rft.au=Sun%2C+Yuchao&rft.date=2024-04-01&rft.issn=0378-4371&rft.volume=639&rft.spage=129671&rft_id=info:doi/10.1016%2Fj.physa.2024.129671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2024_129671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon