A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems

Finite element methods based on cut-cells are becoming increasingly popular because of their advantages over formulations based on body-fitted meshes for problems with moving interfaces. In such methods, the cells (or elements) which are cut by the interface between two different domains need to be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 122; s. 1 - 18
Hlavní autoři: Kadapa, Chennakesava, Wang, Xinyu, Mei, Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.09.2022
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Finite element methods based on cut-cells are becoming increasingly popular because of their advantages over formulations based on body-fitted meshes for problems with moving interfaces. In such methods, the cells (or elements) which are cut by the interface between two different domains need to be integrated using special techniques in order to obtain optimal convergence rates and accurate fluxes across the interface. The adaptive integration technique in which the cells are recursively subdivided is one of the popular techniques for the numerical integration of cut-cells due to its advantages over tessellation, particularly for problems involving complex geometries in three dimensions. Although adaptive integration does not impose any limitations on the representation of the geometry of immersed solids as it requires only point location algorithms, it becomes computationally expensive for recovering optimal convergence rates. This paper presents a comprehensive assessment of the adaptive integration of cut-cells for applications in computational fluid dynamics and fluid-structure interaction. We assess the effect of the accuracy of integration of cut cells on convergence rates in velocity and pressure fields, and then on forces and displacements for fluid-structure interaction problems by studying several examples in two and three dimensions. By taking the computational cost and the accuracy of forces and displacements into account, we demonstrate that numerical results of acceptable accuracy for FSI problems involving laminar flows can be obtained with only fewer levels of refinement. In particular, we show that three levels of adaptive refinement are sufficient for obtaining force and displacement values of acceptable accuracy for laminar fluid-structure interaction problems.
AbstractList Finite element methods based on cut-cells are becoming increasingly popular because of their advantages over formulations based on body-fitted meshes for problems with moving interfaces. In such methods, the cells (or elements) which are cut by the interface between two different domains need to be integrated using special techniques in order to obtain optimal convergence rates and accurate fluxes across the interface. The adaptive integration technique in which the cells are recursively subdivided is one of the popular techniques for the numerical integration of cut-cells due to its advantages over tessellation, particularly for problems involving complex geometries in three dimensions. Although adaptive integration does not impose any limitations on the representation of the geometry of immersed solids as it requires only point location algorithms, it becomes computationally expensive for recovering optimal convergence rates. This paper presents a comprehensive assessment of the adaptive integration of cut-cells for applications in computational fluid dynamics and fluid-structure interaction. We assess the effect of the accuracy of integration of cut cells on convergence rates in velocity and pressure fields, and then on forces and displacements for fluid-structure interaction problems by studying several examples in two and three dimensions. By taking the computational cost and the accuracy of forces and displacements into account, we demonstrate that numerical results of acceptable accuracy for FSI problems involving laminar flows can be obtained with only fewer levels of refinement. In particular, we show that three levels of adaptive refinement are sufficient for obtaining force and displacement values of acceptable accuracy for laminar fluid-structure interaction problems.
Author Mei, Yue
Wang, Xinyu
Kadapa, Chennakesava
Author_xml – sequence: 1
  givenname: Chennakesava
  orcidid: 0000-0001-6092-9047
  surname: Kadapa
  fullname: Kadapa, Chennakesava
  email: c.kadapa@bolton.ac.uk
  organization: School of Engineering, University of Bolton, Bolton BL3 5AB, United Kingdom
– sequence: 2
  givenname: Xinyu
  surname: Wang
  fullname: Wang, Xinyu
  organization: Department of Engineering Mechanics, Dalian University of Technology, China
– sequence: 3
  givenname: Yue
  surname: Mei
  fullname: Mei, Yue
  email: meiyue@dlut.edu.cn
  organization: Department of Engineering Mechanics, Dalian University of Technology, China
BookMark eNqFkE1LAzEQhoNUsFV_gZf9A7vmo2Z3Dx6k-AUFL3oO08lEU_ajJNlKwR_vtvXkQU8zDPMM8z4zNun6jhi7ErwQXOjrdYHQfkIhuZQFLwvO9QmbiqpUeal1NWFTXtVVLqQUZ2wW45pzPleST9nXXYZ9uwn0QV30W8ogRoqxpS5lvcsAcQiAu0NvYZP2K75L9B4g-b7bz3FIGVLTxMz1IWug9R2EzDWDt3lMYcA0hCM0XjpAm9CvGmrjBTt10ES6_Knn7O3h_nXxlC9fHp8Xd8sc1bxK-VyOvwqu67qsFaJEC45AapJOrNCqEhRJgPkNBw3OrWwltUWlBada11aqc6aOdzH0MQZyZhN8C2FnBDd7gWZtDgLNXqDhpRkFjlT9i0KfDqlTAN_8w94eWRpjbT0FE9FTh2R9IEzG9v5P_hta0pOf
CitedBy_id crossref_primary_10_1016_j_camwa_2025_01_015
crossref_primary_10_1007_s00466_023_02411_x
crossref_primary_10_1007_s11082_024_07198_6
crossref_primary_10_1016_j_camwa_2023_01_029
crossref_primary_10_1063_5_0223719
crossref_primary_10_1007_s13369_024_09076_5
crossref_primary_10_1016_j_oceaneng_2024_117609
Cites_doi 10.1016/j.jfluidstructs.2020.103077
10.1016/j.jcp.2021.110369
10.1016/j.cma.2016.08.027
10.1017/S0305004100023999
10.1007/s00466-007-0173-y
10.1016/j.cma.2016.07.041
10.1016/j.camwa.2020.03.026
10.1016/S0142-727X(99)00081-8
10.1007/s00466-012-0681-2
10.1002/nme.4370
10.1007/s00466-015-1197-3
10.1016/j.cma.2016.04.006
10.1016/j.compfluid.2021.105099
10.1016/j.compfluid.2020.104764
10.1002/nme.4823
10.1016/j.cma.2008.02.036
10.1016/j.oceaneng.2020.107940
10.1016/j.compstruc.2017.08.013
10.1016/j.cma.2011.10.007
10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
10.1016/S0045-7825(96)01087-0
10.1088/0965-0393/17/4/043001
10.1186/s40323-015-0031-y
10.1002/nme.4679
10.1016/j.compfluid.2015.08.027
10.1016/0045-7825(94)00077-8
10.1016/j.cma.2011.08.002
10.1002/fld.2416
10.1007/s00466-010-0562-5
10.1016/j.cma.2017.01.024
10.1002/nme.5207
10.1016/j.cma.2013.01.007
10.1016/j.cma.2018.02.021
10.1016/S0045-7825(01)00188-8
10.1080/10407780490278562
10.1007/BF02897870
10.1002/nme.1971
10.1016/j.cma.2016.08.021
10.1002/nme.4663
10.1002/nme.4353
10.1002/nme.6494
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.camwa.2022.07.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 18
ExternalDocumentID 10_1016_j_camwa_2022_07_006
S0898122122002887
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
T5K
TN5
XPP
ZMT
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c348t-4243210699793cc2cdafea26e2f1bcd37a3e2aa450a6affbd826dc3610e969d23
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840724400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0898-1221
IngestDate Sat Nov 29 07:13:04 EST 2025
Tue Nov 18 22:35:03 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Immersed boundary methods
Adaptive integration
Flow-induced vibrations
Fluid-structure interaction
Incompressible Navier-Stokes
CutFEM
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-4243210699793cc2cdafea26e2f1bcd37a3e2aa450a6affbd826dc3610e969d23
ORCID 0000-0001-6092-9047
OpenAccessLink https://dx.doi.org/10.1016/j.camwa.2022.07.006
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_camwa_2022_07_006
crossref_citationtrail_10_1016_j_camwa_2022_07_006
elsevier_sciencedirect_doi_10_1016_j_camwa_2022_07_006
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Düster, Sehlhorst, Rank (br0130) 2012; 50
Parvizian, Düster, Rank (br0300) 2007; 41
Varduhn, Hsu, Reuss, Schillinger (br0460) 2016; 107
Yogaraj (br0500) 2015
Kadapa, Dettmer, Perić (br0210) 2018; 335
Thiagarajan, Shapiro (br0440) 2016; 311
Tezduyar (br0420) 2001; 8
Stavrev, Nguyen, Shen, Varduhn, Behr, Elgeti, Schillinger (br0380) 2016; 310
Kadapa, Dettmer, Perić (br0220) 2020; 97
Rüberg, Cirak (br0320) 2012; 209–212
Ventura, Benvenuti (br0470) 2015; 102
Dettmer, Kadapa, Perić (br0050) 2016; 311
Schäfer, Turek, Durst, Krause, Rannacher (br0340) 1996; vol. 48
Saksono, Dettmer, Perić (br0330) 2007; 71
Xu, Schillinger, Kamensky, Varduhn, Wang, Hsu (br0480) 2016; 141
Sharma, Eswaran (br0370) 2004; 45
Kudela, Zander, Kollmannsberger, Rank (br0260) 2016; 306
Mousavi, Sukumar (br0280) 2011; 47
Sudhakar, Wall (br0410) 2013; 158
Breuer, Bernsdorf, Zeiser, Durst (br0030) 2000; 21
Kadapa (br0170) 2021
Belytschko, Gracie, Ventura (br0010) 2009; 17
Johnson, Tezduyar (br0150) 1994; 119
Kadapa, Dettmer, Perić (br0200) 2017; 193
Dettmer, Lovrić, Kadapa, Perić (br0060) 2021; 122
Petö, Duvigneau, Eisenträger (br0310) 2020; 7
Xu, Gao, Lofquist, Fernando, Hsu, Sundar, Ganapathysubramanian (br0490) 2021; 214
Boustani, Barad, Kiris, Brehm (br0020) 2021; 438
Melenk, Babuška (br0270) 1996; 39
Dettmer, Perić (br0070) 2013; 93
Kadapa, Dettmer, Perić (br0230) 2016
Höllig (br0140) 2003
Duczek, Gabbert (br0090) 2015; 56
Duczek, Joulaian, Düster, Gabbert (br0100) 2014; 99
Kovasznay (br0240) 1948; 44
Strouboulis, Copps, Babuška (br0390) 2000; 47
Thari, Pasquariello, Aage, Hickel (br0430) 2021; 229
Turek, Hron (br0450) 2006; vol. 53
Kudela, Zander, Bog, Kollmannsberger, Rank (br0250) 2015; 2
Kadapa (br0160) 2020; 217
Divi, Verhoosel, Auricchio, Reali, van Brummelen (br0080) 2020; 80
Burman, Claus, Hansbo, Larson, Massing (br0040) 2014; 104
Düster, Hubrich (br0110) 2020; vol. 599
Düster, Parvizian, Yang, Rank (br0120) 2008; 197
Kadapa (br0180) 2021
Strouboulis, Copps, Babuška (br0400) 2001; 190
Schillinger, Rank (br0350) 2011; 200
Müeller, Kummer, Oberlack, Wang (br0290) 2012; 92
Kadapa, Dettmer, Perić (br0190) 2017; 318
Sen, Mittal, Biswas (br0360) 2011; 67
Zhao, Cheng, Zhou (br0510) 2013; 25
Kudela (10.1016/j.camwa.2022.07.006_br0250) 2015; 2
Kadapa (10.1016/j.camwa.2022.07.006_br0170) 2021
Duczek (10.1016/j.camwa.2022.07.006_br0090) 2015; 56
Düster (10.1016/j.camwa.2022.07.006_br0120) 2008; 197
Höllig (10.1016/j.camwa.2022.07.006_br0140) 2003
Sharma (10.1016/j.camwa.2022.07.006_br0370) 2004; 45
Mousavi (10.1016/j.camwa.2022.07.006_br0280) 2011; 47
Thari (10.1016/j.camwa.2022.07.006_br0430) 2021; 229
Düster (10.1016/j.camwa.2022.07.006_br0110) 2020; vol. 599
Düster (10.1016/j.camwa.2022.07.006_br0130) 2012; 50
Turek (10.1016/j.camwa.2022.07.006_br0450) 2006; vol. 53
Xu (10.1016/j.camwa.2022.07.006_br0480) 2016; 141
Belytschko (10.1016/j.camwa.2022.07.006_br0010) 2009; 17
Schäfer (10.1016/j.camwa.2022.07.006_br0340) 1996; vol. 48
Kadapa (10.1016/j.camwa.2022.07.006_br0160) 2020; 217
Rüberg (10.1016/j.camwa.2022.07.006_br0320) 2012; 209–212
Kadapa (10.1016/j.camwa.2022.07.006_br0210) 2018; 335
Dettmer (10.1016/j.camwa.2022.07.006_br0070) 2013; 93
Duczek (10.1016/j.camwa.2022.07.006_br0100) 2014; 99
Kovasznay (10.1016/j.camwa.2022.07.006_br0240) 1948; 44
Kadapa (10.1016/j.camwa.2022.07.006_br0190) 2017; 318
Yogaraj (10.1016/j.camwa.2022.07.006_br0500) 2015
Melenk (10.1016/j.camwa.2022.07.006_br0270) 1996; 39
Saksono (10.1016/j.camwa.2022.07.006_br0330) 2007; 71
Schillinger (10.1016/j.camwa.2022.07.006_br0350) 2011; 200
Petö (10.1016/j.camwa.2022.07.006_br0310) 2020; 7
Dettmer (10.1016/j.camwa.2022.07.006_br0060) 2021; 122
Kadapa (10.1016/j.camwa.2022.07.006_br0220) 2020; 97
Sudhakar (10.1016/j.camwa.2022.07.006_br0410) 2013; 158
Breuer (10.1016/j.camwa.2022.07.006_br0030) 2000; 21
Ventura (10.1016/j.camwa.2022.07.006_br0470) 2015; 102
Zhao (10.1016/j.camwa.2022.07.006_br0510) 2013; 25
Burman (10.1016/j.camwa.2022.07.006_br0040) 2014; 104
Sen (10.1016/j.camwa.2022.07.006_br0360) 2011; 67
Boustani (10.1016/j.camwa.2022.07.006_br0020) 2021; 438
Strouboulis (10.1016/j.camwa.2022.07.006_br0390) 2000; 47
Kadapa (10.1016/j.camwa.2022.07.006_br0180)
Kadapa (10.1016/j.camwa.2022.07.006_br0230) 2016
Thiagarajan (10.1016/j.camwa.2022.07.006_br0440) 2016; 311
Varduhn (10.1016/j.camwa.2022.07.006_br0460) 2016; 107
Johnson (10.1016/j.camwa.2022.07.006_br0150) 1994; 119
Dettmer (10.1016/j.camwa.2022.07.006_br0050) 2016; 311
Divi (10.1016/j.camwa.2022.07.006_br0080) 2020; 80
Xu (10.1016/j.camwa.2022.07.006_br0490) 2021; 214
Parvizian (10.1016/j.camwa.2022.07.006_br0300) 2007; 41
Kudela (10.1016/j.camwa.2022.07.006_br0260) 2016; 306
Tezduyar (10.1016/j.camwa.2022.07.006_br0420) 2001; 8
Kadapa (10.1016/j.camwa.2022.07.006_br0200) 2017; 193
Strouboulis (10.1016/j.camwa.2022.07.006_br0400) 2001; 190
Müeller (10.1016/j.camwa.2022.07.006_br0290) 2012; 92
Stavrev (10.1016/j.camwa.2022.07.006_br0380) 2016; 310
References_xml – volume: 104
  start-page: 472
  year: 2014
  end-page: 501
  ident: br0040
  article-title: CutFEM: discretizing geometry and partial differential equations
  publication-title: Int. J. Numer. Methods Eng.
– year: 2016
  ident: br0230
  article-title: CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction
  publication-title: ECCOMAS 2016
– volume: 318
  start-page: 242
  year: 2017
  end-page: 269
  ident: br0190
  article-title: A stabilised immersed boundary method on hierarchical b-spline grids for fluid-rigid body interaction with solid-solid contact
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 306
  start-page: 406
  year: 2016
  end-page: 426
  ident: br0260
  article-title: Smart octrees: accurately integrating discontinuous functions in 3D
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 39
  start-page: 289
  year: 1996
  end-page: 314
  ident: br0270
  article-title: The partition of unity finite element method: basic theory and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 102
  start-page: 688
  year: 2015
  end-page: 710
  ident: br0470
  article-title: Equivalent polynomials for quadrature in heaviside function enriched elements
  publication-title: Int. J. Numer. Methods Eng.
– year: 2015
  ident: br0500
  article-title: An embedded interface finite element method for fluid-structure-fracture interaction
– volume: 99
  start-page: 26
  year: 2014
  end-page: 53
  ident: br0100
  article-title: Numerical analysis of Lamb waves using the finite and spectral cell methods
  publication-title: Int. J. Numer. Methods Eng.
– volume: 92
  start-page: 637
  year: 2012
  end-page: 651
  ident: br0290
  article-title: Simple multidimensional integration of discontinuous functions with application to level set methods
  publication-title: Int. J. Numer. Methods Eng.
– volume: 47
  start-page: 535
  year: 2011
  end-page: 554
  ident: br0280
  article-title: Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons
  publication-title: Comput. Mech.
– volume: 93
  start-page: 1
  year: 2013
  end-page: 22
  ident: br0070
  article-title: A new staggered scheme for fluid-structure interaction
  publication-title: Int. J. Numer. Methods Eng.
– volume: vol. 599
  year: 2020
  ident: br0110
  article-title: Modeling in engineering using innovative numerical methods for solids and fluids
  publication-title: Adaptive Integration of Cut Finite Elements and Cells for Nonlinear Structural Analysis
– volume: 438
  year: 2021
  ident: br0020
  article-title: An immersed boundary fluid-structure interaction method for thin, highly compliant shell structures
  publication-title: J. Comput. Phys.
– volume: 21
  start-page: 186
  year: 2000
  end-page: 196
  ident: br0030
  article-title: Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume
  publication-title: Int. J. Heat Fluid Flow
– volume: 2
  start-page: 1
  year: 2015
  end-page: 22
  ident: br0250
  article-title: Efficient and accurate numerical quadrature for immersed boundary methods
  publication-title: Adv. Model. Simul. Eng. Sci.
– year: 2021
  ident: br0180
  article-title: Insights into the performance of loosely-coupled FSI schemes based on Robin boundary conditions
– volume: 122
  start-page: 5204
  year: 2021
  end-page: 5235
  ident: br0060
  article-title: New iterative and staggered solution schemes for incompressible fluid-structure interaction based on Dirichlet-Neumann coupling
  publication-title: Int. J. Numer. Methods Eng.
– volume: 71
  start-page: 1009
  year: 2007
  end-page: 1050
  ident: br0330
  article-title: An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction
  publication-title: Int. J. Numer. Methods Eng.
– volume: 209–212
  start-page: 266
  year: 2012
  end-page: 283
  ident: br0320
  article-title: Subdivision-stabilised immersed b-spline finite elements for moving boundary flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 217
  year: 2020
  ident: br0160
  article-title: A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow
  publication-title: Ocean Eng.
– volume: 200
  start-page: 3358
  year: 2011
  end-page: 3380
  ident: br0350
  article-title: An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 311
  start-page: 250
  year: 2016
  end-page: 279
  ident: br0440
  article-title: Adaptively weighted numerical integration in the Finite Cell Method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 80
  start-page: 2481
  year: 2020
  end-page: 2516
  ident: br0080
  article-title: Error-estimate-based adaptive integration for immersed isogeometric analysis
  publication-title: Comput. Math. Appl.
– volume: 190
  start-page: 4081
  year: 2001
  end-page: 4193
  ident: br0400
  article-title: The generalized finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 141
  start-page: 135
  year: 2016
  end-page: 154
  ident: br0480
  article-title: The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries
  publication-title: Comput. Fluids
– volume: 45
  start-page: 247
  year: 2004
  end-page: 269
  ident: br0370
  article-title: Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime
  publication-title: Numer. Heat Transf., Part A, Appl.
– volume: 47
  start-page: 1401
  year: 2000
  end-page: 1417
  ident: br0390
  article-title: The generalized finite element method: an example of its implementation and illustration of its performance
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 158
  start-page: 39
  year: 2013
  end-page: 54
  ident: br0410
  article-title: Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 335
  start-page: 472
  year: 2018
  end-page: 489
  ident: br0210
  article-title: A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction with solid-solid contact
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 8
  start-page: 83
  year: 2001
  end-page: 130
  ident: br0420
  article-title: Finite element methods for flow problems with moving boundaries and interfaces
  publication-title: Arch. Comput. Methods Eng.
– volume: 25
  year: 2013
  ident: br0510
  article-title: Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number
  publication-title: Phys. Fluids
– volume: 311
  start-page: 415
  year: 2016
  end-page: 437
  ident: br0050
  article-title: A stabilised immersed boundary method on hierarchical b-spline grids
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 193
  start-page: 226
  year: 2017
  end-page: 238
  ident: br0200
  article-title: On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems
  publication-title: Comput. Struct.
– year: 2021
  ident: br0170
  article-title: A unified simulation framework for fluid-structure-control interaction problems with rigid and flexible structures
  publication-title: Int. J. Comput. Methods
– volume: 119
  start-page: 73
  year: 1994
  end-page: 94
  ident: br0150
  article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 67
  start-page: 1160
  year: 2011
  end-page: 1174
  ident: br0360
  article-title: Flow past a square cylinder at low Reynolds numbers
  publication-title: Int. J. Numer. Methods Fluids
– volume: 50
  start-page: 413
  year: 2012
  end-page: 431
  ident: br0130
  article-title: Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method
  publication-title: Comput. Mech.
– volume: 17
  year: 2009
  ident: br0010
  article-title: A review of extended/generalized finite element methods for material modeling
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 97
  year: 2020
  ident: br0220
  article-title: Accurate iteration-free mixed-stabilised formulation for laminar incompressible Navier-Stokes: applications to fluid-structure interaction
  publication-title: J. Fluids Struct.
– volume: 41
  start-page: 121
  year: 2007
  end-page: 133
  ident: br0300
  article-title: Finite cell method – h- and p-extension for embedded domain problems in solid mechanics
  publication-title: Comput. Mech.
– volume: 229
  year: 2021
  ident: br0430
  article-title: Adaptive reduced-order modeling for non-linear fluid-structure interaction
  publication-title: Comput. Fluids
– volume: 44
  start-page: 58
  year: 1948
  end-page: 62
  ident: br0240
  article-title: Laminar flow behind a two-dimensional grid
  publication-title: Math. Proc. Camb. Philos. Soc.
– volume: 107
  start-page: 1054
  year: 2016
  end-page: 1079
  ident: br0460
  article-title: The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes
  publication-title: Int. J. Numer. Methods Eng.
– volume: 56
  start-page: 725
  year: 2015
  end-page: 738
  ident: br0090
  article-title: Efficient integration method for fictitious domain approaches
  publication-title: Comput. Mech.
– year: 2003
  ident: br0140
  article-title: Finite Element Methods with B-Splines
– volume: 310
  start-page: 646
  year: 2016
  end-page: 673
  ident: br0380
  article-title: Geometrically accurate, efficient, and flexible quadrature techniques for the tetrahedral finite cell method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: vol. 53
  start-page: 371
  year: 2006
  end-page: 385
  ident: br0450
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
  publication-title: Fluid-Structure Interaction
– volume: 197
  start-page: 3768
  year: 2008
  end-page: 3782
  ident: br0120
  article-title: The finite cell method for three-dimensional problems of solid mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: vol. 48
  year: 1996
  ident: br0340
  article-title: Benchmark computations of laminar flow around a cylinder
  publication-title: Flow Simulation with High-Performance Computers II
– volume: 7
  year: 2020
  ident: br0310
  article-title: Enhanced numerical integration scheme based on image-compression techniques: application to fictitious domain methods
  publication-title: Adv. Model. Simul. Eng. Sci.
– volume: 214
  year: 2021
  ident: br0490
  article-title: An octree-based immersogeometric approach for modeling inertial migration of particles in channels
  publication-title: Comput. Fluids
– volume: 97
  year: 2020
  ident: 10.1016/j.camwa.2022.07.006_br0220
  article-title: Accurate iteration-free mixed-stabilised formulation for laminar incompressible Navier-Stokes: applications to fluid-structure interaction
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2020.103077
– volume: 438
  year: 2021
  ident: 10.1016/j.camwa.2022.07.006_br0020
  article-title: An immersed boundary fluid-structure interaction method for thin, highly compliant shell structures
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110369
– volume: 311
  start-page: 415
  year: 2016
  ident: 10.1016/j.camwa.2022.07.006_br0050
  article-title: A stabilised immersed boundary method on hierarchical b-spline grids
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.08.027
– volume: 44
  start-page: 58
  issue: 1
  year: 1948
  ident: 10.1016/j.camwa.2022.07.006_br0240
  article-title: Laminar flow behind a two-dimensional grid
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100023999
– volume: 41
  start-page: 121
  year: 2007
  ident: 10.1016/j.camwa.2022.07.006_br0300
  article-title: Finite cell method – h- and p-extension for embedded domain problems in solid mechanics
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-007-0173-y
– year: 2015
  ident: 10.1016/j.camwa.2022.07.006_br0500
– volume: 310
  start-page: 646
  year: 2016
  ident: 10.1016/j.camwa.2022.07.006_br0380
  article-title: Geometrically accurate, efficient, and flexible quadrature techniques for the tetrahedral finite cell method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.07.041
– volume: 80
  start-page: 2481
  year: 2020
  ident: 10.1016/j.camwa.2022.07.006_br0080
  article-title: Error-estimate-based adaptive integration for immersed isogeometric analysis
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2020.03.026
– volume: 21
  start-page: 186
  year: 2000
  ident: 10.1016/j.camwa.2022.07.006_br0030
  article-title: Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(99)00081-8
– volume: 50
  start-page: 413
  year: 2012
  ident: 10.1016/j.camwa.2022.07.006_br0130
  article-title: Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0681-2
– year: 2003
  ident: 10.1016/j.camwa.2022.07.006_br0140
– volume: 93
  start-page: 1
  year: 2013
  ident: 10.1016/j.camwa.2022.07.006_br0070
  article-title: A new staggered scheme for fluid-structure interaction
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4370
– volume: 56
  start-page: 725
  year: 2015
  ident: 10.1016/j.camwa.2022.07.006_br0090
  article-title: Efficient integration method for fictitious domain approaches
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1197-3
– volume: 306
  start-page: 406
  year: 2016
  ident: 10.1016/j.camwa.2022.07.006_br0260
  article-title: Smart octrees: accurately integrating discontinuous functions in 3D
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.04.006
– volume: 229
  year: 2021
  ident: 10.1016/j.camwa.2022.07.006_br0430
  article-title: Adaptive reduced-order modeling for non-linear fluid-structure interaction
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2021.105099
– volume: 214
  year: 2021
  ident: 10.1016/j.camwa.2022.07.006_br0490
  article-title: An octree-based immersogeometric approach for modeling inertial migration of particles in channels
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2020.104764
– volume: vol. 53
  start-page: 371
  year: 2006
  ident: 10.1016/j.camwa.2022.07.006_br0450
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
– year: 2021
  ident: 10.1016/j.camwa.2022.07.006_br0170
  article-title: A unified simulation framework for fluid-structure-control interaction problems with rigid and flexible structures
  publication-title: Int. J. Comput. Methods
– volume: 104
  start-page: 472
  year: 2014
  ident: 10.1016/j.camwa.2022.07.006_br0040
  article-title: CutFEM: discretizing geometry and partial differential equations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4823
– volume: 197
  start-page: 3768
  year: 2008
  ident: 10.1016/j.camwa.2022.07.006_br0120
  article-title: The finite cell method for three-dimensional problems of solid mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.02.036
– volume: vol. 48
  year: 1996
  ident: 10.1016/j.camwa.2022.07.006_br0340
  article-title: Benchmark computations of laminar flow around a cylinder
– volume: 217
  year: 2020
  ident: 10.1016/j.camwa.2022.07.006_br0160
  article-title: A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107940
– volume: 193
  start-page: 226
  year: 2017
  ident: 10.1016/j.camwa.2022.07.006_br0200
  article-title: On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2017.08.013
– volume: 209–212
  start-page: 266
  year: 2012
  ident: 10.1016/j.camwa.2022.07.006_br0320
  article-title: Subdivision-stabilised immersed b-spline finite elements for moving boundary flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.10.007
– volume: 47
  start-page: 1401
  year: 2000
  ident: 10.1016/j.camwa.2022.07.006_br0390
  article-title: The generalized finite element method: an example of its implementation and illustration of its performance
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
– volume: 39
  start-page: 289
  year: 1996
  ident: 10.1016/j.camwa.2022.07.006_br0270
  article-title: The partition of unity finite element method: basic theory and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01087-0
– volume: 17
  year: 2009
  ident: 10.1016/j.camwa.2022.07.006_br0010
  article-title: A review of extended/generalized finite element methods for material modeling
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/17/4/043001
– volume: 25
  year: 2013
  ident: 10.1016/j.camwa.2022.07.006_br0510
  article-title: Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number
  publication-title: Phys. Fluids
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.camwa.2022.07.006_br0250
  article-title: Efficient and accurate numerical quadrature for immersed boundary methods
  publication-title: Adv. Model. Simul. Eng. Sci.
  doi: 10.1186/s40323-015-0031-y
– volume: 102
  start-page: 688
  year: 2015
  ident: 10.1016/j.camwa.2022.07.006_br0470
  article-title: Equivalent polynomials for quadrature in heaviside function enriched elements
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4679
– volume: 141
  start-page: 135
  year: 2016
  ident: 10.1016/j.camwa.2022.07.006_br0480
  article-title: The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.08.027
– ident: 10.1016/j.camwa.2022.07.006_br0180
– volume: 119
  start-page: 73
  year: 1994
  ident: 10.1016/j.camwa.2022.07.006_br0150
  article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(94)00077-8
– volume: vol. 599
  year: 2020
  ident: 10.1016/j.camwa.2022.07.006_br0110
  article-title: Modeling in engineering using innovative numerical methods for solids and fluids
– volume: 200
  start-page: 3358
  year: 2011
  ident: 10.1016/j.camwa.2022.07.006_br0350
  article-title: An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.08.002
– volume: 67
  start-page: 1160
  year: 2011
  ident: 10.1016/j.camwa.2022.07.006_br0360
  article-title: Flow past a square cylinder at low Reynolds numbers
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2416
– year: 2016
  ident: 10.1016/j.camwa.2022.07.006_br0230
  article-title: CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-structure interaction
– volume: 47
  start-page: 535
  year: 2011
  ident: 10.1016/j.camwa.2022.07.006_br0280
  article-title: Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-010-0562-5
– volume: 318
  start-page: 242
  year: 2017
  ident: 10.1016/j.camwa.2022.07.006_br0190
  article-title: A stabilised immersed boundary method on hierarchical b-spline grids for fluid-rigid body interaction with solid-solid contact
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.01.024
– volume: 107
  start-page: 1054
  year: 2016
  ident: 10.1016/j.camwa.2022.07.006_br0460
  article-title: The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5207
– volume: 158
  start-page: 39
  year: 2013
  ident: 10.1016/j.camwa.2022.07.006_br0410
  article-title: Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2013.01.007
– volume: 335
  start-page: 472
  year: 2018
  ident: 10.1016/j.camwa.2022.07.006_br0210
  article-title: A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction with solid-solid contact
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.02.021
– volume: 190
  start-page: 4081
  year: 2001
  ident: 10.1016/j.camwa.2022.07.006_br0400
  article-title: The generalized finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00188-8
– volume: 45
  start-page: 247
  year: 2004
  ident: 10.1016/j.camwa.2022.07.006_br0370
  article-title: Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime
  publication-title: Numer. Heat Transf., Part A, Appl.
  doi: 10.1080/10407780490278562
– volume: 8
  start-page: 83
  year: 2001
  ident: 10.1016/j.camwa.2022.07.006_br0420
  article-title: Finite element methods for flow problems with moving boundaries and interfaces
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF02897870
– volume: 71
  start-page: 1009
  year: 2007
  ident: 10.1016/j.camwa.2022.07.006_br0330
  article-title: An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1971
– volume: 311
  start-page: 250
  year: 2016
  ident: 10.1016/j.camwa.2022.07.006_br0440
  article-title: Adaptively weighted numerical integration in the Finite Cell Method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.08.021
– volume: 7
  issue: 21
  year: 2020
  ident: 10.1016/j.camwa.2022.07.006_br0310
  article-title: Enhanced numerical integration scheme based on image-compression techniques: application to fictitious domain methods
  publication-title: Adv. Model. Simul. Eng. Sci.
– volume: 99
  start-page: 26
  year: 2014
  ident: 10.1016/j.camwa.2022.07.006_br0100
  article-title: Numerical analysis of Lamb waves using the finite and spectral cell methods
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4663
– volume: 92
  start-page: 637
  year: 2012
  ident: 10.1016/j.camwa.2022.07.006_br0290
  article-title: Simple multidimensional integration of discontinuous functions with application to level set methods
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4353
– volume: 122
  start-page: 5204
  year: 2021
  ident: 10.1016/j.camwa.2022.07.006_br0060
  article-title: New iterative and staggered solution schemes for incompressible fluid-structure interaction based on Dirichlet-Neumann coupling
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6494
SSID ssj0004320
Score 2.4013886
Snippet Finite element methods based on cut-cells are becoming increasingly popular because of their advantages over formulations based on body-fitted meshes for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive integration
CutFEM
Flow-induced vibrations
Fluid-structure interaction
Immersed boundary methods
Incompressible Navier-Stokes
Title A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems
URI https://dx.doi.org/10.1016/j.camwa.2022.07.006
Volume 122
WOSCitedRecordID wos000840724400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIde0h1JuoCH3lwBEilR5tEIUnQJgh7Swj0JFEWiThzFsC0nAfJD-csON1lZYCSHXgSBMGlZ8zwLOfMGoU9ZKkqmOIC3zFiU5mkcgZeRRCTRkpYJY8RW8f8-yA8PB6MR_9nrXYdamOUkr-vBxQWf_ldRwxgI25TOPkLc7aIwAPcgdLiC2OH6IMEPbZr4TP31qemi5d60Z_5SNjPT4t2e_4upzRwKnBHeeZTNom829C1VQx8gY2p2-3rSjKvI8c2aUwczaeY7jfu2NPOuqxv6Rcwtuk5bethQT9c5ObdsUTe3JX6YhxMuIQBsgThRc7FcmRC_yz0a15dNixllMxP-NKq7lQFRsGnFkHU1HoeQlriS6VY9u7plr2CTjqV2ivuODXDbEccQ35-eG2YpQiw9a3wP4_YtS9jmJ4bUt-PCLlKYRYrYnNSzJ2iT5BkHBbo5_LY_-r4qwqWOAzT8hkBxZZMJ7zzL_W5Qx7U5eoG2fEyChw5LL1FP1a_Q8yA_7NX_a3Q1xDeghVfQwmcaB2jZew8t3IGWGQdoYQstDNDCHlr4FrRwB1o4QOsN-vVl_2jva-S7d0SSpoNFlJLU1IcxzsEESElkJbQShCmik1JWNBdUESHSLBZMaF1WEOhWkoI7rzjjFaFv0UZ9VqtthBOutBQZiUUOuoUroU3pTEKZAm9fU76DSHiZhfTU9qbDyqRYI8gd9LmdNHXMLus_zoKUCu-cOqezANytm7j7uO95h56t_hrv0Qa8evUBPZXLxXg---hB9w82S7ct
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+assessment+of+accuracy+of+adaptive+integration+of+cut+cells+for+laminar+fluid-structure+interaction+problems&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Kadapa%2C+Chennakesava&rft.au=Wang%2C+Xinyu&rft.au=Mei%2C+Yue&rft.date=2022-09-15&rft.issn=0898-1221&rft.volume=122&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.camwa.2022.07.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_camwa_2022_07_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon