Constructing Diverse Inlier Consistency for Partial Point Cloud Registration
Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods have achieved remarkable progress, they often fail to take full advantage of the relative positional relationships both within (intra-) and betw...
Saved in:
| Published in: | IEEE transactions on image processing Vol. 33; pp. 6535 - 6549 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods have achieved remarkable progress, they often fail to take full advantage of the relative positional relationships both within (intra-) and between (inter-) point clouds. This oversight hampers their ability to accurately identify overlapping regions and search for reliable correspondences. To address these limitations, a diverse inlier consistency (DIC) method has been proposed that adaptively embeds the positional information of a reliable correspondence in the intra- and inter-point cloud. Firstly, a diverse inlier consistency-driven region perception (DICdRP) module is devised, which encodes the positional information of the selected correspondence within the intra-point cloud. This module enhances the sensitivity of all points to overlapping regions by recognizing the position of the selected correspondence. Secondly, a diverse inlier consistency-aware correspondence search (DICaCS) module is developed, which leverages relative positions in the inter-point cloud. This module studies an inter-point cloud DIC weight to supervise correspondence compatibility, allowing for precise identification of correspondences and effective outlier filtration. Thirdly, diverse information is integrated throughout our framework to achieve a more holistic and detailed registration process. Extensive experiments on object-level and scene-level datasets demonstrate the superior performance of the proposed algorithm. The code is available at https://github.com/yxzhang15/DIC . |
|---|---|
| AbstractList | Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods have achieved remarkable progress, they often fail to take full advantage of the relative positional relationships both within (intra-) and between (inter-) point clouds. This oversight hampers their ability to accurately identify overlapping regions and search for reliable correspondences. To address these limitations, a diverse inlier consistency (DIC) method has been proposed that adaptively embeds the positional information of a reliable correspondence in the intra- and inter-point cloud. Firstly, a diverse inlier consistency-driven region perception (DICdRP) module is devised, which encodes the positional information of the selected correspondence within the intra-point cloud. This module enhances the sensitivity of all points to overlapping regions by recognizing the position of the selected correspondence. Secondly, a diverse inlier consistency-aware correspondence search (DICaCS) module is developed, which leverages relative positions in the inter-point cloud. This module studies an inter-point cloud DIC weight to supervise correspondence compatibility, allowing for precise identification of correspondences and effective outlier filtration. Thirdly, diverse information is integrated throughout our framework to achieve a more holistic and detailed registration process. Extensive experiments on object-level and scene-level datasets demonstrate the superior performance of the proposed algorithm. The code is available at https://github.com/yxzhang15/DIC.Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods have achieved remarkable progress, they often fail to take full advantage of the relative positional relationships both within (intra-) and between (inter-) point clouds. This oversight hampers their ability to accurately identify overlapping regions and search for reliable correspondences. To address these limitations, a diverse inlier consistency (DIC) method has been proposed that adaptively embeds the positional information of a reliable correspondence in the intra- and inter-point cloud. Firstly, a diverse inlier consistency-driven region perception (DICdRP) module is devised, which encodes the positional information of the selected correspondence within the intra-point cloud. This module enhances the sensitivity of all points to overlapping regions by recognizing the position of the selected correspondence. Secondly, a diverse inlier consistency-aware correspondence search (DICaCS) module is developed, which leverages relative positions in the inter-point cloud. This module studies an inter-point cloud DIC weight to supervise correspondence compatibility, allowing for precise identification of correspondences and effective outlier filtration. Thirdly, diverse information is integrated throughout our framework to achieve a more holistic and detailed registration process. Extensive experiments on object-level and scene-level datasets demonstrate the superior performance of the proposed algorithm. The code is available at https://github.com/yxzhang15/DIC. Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods have achieved remarkable progress, they often fail to take full advantage of the relative positional relationships both within (intra-) and between (inter-) point clouds. This oversight hampers their ability to accurately identify overlapping regions and search for reliable correspondences. To address these limitations, a diverse inlier consistency (DIC) method has been proposed that adaptively embeds the positional information of a reliable correspondence in the intra- and inter-point cloud. Firstly, a diverse inlier consistency-driven region perception (DICdRP) module is devised, which encodes the positional information of the selected correspondence within the intra-point cloud. This module enhances the sensitivity of all points to overlapping regions by recognizing the position of the selected correspondence. Secondly, a diverse inlier consistency-aware correspondence search (DICaCS) module is developed, which leverages relative positions in the inter-point cloud. This module studies an inter-point cloud DIC weight to supervise correspondence compatibility, allowing for precise identification of correspondences and effective outlier filtration. Thirdly, diverse information is integrated throughout our framework to achieve a more holistic and detailed registration process. Extensive experiments on object-level and scene-level datasets demonstrate the superior performance of the proposed algorithm. The code is available at https://github.com/yxzhang15/DIC. |
| Author | Gui, Jie Kwok, James Tin-Yau Zhang, Yu-Xin |
| Author_xml | – sequence: 1 givenname: Yu-Xin orcidid: 0000-0002-7029-5815 surname: Zhang fullname: Zhang, Yu-Xin email: yuxinzhang@seu.edu.cn organization: School of Cyber Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Jie orcidid: 0000-0002-9450-1759 surname: Gui fullname: Gui, Jie email: guijie@seu.edu.cn organization: School of Cyber Science and Engineering and the Engineering Research Center of Blockchain Application, Supervision and Management, Ministry of Education, Southeast University, Nanjing, China – sequence: 3 givenname: James Tin-Yau orcidid: 0000-0002-4828-8248 surname: Kwok fullname: Kwok, James Tin-Yau email: jamesk@cse.ust.hk organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39531562$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1LAzEQxYMoflTvHkQWvHjZmtlkN8lR6lehYJF6XrbprES2iSZZof-9qa0iHjzNwPzezPDeEdm1ziIhp0CHAFRdzcbTYUELPmRcFYLSHXIIikNOKS92U09LkQvg6oAchfBKKfASqn1ywFTJoKyKQzIZORui73U09iW7MR_oA2Zj2xn02XpmQkSrV1nrfDZtfDRNl02dsTEbda5fZE_4khDfROPsMdlrmy7gybYOyPPd7Wz0kE8e78ej60muGZcx56BBSVBzpqhqpJKtxLnE9BMrFxqkWIgWdSUU46yqNIpGMERAKhSkds4G5HKz98279x5DrJcmaOy6xqLrQ82gkKKCSsiEXvxBX13vbfouUYwqVpQFT9T5lurnS1zUb94sG7-qv31KAN0A2rsQPLY_CNB6HUWdoqjXUdTbKJKk-iPRJn7ZlNwy3X_Cs43QIOKvO6IEoSj7BEZXlAA |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_3390_s25154748 |
| Cites_doi | 10.1177/0278364912458814 10.1109/TIP.2022.3215024 10.1109/CVPR.2019.00910 10.1109/CVPR52729.2023.00127 10.1109/ICCV48922.2021.00986 10.1109/TPAMI.1987.4767965 10.1109/IM.2001.924423 10.1109/CVPR.2019.00733 10.1109/CVPR.2013.377 10.1109/TNNLS.2021.3056238 10.1109/TNNLS.2023.3267333 10.1109/ICCV.2019.00167 10.1109/CVPR.2012.6248074 10.1109/TPAMI.2015.2513405 10.1145/3326362 10.1109/TGRS.2024.3370591 10.1109/ICCV48922.2021.00544 10.1109/CVPR42600.2020.00722 10.1109/TAI.2022.3201505 10.2140/pjm.1967.21.343 10.1109/ICCV48922.2021.00312 10.1007/978-3-030-58558-7_43 10.15607/RSS.2009.V.021 10.1109/TPAMI.2023.3259038 10.1109/LRA.2022.3214789 10.1109/TPAMI.2022.3148308 10.1109/CVPR.2015.7298801 10.1609/aaai.v36i2.20117 10.1609/aaai.v36i3.20189 10.1117/12.57955 10.1109/TCSVT.2023.3237328 10.1109/ICCV.2019.00362 10.1109/CVPR42600.2020.01184 10.1109/TIP.2020.3025447 10.1109/TIM.2023.3271757 10.48550/ARXIV.1706.03762 10.1109/CVPR42600.2020.00499 10.1109/ICCV48922.2021.01595 10.18653/v1/N18-2074 10.1109/CVPR52688.2022.00547 10.1109/CVPR52688.2022.01181 10.1109/TNNLS.2020.2978386 10.1109/TIP.2022.3182266 10.1109/TIP.2018.2819820 10.1109/CVPR52688.2022.01086 10.1007/978-3-030-58452-8_13 10.1109/ICCV51070.2023.00776 10.1007/978-3-030-58586-0_23 10.1109/CVPR46437.2021.00881 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2024.3492700 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 6549 |
| ExternalDocumentID | 39531562 10_1109_TIP_2024_3492700 10751790 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 62172090 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2022YFB3104301 funderid: 10.13039/501100012166 – fundername: Start-Up Research Fund of Southeast University grantid: RF1028623097 funderid: 10.13039/501100012603 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c348t-41c19819b3909a898f8eb8e95335dc187d7fec67934366ce7a73ee1e0791a73b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001360426000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Wed Oct 01 08:13:08 EDT 2025 Mon Jun 30 14:19:39 EDT 2025 Wed Mar 05 02:44:42 EST 2025 Tue Nov 18 21:52:55 EST 2025 Sat Nov 29 03:34:45 EST 2025 Wed Aug 27 03:06:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-41c19819b3909a898f8eb8e95335dc187d7fec67934366ce7a73ee1e0791a73b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9450-1759 0000-0002-7029-5815 0000-0002-4828-8248 |
| PMID | 39531562 |
| PQID | 3130932524 |
| PQPubID | 85429 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TIP_2024_3492700 proquest_journals_3130932524 proquest_miscellaneous_3128761678 pubmed_primary_39531562 ieee_primary_10751790 crossref_citationtrail_10_1109_TIP_2024_3492700 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref14 ref53 ref52 ref11 ref55 ref54 ref17 ref16 ref19 ref18 Sarode (ref10) 2019 Sorkine-Hornung (ref46) 2017; 1 ref51 ref50 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 Jang (ref33) 2016 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Lucas (ref29); 2 ref35 ref34 ref37 ref36 ref31 ref30 ref2 ref1 ref39 ref38 ref24 ref23 ref25 ref20 Wang (ref32); 32 Qi (ref15) ref22 ref21 ref28 ref27 Yang (ref26); 35 |
| References_xml | – ident: ref53 doi: 10.1177/0278364912458814 – ident: ref1 doi: 10.1109/TIP.2022.3215024 – ident: ref16 doi: 10.1109/CVPR.2019.00910 – volume: 32 start-page: 8812 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref32 article-title: PRNet: Self-supervised learning for partial-to-partial registration – ident: ref48 doi: 10.1109/CVPR52729.2023.00127 – start-page: 652 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) ident: ref15 article-title: PointNet: Deep learning on point sets for 3D classification and segmentation – ident: ref41 doi: 10.1109/ICCV48922.2021.00986 – ident: ref45 doi: 10.1109/TPAMI.1987.4767965 – ident: ref8 doi: 10.1109/IM.2001.924423 – ident: ref28 doi: 10.1109/CVPR.2019.00733 – ident: ref52 doi: 10.1109/CVPR.2013.377 – ident: ref9 doi: 10.1109/TNNLS.2021.3056238 – ident: ref20 doi: 10.1109/TNNLS.2023.3267333 – ident: ref51 doi: 10.1109/ICCV.2019.00167 – volume: 1 start-page: 1 issue: 1 year: 2017 ident: ref46 article-title: Least-squares rigid motion using SVD publication-title: Computing – ident: ref50 doi: 10.1109/CVPR.2012.6248074 – ident: ref7 doi: 10.1109/TPAMI.2015.2513405 – ident: ref31 doi: 10.1145/3326362 – ident: ref54 doi: 10.1109/TGRS.2024.3370591 – ident: ref24 doi: 10.1109/ICCV48922.2021.00544 – ident: ref12 doi: 10.1109/CVPR42600.2020.00722 – year: 2019 ident: ref10 article-title: PCRNet: Point cloud registration network using PointNet encoding publication-title: arXiv:1908.07906 – ident: ref18 doi: 10.1109/TAI.2022.3201505 – ident: ref27 doi: 10.2140/pjm.1967.21.343 – ident: ref36 doi: 10.1109/ICCV48922.2021.00312 – ident: ref11 doi: 10.1007/978-3-030-58558-7_43 – ident: ref6 doi: 10.15607/RSS.2009.V.021 – ident: ref44 doi: 10.1109/TPAMI.2023.3259038 – ident: ref21 doi: 10.1109/LRA.2022.3214789 – ident: ref19 doi: 10.1109/TPAMI.2022.3148308 – ident: ref49 doi: 10.1109/CVPR.2015.7298801 – ident: ref35 doi: 10.1609/aaai.v36i2.20117 – ident: ref37 doi: 10.1609/aaai.v36i3.20189 – ident: ref5 doi: 10.1117/12.57955 – ident: ref13 doi: 10.1109/TCSVT.2023.3237328 – ident: ref30 doi: 10.1109/ICCV.2019.00362 – ident: ref56 doi: 10.1109/CVPR42600.2020.01184 – volume: 35 start-page: 6982 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref26 article-title: One-inlier is first: Towards efficient position encoding for point cloud registration – volume: 2 start-page: 674 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref29 article-title: An iterative image registration technique with an application to stereo vision – ident: ref3 doi: 10.1109/TIP.2020.3025447 – ident: ref14 doi: 10.1109/TIM.2023.3271757 – ident: ref22 doi: 10.48550/ARXIV.1706.03762 – ident: ref47 doi: 10.1109/CVPR42600.2020.00499 – ident: ref43 doi: 10.1109/ICCV48922.2021.01595 – ident: ref38 doi: 10.18653/v1/N18-2074 – ident: ref23 doi: 10.1109/CVPR52688.2022.00547 – ident: ref42 doi: 10.1109/CVPR52688.2022.01181 – year: 2016 ident: ref33 article-title: Categorical reparameterization with Gumbel-Softmax publication-title: arXiv:1611.01144 – ident: ref17 doi: 10.1109/TNNLS.2020.2978386 – ident: ref2 doi: 10.1109/TIP.2022.3182266 – ident: ref4 doi: 10.1109/TIP.2018.2819820 – ident: ref25 doi: 10.1109/CVPR52688.2022.01086 – ident: ref39 doi: 10.1007/978-3-030-58452-8_13 – ident: ref55 doi: 10.1109/ICCV51070.2023.00776 – ident: ref34 doi: 10.1007/978-3-030-58586-0_23 – ident: ref40 doi: 10.1109/CVPR46437.2021.00881 |
| SSID | ssj0014516 |
| Score | 2.4448013 |
| Snippet | Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6535 |
| SubjectTerms | Accuracy Algorithms Coordinates Data analysis Electronic mail Encoding Feature extraction Image coding Image registration inlier consistency Iterative methods Modules Partial point cloud Point cloud compression position encoding Registration Singular value decomposition Three-dimensional displays Transformers |
| Title | Constructing Diverse Inlier Consistency for Partial Point Cloud Registration |
| URI | https://ieeexplore.ieee.org/document/10751790 https://www.ncbi.nlm.nih.gov/pubmed/39531562 https://www.proquest.com/docview/3130932524 https://www.proquest.com/docview/3128761678 |
| Volume | 33 |
| WOSCitedRecordID | wos001360426000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6a0ENyyPvhJg0q9NKDE8uy9TiGpCGBEJaSwt6MLY9DYLFDdrfQf98Z2WvSQwq9CSxZQjODPmmk7wP4mlY6N16zoElSxpmrcoq50sTO-9qmpU1lE0hc783Dg51O3WR4rB7ewiBiuHyG51wMufy680s-KqMIN4FRag3WjNH9Y60xZcCKsyG1mZvYEO5f5SQTd_F4N6GdYJqdMxWfSVj9TTlyvlynfy1HQV_lfagZlpyb7f8c7A5sDdhSXPbOsAsfsN2D7QFniiGK53uw-YaEcB_uWbOzZ5Ftn8R1uKeB4q6lRq8i6HnOGVf_FgRvxYQ9jfqYdM_tQlzNumUtfuDTyL57AD9vvj9e3caDxkLsVWYXcSa9dIQKKuUSV1pnG4uVRb50mtdeWlObBr2mKM6U1h7JjgpRYmKcpGKlDmG97Vo8BpGYSjFErCVtwVTuyzLVjdZJXTIJmWsiuFhNdeEHAnLWwZgVYSOSuILsVLCdisFOEXwbW7z05Bv_qHvANnhTr5_-CE5X5iyG8JwXSnICOM3TLIIv42cKLM6WlC12S65Dm0ktaTGP4Kh3g_HnK-_59E6nJ7DBY-uPak5hnYyIn-Gj_7V4nr-ekfdO7Vnw3j_7SuaG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7atNDmkKRp2jrNQ4VeenBiWbYex5AHWbJZlrKF3IwtyyEQ7JLdDeTfd0bWmvSQQm8CS5bQzKBPGun7AL6nlcyVlSRokpRxZqocY65UsbG21mmpU954Etexmkz0zY2Zhsfq_i2Mc85fPnNHVPS5_LqzSzoqwwhXnlHqNbwh6azwXGtIGpDmrE9u5ipWiPxXWcnEHM9GU9wLptkRkfGphPTfhEH3y2X614LkFVZeBpt-0bnY_M_hbsFGQJfspHeHD_DKtduwGZAmC3E834b1ZzSEH2FMqp09j2x7y878TQ3HRi02emBe0XNOyPqJIcBlU_I17GPa3bULdnrfLWv2090O_Ls78OvifHZ6GQeVhdiKTC_ijFtuEBdUwiSm1EY32lXa0bXTvLZcq1o1zkqM40xIaR1aUjjHXaIMx2IlPsFa27XuC7BEVYJAYs1xEyZyW5apbKRM6pJoyEwTwfFqqgsbKMhJCeO-8FuRxBRop4LsVAQ7RfBjaPG7p9_4R90dssGzev30R7C3MmcRAnReCE4p4DRPswi-DZ8xtChfUrauW1Id3E5Kjst5BJ97Nxh-vvKe3Rc6PYR3l7PrcTEeTa6-wnsaZ39wswdraFC3D2_t4-Ju_nDgffgPuCHo5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Diverse+Inlier+Consistency+for+Partial+Point+Cloud+Registration&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Yu-Xin&rft.au=Gui%2C+Jie&rft.au=Kwok%2C+James+Tin-Yau&rft.date=2024&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=33&rft.spage=6535&rft.epage=6549&rft_id=info:doi/10.1109%2FTIP.2024.3492700&rft_id=info%3Apmid%2F39531562&rft.externalDocID=10751790 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |