Pro2Diff: Proposal Propagation for Multi-Object Tracking via the Diffusion Model
Multi-object tracking (MOT) aims to estimate the bounding boxes and ID labels of objects in videos. The challenging issue in this task is to alleviate competitive learning between the detection and tracking subtasks, for which, two-stage Tracking-By-Detection (TBD) optimizes the two subtasks individ...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 33; S. 6508 - 6520 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi-object tracking (MOT) aims to estimate the bounding boxes and ID labels of objects in videos. The challenging issue in this task is to alleviate competitive learning between the detection and tracking subtasks, for which, two-stage Tracking-By-Detection (TBD) optimizes the two subtasks individually, and the single-stage Joint Detection and Tracking (JDT) adjusts the complex network architectures finely in an end-to-end pipeline. In this paper, we propose a new MOT method, i.e., Proposal Propagation via Diffusion Models, called Pro2Diff, which integrates a diffusion model into the proposal propagation in multi-object tracking, focusing on the model training process rather than complex network design. Specifically, using a generative approach, Pro2Diff generates a considerable number of noisy proposals for the tracking image sequence in the forward process, and subsequently, Pro2Diff learns the discrepancies between these noisy proposals and the actual bounding boxes of the tracked objects, gradually optimizing these noisy proposals to obtain the initial sequence of real tracked objects. By introducing the denoising diffusion process into multi-object tracking, we have made three further important findings: 1) Generative methods can effectively handle multi-object tracking tasks; 2) Without the need to modify the model structure, we propose self-conditional proposal propagation to enhance model performance effectively during inference; 3) By adjusting the numbers of proposals and iterations appropriately for different tracking sequences, the optimal performance of the model can be achieved. Extensive experimental results on MOT17 and DanceTrack datasets demonstrate that Pro2Diff outperforms current end-to-end multi-object tracking methods. We achieve 61.9 HOTA on DanceTrack and 57.6 HOTA on MOT17, reaching the competitive result of the JDT approach. |
|---|---|
| AbstractList | Multi-object tracking (MOT) aims to estimate the bounding boxes and ID labels of objects in videos. The challenging issue in this task is to alleviate competitive learning between the detection and tracking subtasks, for which, two-stage Tracking-By-Detection (TBD) optimizes the two subtasks individually, and the single-stage Joint Detection and Tracking (JDT) adjusts the complex network architectures finely in an end-to-end pipeline. In this paper, we propose a new MOT method, i.e., Proposal Propagation via Diffusion Models, called Pro2Diff, which integrates a diffusion model into the proposal propagation in multi-object tracking, focusing on the model training process rather than complex network design. Specifically, using a generative approach, Pro2Diff generates a considerable number of noisy proposals for the tracking image sequence in the forward process, and subsequently, Pro2Diff learns the discrepancies between these noisy proposals and the actual bounding boxes of the tracked objects, gradually optimizing these noisy proposals to obtain the initial sequence of real tracked objects. By introducing the denoising diffusion process into multi-object tracking, we have made three further important findings: 1) Generative methods can effectively handle multi-object tracking tasks; 2) Without the need to modify the model structure, we propose self-conditional proposal propagation to enhance model performance effectively during inference; 3) By adjusting the numbers of proposals and iterations appropriately for different tracking sequences, the optimal performance of the model can be achieved. Extensive experimental results on MOT17 and DanceTrack datasets demonstrate that Pro2Diff outperforms current end-to-end multi-object tracking methods. We achieve 61.9 HOTA on DanceTrack and 57.6 HOTA on MOT17, reaching the competitive result of the JDT approach. Multi-object tracking (MOT) aims to estimate the bounding boxes and ID labels of objects in videos. The challenging issue in this task is to alleviate competitive learning between the detection and tracking subtasks, for which, two-stage Tracking-By-Detection (TBD) optimizes the two subtasks individually, and the single-stage Joint Detection and Tracking (JDT) adjusts the complex network architectures finely in an end-to-end pipeline. In this paper, we propose a new MOT method, i.e., Proposal Propagation via Diffusion Models, called Pro2Diff, which integrates a diffusion model into the proposal propagation in multi-object tracking, focusing on the model training process rather than complex network design. Specifically, using a generative approach, Pro2Diff generates a considerable number of noisy proposals for the tracking image sequence in the forward process, and subsequently, Pro2Diff learns the discrepancies between these noisy proposals and the actual bounding boxes of the tracked objects, gradually optimizing these noisy proposals to obtain the initial sequence of real tracked objects. By introducing the denoising diffusion process into multi-object tracking, we have made three further important findings: 1) Generative methods can effectively handle multi-object tracking tasks; 2) Without the need to modify the model structure, we propose self-conditional proposal propagation to enhance model performance effectively during inference; 3) By adjusting the numbers of proposals and iterations appropriately for different tracking sequences, the optimal performance of the model can be achieved. Extensive experimental results on MOT17 and DanceTrack datasets demonstrate that Pro2Diff outperforms current end-to-end multi-object tracking methods. We achieve 61.9 HOTA on DanceTrack and 57.6 HOTA on MOT17, reaching the competitive result of the JDT approach.Multi-object tracking (MOT) aims to estimate the bounding boxes and ID labels of objects in videos. The challenging issue in this task is to alleviate competitive learning between the detection and tracking subtasks, for which, two-stage Tracking-By-Detection (TBD) optimizes the two subtasks individually, and the single-stage Joint Detection and Tracking (JDT) adjusts the complex network architectures finely in an end-to-end pipeline. In this paper, we propose a new MOT method, i.e., Proposal Propagation via Diffusion Models, called Pro2Diff, which integrates a diffusion model into the proposal propagation in multi-object tracking, focusing on the model training process rather than complex network design. Specifically, using a generative approach, Pro2Diff generates a considerable number of noisy proposals for the tracking image sequence in the forward process, and subsequently, Pro2Diff learns the discrepancies between these noisy proposals and the actual bounding boxes of the tracked objects, gradually optimizing these noisy proposals to obtain the initial sequence of real tracked objects. By introducing the denoising diffusion process into multi-object tracking, we have made three further important findings: 1) Generative methods can effectively handle multi-object tracking tasks; 2) Without the need to modify the model structure, we propose self-conditional proposal propagation to enhance model performance effectively during inference; 3) By adjusting the numbers of proposals and iterations appropriately for different tracking sequences, the optimal performance of the model can be achieved. Extensive experimental results on MOT17 and DanceTrack datasets demonstrate that Pro2Diff outperforms current end-to-end multi-object tracking methods. We achieve 61.9 HOTA on DanceTrack and 57.6 HOTA on MOT17, reaching the competitive result of the JDT approach. |
| Author | Liu, Hongmin Zhang, Canbin Xu, Jinglin Fan, Bin |
| Author_xml | – sequence: 1 givenname: Hongmin orcidid: 0000-0001-9834-4087 surname: Liu fullname: Liu, Hongmin email: hmliu_82@163.com organization: School of Intelligence Science and Technology and the Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Canbin surname: Zhang fullname: Zhang, Canbin email: M202210574@xs.ustb.edu.cn organization: School of Intelligence Science and Technology and the Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Bin orcidid: 0000-0002-1155-467X surname: Fan fullname: Fan, Bin email: bin.fan@ieee.org organization: School of Intelligence Science and Technology and the Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Jinglin orcidid: 0000-0002-1553-5441 surname: Xu fullname: Xu, Jinglin email: xujinglinlove@gmail.com organization: School of Intelligence Science and Technology and the Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40030231$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtPwzAUhS0Eog_YGRCKxMKSch07D7Oh8qrUqh3KHNmOU1zSuNgJEv8e9wFCHZh8ZH3n3qtzeui4NrVC6ALDAGNgt_PRbBBBRAeEMpoAHKEuZhSHADQ69hriNEwxZR3Uc24JgGmMk1PUoQAEIoK7aDazJnrQZXkXeLU2jldbwRe80aYOSmODSVs1OpyKpZJNMLdcvut6EXxqHjRvKtiYW7dhJ6ZQ1Rk6KXnl1Pn-7aPXp8f58CUcT59Hw_txKAnNmpCmghQ8YwmPU5JlEos4yTguYiZEqUREith_UiwYVpyWkQRaeJ0pXLJMZoL00c1u7tqaj1a5Jl9pJ1VV8VqZ1uUEp4QwH0bi0esDdGlaW_vrPEWAkYh6uI-u9lQrVqrI11avuP3Kf7LyAOwAaY1zVpW_CIZ8U0fu68g3deT7OrwlObBI3WyDbSzX1X_Gy51RK6X-7EljQikj3_I0lPw |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_3390_sym17040608 crossref_primary_10_1007_s10462_025_11212_y |
| Cites_doi | 10.1109/TCSVT.2023.3241988 10.1109/CVPR52688.2022.00296 10.1109/CVPR52729.2023.02160 10.1109/tnnls.2023.3274926 10.1007/978-3-030-58621-8_7 10.1109/CVPR42600.2020.01468 10.1145/3581783.3612405 10.1109/TIP.2022.3154286 10.1109/ICCV51070.2023.00951 10.1109/TIP.2022.3165376 10.1109/CVPR52733.2024.01386 10.1109/CVPR46437.2021.01217 10.1109/CVPR52729.2023.01720 10.1007/978-3-030-58548-8_9 10.1109/DATE.2010.5456912 10.1109/TIV.2019.2938110 10.1109/TCSVT.2014.2355692 10.1109/ICCV48922.2021.01297 10.1109/CVPR.2017.394 10.1007/978-3-030-58548-8_28 10.1109/TPAMI.2024.3366234 10.1109/ICASSP49357.2023.10095167 10.1109/ICCV.2019.00103 10.1109/CVPR52688.2022.00857 10.1109/TPAMI.2024.3350049 10.1109/CVPR52729.2023.00289 10.1038/s41598-023-27621-4 10.1109/CVPRW56347.2022.00080 10.1109/CVPRW59228.2023.00296 10.1109/TIP.2020.2993073 10.1109/ICCV51070.2023.00210 10.1109/WACVW54805.2022.00019 10.1109/CVPR52729.2023.02112 10.1049/cje.2020.00.007 10.1109/TPAMI.2024.3382753 10.1007/978-3-319-10602-1_48 10.1109/TIP.2020.3044219 10.1109/CVPR52733.2024.01830 10.1109/CVPR42600.2020.01110 10.1007/978-3-031-20047-2_1 10.1109/TPAMI.2023.3301975 10.1109/ICCV.2019.00409 10.1109/ICCV51070.2023.00930 10.1109/CVPR46437.2021.00387 10.1145/1177352.1177355 10.1007/978-3-030-58452-8_13 10.1109/ICIP.2016.7533003 10.1109/CVPR.2016.90 10.1109/ICCV51070.2023.00910 10.1109/TIP.2022.3163544 10.1109/ICRA48506.2021.9561110 10.1109/TIP.2022.3166278 10.1109/ICRA48506.2021.9561235 10.1109/CVPR42600.2020.00688 10.1109/ICIP.2017.8296962 10.1609/icwsm.v17i1.22160 10.1145/3581783.3612406 10.1109/CVPR52729.2023.00539 10.1109/ISBI53787.2023.10230346 10.1049/cje.2021.00.455 10.1108/RIA-05-2023-0060 10.1109/CVPR52733.2024.02057 10.1109/CVPR52733.2024.00231 10.1007/978-3-031-19812-0_38 10.1109/CVPR52688.2022.02032 10.1109/CVPR52733.2024.01492 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2024.3494600 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 6520 |
| ExternalDocumentID | 40030231 10_1109_TIP_2024_3494600 10753449 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62222302; 62373043 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c348t-47b3da896a57388c1b568a1d59bbfeb23d58c141b91ea4f2c04db918e1f98c8b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001360426000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Thu Oct 02 11:17:51 EDT 2025 Mon Jun 30 10:16:19 EDT 2025 Mon Jul 21 06:06:31 EDT 2025 Sat Nov 29 03:34:45 EST 2025 Tue Nov 18 21:35:28 EST 2025 Wed Aug 27 03:06:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-47b3da896a57388c1b568a1d59bbfeb23d58c141b91ea4f2c04db918e1f98c8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1155-467X 0000-0002-1553-5441 0000-0001-9834-4087 |
| PMID | 40030231 |
| PQID | 3130932417 |
| PQPubID | 85429 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3130932417 ieee_primary_10753449 crossref_primary_10_1109_TIP_2024_3494600 pubmed_primary_40030231 crossref_citationtrail_10_1109_TIP_2024_3494600 proquest_miscellaneous_3173399416 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 Leal-Taixé (ref45) 2015 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Baranchuk (ref61) 2021 ref51 ref50 ref46 Chen (ref42) 2022 ref48 ref41 ref85 ref44 ref88 ref43 ref87 Ge (ref35) 2021 Ho (ref36); 33 ref49 ref8 ref7 ref9 ref4 ref3 ref5 Ho (ref39) 2022 ref82 ref81 ref40 ref84 ref83 Wu (ref2) 2023 ref80 ref79 ref78 ref31 Zhang (ref47) 2020 ref30 ref74 ref33 ref77 ref32 Sun (ref86) 2020 ref1 Wang (ref34) 2020 Gu (ref69) 2022 Cao (ref89) 2022 ref70 ref73 ref72 Song (ref37) 2020 ref24 ref68 ref23 ref67 ref26 ref20 Chen (ref60) 2022 ref64 ref63 ref22 ref66 ref21 ref65 Yang (ref71) 2023 Lu (ref38); 35 ref27 Meinhardt (ref28) 2021 ref29 Wu (ref62) 2022 Zhu (ref76) 2020 Su (ref6) 2025; 34 Fang (ref58) Nichol (ref75); 139 Milan (ref25) 2016 |
| References_xml | – ident: ref1 doi: 10.1109/TCSVT.2023.3241988 – ident: ref13 doi: 10.1109/CVPR52688.2022.00296 – year: 2022 ident: ref42 article-title: DiffusionDet: Diffusion model for object detection publication-title: arXiv:2211.09788 – year: 2020 ident: ref86 article-title: TransTrack: Multiple object tracking with transformer publication-title: arXiv:2012.15460 – ident: ref59 doi: 10.1109/CVPR52729.2023.02160 – ident: ref20 doi: 10.1109/tnnls.2023.3274926 – ident: ref31 doi: 10.1007/978-3-030-58621-8_7 – ident: ref32 doi: 10.1109/CVPR42600.2020.01468 – ident: ref56 doi: 10.1145/3581783.3612405 – ident: ref80 doi: 10.1109/TIP.2022.3154286 – ident: ref43 doi: 10.1109/ICCV51070.2023.00951 – year: 2023 ident: ref71 article-title: Boosting human-object interaction detection with Text-to-Image diffusion model publication-title: arXiv:2305.12252 – ident: ref48 doi: 10.1109/TIP.2022.3165376 – year: 2021 ident: ref61 article-title: Label-efficient semantic segmentation with diffusion models publication-title: arXiv:2112.03126 – year: 2015 ident: ref45 article-title: MOTChallenge 2015: Towards a benchmark for multi-target tracking publication-title: arXiv:1504.01942 – ident: ref16 doi: 10.1109/CVPR52733.2024.01386 – ident: ref49 doi: 10.1109/CVPR46437.2021.01217 – ident: ref54 doi: 10.1109/CVPR52729.2023.01720 – ident: ref30 doi: 10.1007/978-3-030-58548-8_9 – ident: ref53 doi: 10.1109/DATE.2010.5456912 – volume: 34 start-page: 1 issue: 1 year: 2025 ident: ref6 article-title: An improved YOLOv7-tiny algorithm for vehicle and pedestrian detection with occlusion in autonomous driving publication-title: CJE – start-page: 16716 volume-title: Proc. NeurIPS ident: ref58 article-title: Structural pruning for diffusion models – ident: ref4 doi: 10.1109/TIV.2019.2938110 – ident: ref11 doi: 10.1109/TCSVT.2014.2355692 – ident: ref84 doi: 10.1109/ICCV48922.2021.01297 – ident: ref23 doi: 10.1109/CVPR.2017.394 – ident: ref29 doi: 10.1007/978-3-030-58548-8_28 – year: 2022 ident: ref39 article-title: Imagen video: High definition video generation with diffusion models publication-title: arXiv:2210.02303 – volume: 33 start-page: 6840 volume-title: Proc. NIPS ident: ref36 article-title: Denoising diffusion probabilistic models – ident: ref12 doi: 10.1109/TPAMI.2024.3366234 – ident: ref66 doi: 10.1109/ICASSP49357.2023.10095167 – ident: ref9 doi: 10.1109/ICCV.2019.00103 – ident: ref88 doi: 10.1109/CVPR52688.2022.00857 – ident: ref21 doi: 10.1109/TPAMI.2024.3350049 – volume: 35 start-page: 5775 volume-title: Proc. NeurIPS ident: ref38 article-title: DPM-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps – ident: ref72 doi: 10.1109/CVPR52729.2023.00289 – year: 2021 ident: ref35 article-title: YOLOX: Exceeding YOLO series in 2021 publication-title: arXiv:2107.08430 – ident: ref63 doi: 10.1038/s41598-023-27621-4 – ident: ref65 doi: 10.1109/CVPRW56347.2022.00080 – ident: ref67 doi: 10.1109/CVPRW59228.2023.00296 – ident: ref79 doi: 10.1109/TIP.2020.2993073 – ident: ref73 doi: 10.1109/ICCV51070.2023.00210 – year: 2020 ident: ref37 article-title: Denoising diffusion implicit models publication-title: arXiv:2010.02502 – year: 2020 ident: ref76 article-title: Deformable DETR: Deformable transformers for end-to-end object detection publication-title: arXiv:2010.04159 – ident: ref85 doi: 10.1109/WACVW54805.2022.00019 – ident: ref52 doi: 10.1109/CVPR52729.2023.02112 – year: 2016 ident: ref25 article-title: MOT16: A benchmark for multi-object tracking publication-title: arXiv:1603.00831 – year: 2022 ident: ref69 article-title: DiffusionInst: Diffusion model for instance segmentation publication-title: arXiv:2212.02773 – ident: ref7 doi: 10.1049/cje.2020.00.007 – ident: ref40 doi: 10.1109/TPAMI.2024.3382753 – ident: ref78 doi: 10.1007/978-3-319-10602-1_48 – year: 2022 ident: ref89 article-title: Observation-centric SORT: Rethinking SORT for robust multi-object tracking publication-title: arXiv:2203.14360 – year: 2020 ident: ref47 article-title: FairMOT: On the fairness of detection and re-identification in multiple object tracking publication-title: arXiv:2004.01888 – ident: ref87 doi: 10.1109/TIP.2020.3044219 – ident: ref41 doi: 10.1109/CVPR52733.2024.01830 – ident: ref33 doi: 10.1109/CVPR42600.2020.01110 – ident: ref46 doi: 10.1007/978-3-031-20047-2_1 – ident: ref81 doi: 10.1109/TPAMI.2023.3301975 – ident: ref24 doi: 10.1109/ICCV.2019.00409 – volume: 139 start-page: 8162 volume-title: Proc. 38th Int. Conf. Mach. Learn. ident: ref75 article-title: Improved denoising diffusion probabilistic models – ident: ref70 doi: 10.1109/ICCV51070.2023.00930 – ident: ref83 doi: 10.1109/CVPR46437.2021.00387 – ident: ref5 doi: 10.1145/1177352.1177355 – year: 2020 ident: ref34 article-title: Joint object detection and multi-object tracking with graph neural networks publication-title: arXiv:2006.13164 – ident: ref51 doi: 10.1007/978-3-030-58452-8_13 – ident: ref27 doi: 10.1109/ICIP.2016.7533003 – ident: ref77 doi: 10.1109/CVPR.2016.90 – ident: ref14 doi: 10.1109/ICCV51070.2023.00910 – ident: ref19 doi: 10.1109/TIP.2022.3163544 – ident: ref82 doi: 10.1109/ICRA48506.2021.9561110 – ident: ref18 doi: 10.1109/TIP.2022.3166278 – ident: ref8 doi: 10.1109/ICRA48506.2021.9561235 – ident: ref26 doi: 10.1109/CVPR42600.2020.00688 – ident: ref22 doi: 10.1109/ICIP.2017.8296962 – ident: ref68 doi: 10.1609/icwsm.v17i1.22160 – ident: ref55 doi: 10.1145/3581783.3612406 – ident: ref74 doi: 10.1109/CVPR52729.2023.00539 – ident: ref64 doi: 10.1109/ISBI53787.2023.10230346 – ident: ref3 doi: 10.1049/cje.2021.00.455 – ident: ref10 doi: 10.1108/RIA-05-2023-0060 – ident: ref17 doi: 10.1109/CVPR52733.2024.02057 – ident: ref15 doi: 10.1109/CVPR52733.2024.00231 – ident: ref50 doi: 10.1007/978-3-031-19812-0_38 – ident: ref44 doi: 10.1109/CVPR52688.2022.02032 – year: 2023 ident: ref2 article-title: Towards video anomaly retrieval from video anomaly detection: New benchmarks and model publication-title: arXiv:2307.12545 – year: 2022 ident: ref62 article-title: MedSegDiff: Medical image segmentation with diffusion probabilistic model publication-title: arXiv:2211.00611 – year: 2021 ident: ref28 article-title: TrackFormer: Multi-object tracking with transformers publication-title: arXiv:2101.02702 – ident: ref57 doi: 10.1109/CVPR52733.2024.01492 – year: 2022 ident: ref60 article-title: A generalist framework for panoptic segmentation of images and videos publication-title: arXiv:2210.06366 |
| SSID | ssj0014516 |
| Score | 2.4503894 |
| Snippet | Multi-object tracking (MOT) aims to estimate the bounding boxes and ID labels of objects in videos. The challenging issue in this task is to alleviate... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6508 |
| SubjectTerms | Boxes diffusion models Multi-object tracking Multiple target tracking Network design Object recognition Optimization Propagation proposal propagation Proposals |
| Title | Pro2Diff: Proposal Propagation for Multi-Object Tracking via the Diffusion Model |
| URI | https://ieeexplore.ieee.org/document/10753449 https://www.ncbi.nlm.nih.gov/pubmed/40030231 https://www.proquest.com/docview/3130932417 https://www.proquest.com/docview/3173399416 |
| Volume | 33 |
| WOSCitedRecordID | wos001360426000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDCbaooftsLZZ17prAw3YZQe1cSTr0dvQB9pL5kMG5GZIsjwEKJIij_7-kbIT5NIBuwm2ZAsiaX4kTRLguwtKDZxQPA_Rchmc5R6BNc-Fc4UZhtw7mZpN6NHITCa27JLVUy5MjDH9fBavaZhi-fU8rMlVhhKO4FpKuw_7Wqs2WWsbMqCOsym0WWiuEfdvYpIDezN-LtESHMprqsWiKJltRwelpirv48ukZx6P_nOHx_CpA5TsZ8sBJ7AXZz046sAl60R32YOPO5UHP0NZLubD-2nT3LKS-iQs8RE0cH8SpRhCWZZyc_kvT54ahjotkFedvU0dQ9DIaPGaXG2M2qm9nMLvx4fx3RPvmivwIKRZcam9qJ2xyhVaGINEKZRxeV1Y7xs0t0Vd4EWZe5tHJ5thGMgaxybmjTXBePEFDmbzWTwH5lETFg5xmHAWFyjrGzSihJBRaDwPlcHN5rir0FUepwYYL1WyQAa2QgJVRKCqI1AGP7YrXtuqG_-Ye0p02JnXkiCDyw1Jq04ul5XIKfKLqEVn8G17GyWKwiRuFudrmqMFwjZEqhmctaywfbikjyJC4ot3XvoVPtDeWh_NJRysFut4BYfhbTVdLvrIthPTT2z7F5Af5iM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VWgl6KJQCTXnUSFx68JLETmL3VtEiEHTJYZG4RbbjoJXQLtoHv58ZJ7vaC0jcrMROLH-e-JuZzAzAqXF5HhuR88R5zaUzmlsk1jwRxmQqdYk1MhSbKPp9dX-vyy5YPcTCeO_Dz2e-R83gy6_Hbk6mMpRwJNdS6jX4mEmZxm241tJpQDVng3MzK3iBzH_hlYz12eCqRF0wlT3KxpJTONvKKRTKqrzOMMNJc7H1zjluw5eOUrI_7R74Ch_8aAe2OnrJOuGd7sDnldyD36AsJ-P077BpfrOSKiVM8RHUMA8BK4ZkloXoXH5ryVbD8FRzZFdnz0PDkDYyGjwnYxujgmqPu3B38W9wfsm78grcCalmXBZW1Ebp3GSFUAphyXJlkjrT1jaocIs6w4sysTrxRjapi2WNbeWTRiunrNiD9dF45L8Ds3gWZgaZmDAaB-TaNqhGCSG9KHA98gjOFstduS73OJXAeKyCDhLrCgGqCKCqAyiCX8sRT23ejTf67hIOK_1aCCI4XEBadZI5rURCvl_kLUUEJ8vbKFPkKDEjP55Tn0IgcUOuGsF-uxWWD5f0WURS_OOVl_6EjcvB_5vq5qp_fQCbNM_WYnMI67PJ3B_BJ_c8G04nx2HzvgBDkOiC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pro2Diff%3A+Proposal+Propagation+for+Multi-Object+Tracking+via+the+Diffusion+Model&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Liu%2C+Hongmin&rft.au=Zhang%2C+Canbin&rft.au=Fan%2C+Bin&rft.au=Xu%2C+Jinglin&rft.date=2024&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=33&rft.spage=6508&rft.epage=6520&rft_id=info:doi/10.1109%2FTIP.2024.3494600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2024_3494600 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |