Revisiting agglomerative clustering

Hierarchical agglomerative methods stand out as particularly effective and popular approaches for clustering data. Yet, these methods have not been systematically compared regarding the important issue of false positives while searching for clusters. A model of clusters involving a higher density nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A Jg. 585; S. 126433
Hauptverfasser: Tokuda, Eric K., Comin, Cesar H., Costa, Luciano da F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2022
Schlagworte:
ISSN:0378-4371, 1873-2119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hierarchical agglomerative methods stand out as particularly effective and popular approaches for clustering data. Yet, these methods have not been systematically compared regarding the important issue of false positives while searching for clusters. A model of clusters involving a higher density nucleus surrounded by a transition, followed by outliers is adopted as a means to quantify the relevance of the obtained clusters and address the problem of false positives. Six traditional methodologies, namely the single, average, median, complete, centroid and Ward’s linkage criteria are compared with respect to the adopted model. Unimodal and bimodal datasets obeying uniform, gaussian, exponential and power-law distributions are considered for this comparison. The obtained results include the verification that many methods detect two clusters in unimodal data. The single-linkage method was found to be more resilient to false positives. Also, several methods detected clusters not corresponding directly to the nucleus. •Six classical agglomerative clustering methods are compared regarding false positives.•The single-linkage led to fewer false-positives in unimodal distributions.•The single-linkage yielded clusters corresponding more closely to the nuclei.
AbstractList Hierarchical agglomerative methods stand out as particularly effective and popular approaches for clustering data. Yet, these methods have not been systematically compared regarding the important issue of false positives while searching for clusters. A model of clusters involving a higher density nucleus surrounded by a transition, followed by outliers is adopted as a means to quantify the relevance of the obtained clusters and address the problem of false positives. Six traditional methodologies, namely the single, average, median, complete, centroid and Ward’s linkage criteria are compared with respect to the adopted model. Unimodal and bimodal datasets obeying uniform, gaussian, exponential and power-law distributions are considered for this comparison. The obtained results include the verification that many methods detect two clusters in unimodal data. The single-linkage method was found to be more resilient to false positives. Also, several methods detected clusters not corresponding directly to the nucleus. •Six classical agglomerative clustering methods are compared regarding false positives.•The single-linkage led to fewer false-positives in unimodal distributions.•The single-linkage yielded clusters corresponding more closely to the nuclei.
ArticleNumber 126433
Author Tokuda, Eric K.
Comin, Cesar H.
Costa, Luciano da F.
Author_xml – sequence: 1
  givenname: Eric K.
  orcidid: 0000-0002-6159-2500
  surname: Tokuda
  fullname: Tokuda, Eric K.
  email: tokuda.ek@gmail.com
  organization: Institute of Physics, University of São Paulo, Av. Trabalhador Sao Carlense, 400, SP, Brazil
– sequence: 2
  givenname: Cesar H.
  surname: Comin
  fullname: Comin, Cesar H.
  organization: Computer Science Department, Federal University of São Carlos, Rod. Washington Luis, km 235, SP, Brazil
– sequence: 3
  givenname: Luciano da F.
  surname: Costa
  fullname: Costa, Luciano da F.
  organization: Institute of Physics, University of São Paulo, Av. Trabalhador Sao Carlense, 400, SP, Brazil
BookMark eNqFj8FKAzEURYNUsK1-gZuC6xnfSzKTzMKFFK1CQRBdh0z6pqZMZ0oSC_17p9aVC13dxeVc7pmwUdd3xNg1Qo6A5e0m330cos05cMyRl1KIMzZGrUTGEasRG4NQOpNC4QWbxLgBAFSCj9nNK-199Ml365ldr9t-S8Emv6eZaz9jojAUl-y8sW2kq5-csvfHh7f5U7Z8WTzP75eZE1KnTOrCFVI0ympeASkBVmooKtCqkHVdYGWhBqSh1SuoVKmcQO1qBbxsmpLElFWnXRf6GAM1xvk0nOm7FKxvDYI52pqN-bY1R1tzsh1Y8YvdBb-14fAPdXeiaNDaewomOk-do5UP5JJZ9f5P_gs8rXAo
CitedBy_id crossref_primary_10_1021_acs_jcim_5c01765
crossref_primary_10_1038_s41598_025_12245_7
crossref_primary_10_3390_en16010369
crossref_primary_10_32604_cmes_2023_026113
crossref_primary_10_3390_jcm13154577
crossref_primary_10_1016_j_ipm_2024_103991
crossref_primary_10_1111_jmft_12695
crossref_primary_10_3390_jimaging9070146
crossref_primary_10_1016_j_compchemeng_2025_109251
crossref_primary_10_1016_j_ins_2023_02_088
crossref_primary_10_1007_s12053_024_10249_2
crossref_primary_10_1016_j_procs_2025_01_178
crossref_primary_10_1115_1_4067047
crossref_primary_10_3390_antibiotics13090821
crossref_primary_10_1016_j_jhydrol_2025_133231
crossref_primary_10_3390_antibiotics12101502
crossref_primary_10_1007_s10802_024_01248_z
crossref_primary_10_1016_j_measurement_2025_118990
crossref_primary_10_1051_e3sconf_202449604001
crossref_primary_10_1007_s00170_025_16377_y
crossref_primary_10_1007_s10586_024_04981_8
crossref_primary_10_1016_j_asoc_2025_112836
crossref_primary_10_1016_j_autcon_2023_105219
crossref_primary_10_1038_s41598_024_84695_4
crossref_primary_10_1109_ACCESS_2024_3359413
crossref_primary_10_1016_j_artmed_2022_102323
crossref_primary_10_1016_j_eswa_2025_127532
crossref_primary_10_3390_app15105274
crossref_primary_10_3390_bdcc9040106
crossref_primary_10_14778_3746405_3746431
crossref_primary_10_1109_TCE_2025_3541440
crossref_primary_10_1109_TPAMI_2025_3545573
crossref_primary_10_1109_ACCESS_2024_3383047
crossref_primary_10_3390_w15040620
crossref_primary_10_1109_TCSVT_2024_3492814
crossref_primary_10_3390_sym15091679
crossref_primary_10_1590_0074_02760240163
crossref_primary_10_3390_agriengineering6010046
crossref_primary_10_3390_fi17010008
crossref_primary_10_3390_smartcities7010004
Cites_doi 10.1007/s13042-018-0836-3
10.1109/TPAMI.1979.4766909
10.1080/01621459.1963.10500845
10.1093/bioinformatics/btn174
10.1016/0031-3203(83)90055-9
10.1016/j.physa.2019.04.255
10.1177/001316445701700204
10.1016/j.physa.2016.05.063
10.1080/01621459.1971.10482356
10.2307/2528417
10.1145/3321386
10.1007/s00357-014-9161-z
10.1007/s10852-005-9022-1
10.1007/BF01890078
10.1016/S0065-2458(08)60034-0
10.1016/0031-3203(86)90023-3
10.1099/00221287-17-1-201
10.1145/331499.331504
10.1007/s00357-016-9198-2
10.1038/2021034a0
10.1016/j.neucom.2019.02.043
10.1145/2897518.2897527
10.1016/0893-6080(88)90023-8
10.1016/0002-9149(89)90524-9
10.1016/j.dss.2014.03.001
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2021.126433
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2021_126433
S0378437121007068
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c348t-485c543f7a8290e730a4805908754bb519a0b01e8298d09767c318cb7026ff6e3
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709119600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Sat Nov 29 07:16:21 EST 2025
Tue Nov 18 21:29:07 EST 2025
Fri Feb 23 02:43:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords False positive
Clustering
Hierarchical clustering
Agglomerative clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-485c543f7a8290e730a4805908754bb519a0b01e8298d09767c318cb7026ff6e3
ORCID 0000-0002-6159-2500
OpenAccessLink https://doi.org/10.1016/j.physa.2021.126433
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2021_126433
crossref_primary_10_1016_j_physa_2021_126433
elsevier_sciencedirect_doi_10_1016_j_physa_2021_126433
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Davies, Bouldin (b23) 1979
Dubes, Jain (b12) 1980; 19
Glasbey (b10) 1987; 4
Wei, Liang, Guo, Song, Sun (b15) 2019; 341
Kaufman, Rousseeuw (b5) 2009
Cheng, Zhu, Huang, Wu, Yang (b20) 2019; 10
Gower, Ross (b29) 1969; 18
Street, Wolberg, Mangasarian (b32) 1993
Cohen-Addad, Kanade, Mallmann-Trenn, Mathieu (b19) 2019; 66
McQuitty (b25) 1957; 17
Smith, Everhart, Dickson, Knowler, Johannes (b33) 1988
Rand (b22) 1971; 66
Murtagh, Legendre (b9) 2014; 31
Loewenstein, Portugaly, Fromer, Linial (b3) 2008; 24
Sokal, Michener (b27) 1958; 38
Macnaughton-Smith, Williams, Dale, Mockett (b6) 1964; 202
Sørensen (b26) 1948; 5
Gorman, Sejnowski (b35) 1988; 1
Nash, Sellers, Talbot, Cawthorn, Ford (b36) 1994
Plastria (b17) 1986; 19
Müllner (b30) 2011
McInnes, Healy (b39) 2017
Jain, Murty, Flynn (b1) 1999; 31
Massart, Plastria, Kaufman (b16) 1983; 16
Dua, Graff (b31) 2017
Detrano, Janosi, Steinbrunn, Pfisterer, Schmid, Sandhu, Guppy, Lee, Froelicher (b34) 1989; 64
Cohen, Manion, Morrison (b14) 2013
Franke (b2) 2016; 461
Martínez-Pérez (b8) 2016; 33
Reynolds, Richards, de la I., Rayward-Smith (b11) 2006; 5
Gower (b28) 1967
Moro, Cortez, Rita (b37) 2014; 62
Zeitsch (b4) 2019; 524
Ward (b7) 1963; 58
S. Dasgupta, A cost function for similarity-based hierarchical clustering, in: ACM Symposium on Theory of Computing, 2016, pp. 118–127.
Jain, Dubes (b38) 1988
Florek, Łukaszewicz, Perkal, Steinhaus, Zubrzycki (b13) 1951
Campello, Moulavi, Sander (b21) 2013
Sneath (b24) 1957; 17
Dua (10.1016/j.physa.2021.126433_b31) 2017
Massart (10.1016/j.physa.2021.126433_b16) 1983; 16
Cohen (10.1016/j.physa.2021.126433_b14) 2013
Cheng (10.1016/j.physa.2021.126433_b20) 2019; 10
Sneath (10.1016/j.physa.2021.126433_b24) 1957; 17
Glasbey (10.1016/j.physa.2021.126433_b10) 1987; 4
Sørensen (10.1016/j.physa.2021.126433_b26) 1948; 5
Gorman (10.1016/j.physa.2021.126433_b35) 1988; 1
Franke (10.1016/j.physa.2021.126433_b2) 2016; 461
Sokal (10.1016/j.physa.2021.126433_b27) 1958; 38
Plastria (10.1016/j.physa.2021.126433_b17) 1986; 19
10.1016/j.physa.2021.126433_b18
Reynolds (10.1016/j.physa.2021.126433_b11) 2006; 5
Davies (10.1016/j.physa.2021.126433_b23) 1979
Detrano (10.1016/j.physa.2021.126433_b34) 1989; 64
McQuitty (10.1016/j.physa.2021.126433_b25) 1957; 17
Street (10.1016/j.physa.2021.126433_b32) 1993
Smith (10.1016/j.physa.2021.126433_b33) 1988
Macnaughton-Smith (10.1016/j.physa.2021.126433_b6) 1964; 202
Moro (10.1016/j.physa.2021.126433_b37) 2014; 62
Gower (10.1016/j.physa.2021.126433_b28) 1967
Müllner (10.1016/j.physa.2021.126433_b30) 2011
Ward (10.1016/j.physa.2021.126433_b7) 1963; 58
Martínez-Pérez (10.1016/j.physa.2021.126433_b8) 2016; 33
Campello (10.1016/j.physa.2021.126433_b21) 2013
Jain (10.1016/j.physa.2021.126433_b1) 1999; 31
Dubes (10.1016/j.physa.2021.126433_b12) 1980; 19
Nash (10.1016/j.physa.2021.126433_b36) 1994
Gower (10.1016/j.physa.2021.126433_b29) 1969; 18
McInnes (10.1016/j.physa.2021.126433_b39) 2017
Kaufman (10.1016/j.physa.2021.126433_b5) 2009
Murtagh (10.1016/j.physa.2021.126433_b9) 2014; 31
Jain (10.1016/j.physa.2021.126433_b38) 1988
Florek (10.1016/j.physa.2021.126433_b13) 1951
Zeitsch (10.1016/j.physa.2021.126433_b4) 2019; 524
Wei (10.1016/j.physa.2021.126433_b15) 2019; 341
Loewenstein (10.1016/j.physa.2021.126433_b3) 2008; 24
Cohen-Addad (10.1016/j.physa.2021.126433_b19) 2019; 66
Rand (10.1016/j.physa.2021.126433_b22) 1971; 66
References_xml – volume: 17
  start-page: 201
  year: 1957
  end-page: 226
  ident: b24
  article-title: The application of computers to taxonomy
  publication-title: Microbiology
– volume: 524
  start-page: 737
  year: 2019
  end-page: 775
  ident: b4
  article-title: A jump model for credit default swaps with hierarchical clustering
  publication-title: Physica A
– volume: 10
  start-page: 1591
  year: 2019
  end-page: 1602
  ident: b20
  article-title: A hierarchical clustering algorithm based on noise removal
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 66
  start-page: 846
  year: 1971
  end-page: 850
  ident: b22
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Amer. Statist. Assoc.
– volume: 66
  start-page: 1
  year: 2019
  end-page: 42
  ident: b19
  article-title: Hierarchical clustering: Objective functions and algorithms
  publication-title: J. ACM
– volume: 341
  start-page: 118
  year: 2019
  end-page: 134
  ident: b15
  article-title: Hierarchical division clustering framework for categorical data
  publication-title: Neurocomputing
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b1
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– volume: 19
  start-page: 193
  year: 1986
  end-page: 196
  ident: b17
  article-title: Two hierarchies associated with each clustering scheme
  publication-title: Pattern Recognit.
– start-page: 261
  year: 1988
  ident: b33
  article-title: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus
  publication-title: Proceedings of the Annual Symposium on Computer Application in Medical Care
– volume: 64
  start-page: 304
  year: 1989
  end-page: 310
  ident: b34
  article-title: International application of a new probability algorithm for the diagnosis of coronary artery disease
  publication-title: Am. J. Cardiol.
– volume: 62
  start-page: 22
  year: 2014
  end-page: 31
  ident: b37
  article-title: A data-driven approach to predict the success of bank telemarketing
  publication-title: Decis. Support Syst.
– volume: 18
  start-page: 54
  year: 1969
  end-page: 64
  ident: b29
  article-title: Minimum spanning trees and single linkage cluster analysis
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– year: 2013
  ident: b14
  article-title: Research Methods in Education
– volume: 461
  start-page: 384
  year: 2016
  end-page: 408
  ident: b2
  article-title: CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks
  publication-title: Physica A
– volume: 1
  start-page: 75
  year: 1988
  end-page: 89
  ident: b35
  article-title: Analysis of hidden units in a layered network trained to classify sonar targets
  publication-title: Neural Netw.
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  ident: b7
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Amer. Statist. Assoc.
– start-page: 160
  year: 2013
  end-page: 172
  ident: b21
  article-title: Density-based clustering based on hierarchical density estimates
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
– volume: 17
  start-page: 207
  year: 1957
  end-page: 229
  ident: b25
  article-title: Elementary linkage analysis for isolating orthogonal and oblique types and typal relevancies
  publication-title: Educ. Psychol. Meas.
– start-page: 623
  year: 1967
  end-page: 637
  ident: b28
  article-title: A comparison of some methods of cluster analysis
  publication-title: Biometrics
– start-page: 33
  year: 2017
  end-page: 42
  ident: b39
  article-title: Accelerated hierarchical density based clustering
  publication-title: 2017 IEEE International Conference on Data Mining Workshops
– start-page: 224
  year: 1979
  end-page: 227
  ident: b23
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 202
  start-page: 1034
  year: 1964
  end-page: 1035
  ident: b6
  article-title: Dissimilarity analysis: a new technique of hierarchical sub-division
  publication-title: Nature
– volume: 16
  start-page: 507
  year: 1983
  end-page: 516
  ident: b16
  article-title: Non-hierarchical clustering with MASLOC
  publication-title: Pattern Recognit.
– year: 2011
  ident: b30
  article-title: Modern hierarchical, agglomerative clustering algorithms
– year: 1988
  ident: b38
  article-title: Algorithms for Clustering Data
– volume: 24
  start-page: i41
  year: 2008
  end-page: i49
  ident: b3
  article-title: Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space
  publication-title: Bioinformatics
– volume: 33
  start-page: 118
  year: 2016
  end-page: 140
  ident: b8
  article-title: On the properties of
  publication-title: J. Classification
– start-page: 282
  year: 1951
  end-page: 285
  ident: b13
  article-title: Sur la liaison et la division des points d’un ensemble fini
  publication-title: Colloquium Mathematicum, Vol. 2
– year: 1994
  ident: b36
  article-title: The Population Biology of Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (
– volume: 4
  start-page: 103
  year: 1987
  end-page: 109
  ident: b10
  article-title: Complete linkage as a multiple stopping rule for single linkage clustering
  publication-title: J. Classification
– year: 2017
  ident: b31
  article-title: UCI Machine Learning Repository
– volume: 31
  start-page: 274
  year: 2014
  end-page: 295
  ident: b9
  article-title: Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion?
  publication-title: J. Classification
– volume: 5
  start-page: 475
  year: 2006
  end-page: 504
  ident: b11
  article-title: Clustering rules: a comparison of partitioning and hierarchical clustering algorithms
  publication-title: J. Math. Model. Algorithms
– volume: 38
  start-page: 1409
  year: 1958
  end-page: 1438
  ident: b27
  article-title: A statistical method for evaluation systematic relationships
  publication-title: Univ. Kans. Sci. Bull.
– start-page: 861
  year: 1993
  end-page: 870
  ident: b32
  article-title: Nuclear feature extraction for breast tumor diagnosis
  publication-title: Biomedical Image Processing and Biomedical Visualization, Vol. 1905
– reference: S. Dasgupta, A cost function for similarity-based hierarchical clustering, in: ACM Symposium on Theory of Computing, 2016, pp. 118–127.
– volume: 19
  start-page: 113
  year: 1980
  end-page: 228
  ident: b12
  article-title: Clustering methodologies in exploratory data analysis
  publication-title: Adv. Comput.
– year: 2009
  ident: b5
  article-title: Finding Groups in Data: An Introduction to Cluster Analysis, Vol. 344
– volume: 5
  start-page: 1
  year: 1948
  end-page: 34
  ident: b26
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons
  publication-title: Biol. Skr.
– volume: 10
  start-page: 1591
  issue: 7
  year: 2019
  ident: 10.1016/j.physa.2021.126433_b20
  article-title: A hierarchical clustering algorithm based on noise removal
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0836-3
– start-page: 33
  year: 2017
  ident: 10.1016/j.physa.2021.126433_b39
  article-title: Accelerated hierarchical density based clustering
– start-page: 224
  issue: 2
  year: 1979
  ident: 10.1016/j.physa.2021.126433_b23
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– start-page: 861
  year: 1993
  ident: 10.1016/j.physa.2021.126433_b32
  article-title: Nuclear feature extraction for breast tumor diagnosis
– volume: 5
  start-page: 1
  year: 1948
  ident: 10.1016/j.physa.2021.126433_b26
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons
  publication-title: Biol. Skr.
– year: 2011
  ident: 10.1016/j.physa.2021.126433_b30
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  ident: 10.1016/j.physa.2021.126433_b7
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1963.10500845
– volume: 24
  start-page: i41
  issue: 13
  year: 2008
  ident: 10.1016/j.physa.2021.126433_b3
  article-title: Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn174
– volume: 16
  start-page: 507
  issue: 5
  year: 1983
  ident: 10.1016/j.physa.2021.126433_b16
  article-title: Non-hierarchical clustering with MASLOC
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(83)90055-9
– volume: 524
  start-page: 737
  year: 2019
  ident: 10.1016/j.physa.2021.126433_b4
  article-title: A jump model for credit default swaps with hierarchical clustering
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.04.255
– volume: 17
  start-page: 207
  issue: 2
  year: 1957
  ident: 10.1016/j.physa.2021.126433_b25
  article-title: Elementary linkage analysis for isolating orthogonal and oblique types and typal relevancies
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316445701700204
– volume: 461
  start-page: 384
  year: 2016
  ident: 10.1016/j.physa.2021.126433_b2
  article-title: CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.05.063
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  ident: 10.1016/j.physa.2021.126433_b22
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1971.10482356
– start-page: 623
  year: 1967
  ident: 10.1016/j.physa.2021.126433_b28
  article-title: A comparison of some methods of cluster analysis
  publication-title: Biometrics
  doi: 10.2307/2528417
– year: 2013
  ident: 10.1016/j.physa.2021.126433_b14
– volume: 66
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.physa.2021.126433_b19
  article-title: Hierarchical clustering: Objective functions and algorithms
  publication-title: J. ACM
  doi: 10.1145/3321386
– volume: 31
  start-page: 274
  issue: 3
  year: 2014
  ident: 10.1016/j.physa.2021.126433_b9
  article-title: Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion?
  publication-title: J. Classification
  doi: 10.1007/s00357-014-9161-z
– volume: 5
  start-page: 475
  issue: 4
  year: 2006
  ident: 10.1016/j.physa.2021.126433_b11
  article-title: Clustering rules: a comparison of partitioning and hierarchical clustering algorithms
  publication-title: J. Math. Model. Algorithms
  doi: 10.1007/s10852-005-9022-1
– volume: 38
  start-page: 1409
  year: 1958
  ident: 10.1016/j.physa.2021.126433_b27
  article-title: A statistical method for evaluation systematic relationships
  publication-title: Univ. Kans. Sci. Bull.
– year: 2009
  ident: 10.1016/j.physa.2021.126433_b5
– volume: 4
  start-page: 103
  issue: 1
  year: 1987
  ident: 10.1016/j.physa.2021.126433_b10
  article-title: Complete linkage as a multiple stopping rule for single linkage clustering
  publication-title: J. Classification
  doi: 10.1007/BF01890078
– volume: 19
  start-page: 113
  year: 1980
  ident: 10.1016/j.physa.2021.126433_b12
  article-title: Clustering methodologies in exploratory data analysis
  publication-title: Adv. Comput.
  doi: 10.1016/S0065-2458(08)60034-0
– volume: 19
  start-page: 193
  issue: 2
  year: 1986
  ident: 10.1016/j.physa.2021.126433_b17
  article-title: Two hierarchies associated with each clustering scheme
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(86)90023-3
– year: 1994
  ident: 10.1016/j.physa.2021.126433_b36
– volume: 17
  start-page: 201
  issue: 1
  year: 1957
  ident: 10.1016/j.physa.2021.126433_b24
  article-title: The application of computers to taxonomy
  publication-title: Microbiology
  doi: 10.1099/00221287-17-1-201
– volume: 18
  start-page: 54
  issue: 1
  year: 1969
  ident: 10.1016/j.physa.2021.126433_b29
  article-title: Minimum spanning trees and single linkage cluster analysis
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.physa.2021.126433_b1
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 33
  start-page: 118
  issue: 1
  year: 2016
  ident: 10.1016/j.physa.2021.126433_b8
  article-title: On the properties of α-unchaining single linkage hierarchical clustering
  publication-title: J. Classification
  doi: 10.1007/s00357-016-9198-2
– year: 2017
  ident: 10.1016/j.physa.2021.126433_b31
– volume: 202
  start-page: 1034
  issue: 4936
  year: 1964
  ident: 10.1016/j.physa.2021.126433_b6
  article-title: Dissimilarity analysis: a new technique of hierarchical sub-division
  publication-title: Nature
  doi: 10.1038/2021034a0
– volume: 341
  start-page: 118
  year: 2019
  ident: 10.1016/j.physa.2021.126433_b15
  article-title: Hierarchical division clustering framework for categorical data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.043
– ident: 10.1016/j.physa.2021.126433_b18
  doi: 10.1145/2897518.2897527
– start-page: 261
  year: 1988
  ident: 10.1016/j.physa.2021.126433_b33
  article-title: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus
– volume: 1
  start-page: 75
  issue: 1
  year: 1988
  ident: 10.1016/j.physa.2021.126433_b35
  article-title: Analysis of hidden units in a layered network trained to classify sonar targets
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(88)90023-8
– year: 1988
  ident: 10.1016/j.physa.2021.126433_b38
– start-page: 160
  year: 2013
  ident: 10.1016/j.physa.2021.126433_b21
  article-title: Density-based clustering based on hierarchical density estimates
– volume: 64
  start-page: 304
  issue: 5
  year: 1989
  ident: 10.1016/j.physa.2021.126433_b34
  article-title: International application of a new probability algorithm for the diagnosis of coronary artery disease
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(89)90524-9
– start-page: 282
  year: 1951
  ident: 10.1016/j.physa.2021.126433_b13
  article-title: Sur la liaison et la division des points d’un ensemble fini
– volume: 62
  start-page: 22
  year: 2014
  ident: 10.1016/j.physa.2021.126433_b37
  article-title: A data-driven approach to predict the success of bank telemarketing
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2014.03.001
SSID ssj0001732
Score 2.6053722
Snippet Hierarchical agglomerative methods stand out as particularly effective and popular approaches for clustering data. Yet, these methods have not been...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126433
SubjectTerms Agglomerative clustering
Clustering
False positive
Hierarchical clustering
Title Revisiting agglomerative clustering
URI https://dx.doi.org/10.1016/j.physa.2021.126433
Volume 585
WOSCitedRecordID wos000709119600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA46FXwRr3hnoG-zpU2bJn0cQ_GGDJ2wt5KmqThnK7vIfr4nTbpNJ0MFX0ppm6bN1558OTn5DkKnMUtw4hBiOUnsWL7wfCuWqWOJlAShKwXYTVYkm6B3d6zdDpsmo16_SCdAs4yNRuHbv0INxwBstXT2F3CPbwoHYB9Ahy3ADtsfAX9frBcvopn501M3V16nIj5IdIdKFaHsqwwjbWqgJj7NVv4yTHhpI2s39niaIn_VggMN2ee92uXUCcNBb4fKR5LXEl67sKf9CRh_8SfMLnTRi6tgsOl7OluKLbWtZNSzlEDctDElOgHPjGHWPoKOrfw1Su4Ju7YLXEyLYHxRvH5QtanKsArhcAK2iJYwJSEYraX61Xn7etzVutTT00Tm6UpZqSKAb6aq76nHFJ1oraM1Mw6o1jV-G2hBZptoRYPR30InExSrn1CsTlDcRo8X563GpWXyWVjwC7CB5TMiiO-llKvZawm2lfusSDpPiR_HwKW5cktLOMsSB3giFWBxRUxhnJymgfR2UCXLM7mLqsxVvI95FMbLPsGCxzhlwomFmwY8SfEewuWrRsKIvaucI92ojOrrREX7RKp9It0-e-hsXOhNa53Mvzwo2zAydE3TsAhAn1dw_68FD9Dq5Is9RJVBbyiP0LJ4Hzz3e8fm4_gAs2VfKw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+agglomerative+clustering&rft.jtitle=Physica+A&rft.au=Tokuda%2C+Eric+K.&rft.au=Comin%2C+Cesar+H.&rft.au=Costa%2C+Luciano+da+F.&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=585&rft_id=info:doi/10.1016%2Fj.physa.2021.126433&rft.externalDocID=S0378437121007068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon