Optimization of Air Defense System Deployment Against Reconnaissance Drone Swarms

Due to their advantages in flexibility, scalability, survivability, and cost-effectiveness, drone swarms have been increasingly used for reconnaissance tasks and have posed great challenges to their opponents on modern battlefields. This paper studies an optimization problem for deploying air defens...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex System Modeling and Simulation Ročník 3; číslo 2; s. 102 - 117
Hlavní autoři: Li, Ning, Su, Zhenglian, Ling, Haifeng, Karatas, Mumtaz, Zheng, Yujun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tsinghua University Press 01.06.2023
Témata:
ISSN:2096-9929, 2096-9929
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to their advantages in flexibility, scalability, survivability, and cost-effectiveness, drone swarms have been increasingly used for reconnaissance tasks and have posed great challenges to their opponents on modern battlefields. This paper studies an optimization problem for deploying air defense systems against reconnaissance drone swarms. Given a set of available air defense systems, the problem determines the location of each air defense system in a predetermined region, such that the cost for enemy drones to pass through the region would be maximized. The cost is calculated based on a counterpart drone path planning problem. To solve this adversarial problem, we first propose an exact iterative search algorithm for small-size problem instances, and then propose an evolutionary framework that uses a specific encoding-decoding scheme for large-size problem instances. We implement the evolutionary framework with six popular evolutionary algorithms. Computational experiments on a set of different test instances validate the effectiveness of our approach for defending against reconnaissance drone swarms.
AbstractList Due to their advantages in flexibility, scalability, survivability, and cost-effectiveness, drone swarms have been increasingly used for reconnaissance tasks and have posed great challenges to their opponents on modern battlefields. This paper studies an optimization problem for deploying air defense systems against reconnaissance drone swarms. Given a set of available air defense systems, the problem determines the location of each air defense system in a predetermined region, such that the cost for enemy drones to pass through the region would be maximized. The cost is calculated based on a counterpart drone path planning problem. To solve this adversarial problem, we first propose an exact iterative search algorithm for small-size problem instances, and then propose an evolutionary framework that uses a specific encoding-decoding scheme for large-size problem instances. We implement the evolutionary framework with six popular evolutionary algorithms. Computational experiments on a set of different test instances validate the effectiveness of our approach for defending against reconnaissance drone swarms.
Author Li, Ning
Zheng, Yujun
Karatas, Mumtaz
Ling, Haifeng
Su, Zhenglian
Author_xml – sequence: 1
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: Hangzhou Normal University,School of Information Science and Technology,Hangzhou,China,311121
– sequence: 2
  givenname: Zhenglian
  surname: Su
  fullname: Su, Zhenglian
  organization: Army Engineering University,College of Field Engineering,Nanjing,China,210007
– sequence: 3
  givenname: Haifeng
  surname: Ling
  fullname: Ling, Haifeng
  organization: Army Engineering University,College of Field Engineering,Nanjing,China,210007
– sequence: 4
  givenname: Mumtaz
  surname: Karatas
  fullname: Karatas, Mumtaz
  organization: Turkish Naval Academy, National Defense University,Industrial Engineering Department,Tuzla,Turkey,34940
– sequence: 5
  givenname: Yujun
  surname: Zheng
  fullname: Zheng, Yujun
  organization: Hangzhou Normal University,School of Information Science and Technology,Hangzhou,China,311121
BookMark eNp1kFtLAzEQhYMoeOuzr_sHWrO57eaxtF4KStHqcxiTWYl0k5IEpP56t1VBBJ9m5jDncPhOyWGIAQm5qOmEcV3ry9nqfjVhlPEJpZQfkBNGtRprzfThr_2YjHL2L1SyVkrF1Ql5WG6K7_0HFB9DFbtq6lM1xw5Dxmq1zQX74dys47bHUKrpK_iQS_WINoYAPmcIFqt5GupUq3dIfT4nRx2sM46-5xl5vr56mt2O75Y3i9n0bmy5aMtYSPkCiE3nlBISaw5OaYuKd1wobHTd2NYqwWXnWtSq08NH2zjhLHcADPgZWXzlughvZpN8D2lrInizF2J6NZCKt2s01qFgIGVboxWtohqZdKJhom24AkaHLPmVZVPMOWFnrC97JCWBX5uamj1ms8NsdpjNDvPgu_zj--nxn-MTYrOBjg
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124662
crossref_primary_10_1016_j_swevo_2025_101870
crossref_primary_10_1016_j_swevo_2024_101719
crossref_primary_10_1016_j_knosys_2024_112569
crossref_primary_10_3390_drones8110666
crossref_primary_10_3390_app132111700
crossref_primary_10_1007_s11424_024_4029_8
crossref_primary_10_1109_TVT_2024_3522884
crossref_primary_10_1002_cpe_8150
Cites_doi 10.1109/TEVC.2022.3164260
10.1109/TITS.2021.3071786
10.1109/CEC.2015.7256974
10.1109/ACCESS.2017.2723538
10.1287/ijoc.1.3.190
10.1007/BFb0014815
10.1109/TSMCB.2003.808174
10.1016/j.asoc.2017.05.016
10.1016/j.eswa.2022.118978
10.1007/s10898-020-00938-4
10.1162/evco.1993.1.1.25
10.1109/TSMCA.2009.2030163
10.4018/978-1-5225-5513-1.ch001
10.1007/s00500-013-1209-1
10.1016/j.jii.2019.100106
10.1109/TSMCA.2010.2089511
10.1016/j.ijdrr.2017.01.017
10.1016/S0377-2217(98)00186-6
10.1007/s11432-009-0190-x
10.1007/978-3-319-61833-3_48
10.1109/TEVC.2008.919004
10.3390/drones6030065
10.1002/rob.21513
10.1109/CC.2013.6570796
10.1109/TEVC.2017.2769108
10.1155/2018/6481635
10.1016/j.cie.2019.05.014
10.3390/drones6050114
10.1016/j.cor.2014.04.013
10.1016/S1004-4132(06)60097-2
10.1287/opre.1070.0440
10.23919/CSMS.2021.0022
10.1016/S1568-4946(02)00027-3
10.1007/978-1-4757-3155-2_3
10.1023/A:1008202821328
10.1007/s10479-022-04760-x
10.1007/s00500-021-05619-2
10.1287/trsc.2018.0868
10.1109/ICNN.1995.488968
10.1155/2012/207318
10.1109/TEVC.2019.2925175
10.1007/978-3-030-97113-7_10
10.1016/j.cor.2018.10.015
10.1016/j.cor.2014.10.008
10.1287/opre.2017.1590
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23919/CSMS.2023.0003
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2096-9929
EndPage 117
ExternalDocumentID oai_doaj_org_article_cde42a5581ec48609e25d47248736a20
10_23919_CSMS_2023_0003
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
GROUPED_DOAJ
ID FETCH-LOGICAL-c348t-455baee7fd6645e13ad69ce63f346e7917c8c6435fd8e96f913a87d4dc3daa2a3
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001543637800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2096-9929
IngestDate Fri Oct 03 12:51:51 EDT 2025
Tue Nov 18 21:00:57 EST 2025
Sat Nov 29 03:38:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-455baee7fd6645e13ad69ce63f346e7917c8c6435fd8e96f913a87d4dc3daa2a3
OpenAccessLink https://doaj.org/article/cde42a5581ec48609e25d47248736a20
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_cde42a5581ec48609e25d47248736a20
crossref_citationtrail_10_23919_CSMS_2023_0003
crossref_primary_10_23919_CSMS_2023_0003
PublicationCentury 2000
PublicationDate 2023-6-00
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-6-00
PublicationDecade 2020
PublicationTitle Complex System Modeling and Simulation
PublicationYear 2023
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref13
ref12
ref15
wang (ref35) 2004; 5
lee (ref28) 2003; 33
ref14
ref53
ref52
ref11
ref10
ref17
ref16
cai (ref31) 2006; 17
ref19
ref18
tian (ref41) 2007
ref51
liang (ref45) 2006; 10
ref50
ref46
ref48
ref47
ref42
ref44
ref43
ref49
han (ref34) 1999; 20
ref8
guo (ref4) 2013; 10
ref7
ref9
ref3
ref6
ref5
ref40
ref30
ref33
han (ref38) 2013
ref32
ref2
ref1
ref39
wang (ref37) 2010
ref24
ref23
ref26
ref25
ref20
ref22
yu (ref36) 2008
ref21
zeng (ref29) 0
ref27
References_xml – ident: ref53
  doi: 10.1109/TEVC.2022.3164260
– ident: ref17
  doi: 10.1109/TITS.2021.3071786
– ident: ref50
  doi: 10.1109/CEC.2015.7256974
– ident: ref9
  doi: 10.1109/ACCESS.2017.2723538
– ident: ref48
  doi: 10.1287/ijoc.1.3.190
– ident: ref6
  doi: 10.1007/BFb0014815
– volume: 33
  start-page: 113
  year: 2003
  ident: ref28
  article-title: Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2003.808174
– start-page: 647
  year: 2010
  ident: ref37
  article-title: Study of mean-entropy models for key point air defense disposition
  publication-title: Fuzzy Information and Engineering
– year: 2007
  ident: ref41
  article-title: Modeling and optimization methods for multi-UA V cooperative reconnaissance mission planning problem, (in Chinese)
  publication-title: National University of Defense
– ident: ref16
  doi: 10.1016/j.asoc.2017.05.016
– ident: ref19
  doi: 10.1016/j.eswa.2022.118978
– ident: ref30
  doi: 10.1007/s10898-020-00938-4
– ident: ref43
  doi: 10.1162/evco.1993.1.1.25
– ident: ref25
  doi: 10.1109/TSMCA.2009.2030163
– ident: ref21
  doi: 10.4018/978-1-5225-5513-1.ch001
– ident: ref47
  doi: 10.1007/s00500-013-1209-1
– ident: ref2
  doi: 10.1016/j.jii.2019.100106
– ident: ref33
  doi: 10.1109/TSMCA.2010.2089511
– ident: ref13
  doi: 10.1016/j.ijdrr.2017.01.017
– ident: ref12
  doi: 10.1016/S0377-2217(98)00186-6
– ident: ref32
  doi: 10.1007/s11432-009-0190-x
– start-page: 8461
  year: 2013
  ident: ref38
  article-title: Optimization of disposition for terminal air defense system based on set-covering model
  publication-title: Proc 32nd Chinese Control Conf
– ident: ref42
  doi: 10.1007/978-3-319-61833-3_48
– ident: ref46
  doi: 10.1109/TEVC.2008.919004
– ident: ref5
  doi: 10.3390/drones6030065
– ident: ref39
  doi: 10.1002/rob.21513
– volume: 10
  start-page: 19
  year: 2013
  ident: ref4
  article-title: Simulation of dynamic electromagnetic interference environment for Unmanned Aerial Vehicle data link
  publication-title: China Commun
  doi: 10.1109/CC.2013.6570796
– ident: ref10
  doi: 10.1109/TEVC.2017.2769108
– ident: ref27
  doi: 10.1155/2018/6481635
– ident: ref15
  doi: 10.1016/j.cie.2019.05.014
– ident: ref40
  doi: 10.3390/drones6050114
– ident: ref8
  doi: 10.1016/j.cor.2014.04.013
– volume: 10
  start-page: 281
  year: 2006
  ident: ref45
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans EComput
– volume: 17
  start-page: 559
  year: 2006
  ident: ref31
  article-title: Survey of the research on dynamic weapon-target assignment problem
  publication-title: J Syst Eng Electron
  doi: 10.1016/S1004-4132(06)60097-2
– ident: ref23
  doi: 10.1287/opre.1070.0440
– ident: ref51
  doi: 10.23919/CSMS.2021.0022
– ident: ref26
  doi: 10.1016/S1568-4946(02)00027-3
– ident: ref22
  doi: 10.1007/978-1-4757-3155-2_3
– ident: ref49
  doi: 10.1023/A:1008202821328
– ident: ref20
  doi: 10.1007/s10479-022-04760-x
– ident: ref18
  doi: 10.1007/s00500-021-05619-2
– start-page: 3209
  year: 2008
  ident: ref36
  article-title: Optimal configuration of weapon system based on ANN
  publication-title: Proc Chinese Control and Decision Conf
– ident: ref14
  doi: 10.1287/trsc.2018.0868
– ident: ref44
  doi: 10.1109/ICNN.1995.488968
– volume: 5
  start-page: 154
  year: 2004
  ident: ref35
  article-title: The optimized model research of the flak batteries' disposition in point air defence, (in Chinese)
  publication-title: J Inf Eng Univ
– start-page: 3562
  year: 0
  ident: ref29
  article-title: Solving weapon-target assignment problem using discrete particle swarm optimization
  publication-title: Proc 6th World Congress on Intelligent Control and Automation
– ident: ref7
  doi: 10.1155/2012/207318
– volume: 20
  start-page: 478
  year: 1999
  ident: ref34
  article-title: Optimization for air defense combat configuration via simulated annealing algorithm, (in Chinese)
  publication-title: Acta Aeronautical et Astronautica Sinica
– ident: ref52
  doi: 10.1109/TEVC.2019.2925175
– ident: ref3
  doi: 10.1007/978-3-030-97113-7_10
– ident: ref24
  doi: 10.1016/j.cor.2018.10.015
– ident: ref11
  doi: 10.1016/j.cor.2014.10.008
– ident: ref1
  doi: 10.1287/opre.2017.1590
SSID ssib052855636
ssib053565417
Score 2.3393617
Snippet Due to their advantages in flexibility, scalability, survivability, and cost-effectiveness, drone swarms have been increasingly used for reconnaissance tasks...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 102
SubjectTerms air defense systems
anti-drone
deployment optimization
drone swarms
evolutionary algorithms
Title Optimization of Air Defense System Deployment Against Reconnaissance Drone Swarms
URI https://doaj.org/article/cde42a5581ec48609e25d47248736a20
Volume 3
WOSCitedRecordID wos001543637800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2096-9929
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib053565417
  issn: 2096-9929
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iHryIouI3OXjw0tXmq8lxXRUvrooK3ko2mYigVbqr3vztzrR1WQ_ixUuhZdKGNyl50ybvMbZvtR_lXulMRJMyBdJk3kTIbDg6Si7mBhs2ZhPFcGjv793VjNUXrQlr5YFb4A5DBCW81jaHQIZJDoSOqhBItKXxoqnWkfXMFFM4krSwJHw1nWi11OR3TXunBXL2zCEpaHV-hHS5OxzcXNz0yEic5AzljylqRsm_mXLOltlSxxV5v-3jCpuDapVdX-JL_tztnuQvifcfa34CCctR4K3-OJ6SjS999-P9Byz9xxNOZWZVeYSZ0sxP6pcKwz98_TxeY3dnp7eD86zzRciCVHaSKa1HHqBI0RilIZc-GhfAyCSVgQILsGADMg2dogVnksMIW0QVg4zeCy_X2XyFT9lg3PqkU8BcARGrwvmQO-tHIgWkDeDsJut9Q1GGTjScvCueSiweGuxKwq4k7Og_ttxkB9MGr61exu-hx4TtNIyErpsLmP6yS3_5V_q3_uMm22yRetWuANth85P6DXbZQnifPI7rvWZk4fHi8_QLhFDPbA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Air+Defense+System+Deployment+Against+Reconnaissance+Drone+Swarms&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Ning+Li&rft.au=Zhenglian+Su&rft.au=Haifeng+Ling&rft.au=Mumtaz+Karatas&rft.date=2023-06-01&rft.pub=Tsinghua+University+Press&rft.issn=2096-9929&rft.volume=3&rft.issue=2&rft.spage=102&rft.epage=117&rft_id=info:doi/10.23919%2FCSMS.2023.0003&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cde42a5581ec48609e25d47248736a20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon