Health index degradation prediction of induction motor using deep neural network algorithm
•A deep neural network-based self-designed model predicts the health status of the motor.•Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction.•The effectiveness of the model's accuracy and low mean square loss results show visible improvement...
Uložené v:
| Vydané v: | Results in engineering Ročník 25; s. 104357 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.03.2025
Elsevier |
| Predmet: | |
| ISSN: | 2590-1230, 2590-1230 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A deep neural network-based self-designed model predicts the health status of the motor.•Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction.•The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models.•The research offers greater scope in the industrial sector.•This research will help reduce the maintenance cost for uninterrupted machine operation through predictive modeling.
Predictive and preventive methodologies are increasingly playing a role in improving the safety and reliability of the system. Early machine fault detection and health monitoring help avoid severe damage. The conventional methods, such as mathematical modeling, require extensive motor operation data and have become non-adaptive to the level of complications and randomness. Modern advancements in research have proved that Machine and Deep learning models are more effective for monitoring and detection systems offering reliable system accuracy. This paper explores a deep neural network-based self-designed model that not only detects and classifies the fault but also predicts the health status of the motor after the occurrence of the fault. Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction during the operation. The non-linear Deep Neural Network regression model employed in this study performs well achieving 99.6 % accuracy. The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models. Moreover, this model also provides helpful information regarding the motor's health in case of fault, ensuring the cycle rotation of the motor without causing permanent damage. The research offers greater scope in the industrial sector, where continuous health monitoring of a machine is a prime objective, and early detection of faults can prevent more significant losses. This research will also help reduce the maintenance cost for uninterrupted machine operation through predictive modeling. |
|---|---|
| AbstractList | Predictive and preventive methodologies are increasingly playing a role in improving the safety and reliability of the system. Early machine fault detection and health monitoring help avoid severe damage. The conventional methods, such as mathematical modeling, require extensive motor operation data and have become non-adaptive to the level of complications and randomness. Modern advancements in research have proved that Machine and Deep learning models are more effective for monitoring and detection systems offering reliable system accuracy. This paper explores a deep neural network-based self-designed model that not only detects and classifies the fault but also predicts the health status of the motor after the occurrence of the fault. Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction during the operation. The non-linear Deep Neural Network regression model employed in this study performs well achieving 99.6 % accuracy. The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models. Moreover, this model also provides helpful information regarding the motor's health in case of fault, ensuring the cycle rotation of the motor without causing permanent damage. The research offers greater scope in the industrial sector, where continuous health monitoring of a machine is a prime objective, and early detection of faults can prevent more significant losses. This research will also help reduce the maintenance cost for uninterrupted machine operation through predictive modeling. •A deep neural network-based self-designed model predicts the health status of the motor.•Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction.•The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models.•The research offers greater scope in the industrial sector.•This research will help reduce the maintenance cost for uninterrupted machine operation through predictive modeling. Predictive and preventive methodologies are increasingly playing a role in improving the safety and reliability of the system. Early machine fault detection and health monitoring help avoid severe damage. The conventional methods, such as mathematical modeling, require extensive motor operation data and have become non-adaptive to the level of complications and randomness. Modern advancements in research have proved that Machine and Deep learning models are more effective for monitoring and detection systems offering reliable system accuracy. This paper explores a deep neural network-based self-designed model that not only detects and classifies the fault but also predicts the health status of the motor after the occurrence of the fault. Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction during the operation. The non-linear Deep Neural Network regression model employed in this study performs well achieving 99.6 % accuracy. The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models. Moreover, this model also provides helpful information regarding the motor's health in case of fault, ensuring the cycle rotation of the motor without causing permanent damage. The research offers greater scope in the industrial sector, where continuous health monitoring of a machine is a prime objective, and early detection of faults can prevent more significant losses. This research will also help reduce the maintenance cost for uninterrupted machine operation through predictive modeling. |
| ArticleNumber | 104357 |
| Author | Alsuwian, Turki Shahid, Aiman Waseem, Saba Amin, Arslan Ahmed |
| Author_xml | – sequence: 1 givenname: Arslan Ahmed orcidid: 0000-0001-8035-595X surname: Amin fullname: Amin, Arslan Ahmed email: dr.arslanamin@gmail.com organization: Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Chiniot Faisalabad Campus, Punjab 35400, Pakistan – sequence: 2 givenname: Turki surname: Alsuwian fullname: Alsuwian, Turki organization: Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia – sequence: 3 givenname: Aiman surname: Shahid fullname: Shahid, Aiman organization: Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Chiniot Faisalabad Campus, Punjab 35400, Pakistan – sequence: 4 givenname: Saba surname: Waseem fullname: Waseem, Saba organization: Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Chiniot Faisalabad Campus, Punjab 35400, Pakistan |
| BookMark | eNqFkMtqGzEUhkVIIdc36GJewI5uM5K6CISQNoFAN-0mG3EsnZnIHUtGIyft20f2lBK6aFfnovN_oO-MHMcUkZCPjC4ZZd3VeplDxDgsOeVtXUnRqiNyyltDF4wLevyuPyGX07SmlHJds0Kdkqd7hLE8NyF6_Nl4HDJ4KCHFZpvRB3doU79_383DJpWUm90U4lDvcdtE3GUYaymvKf9oYBxSDuV5c0E-9DBOePm7npPvn---3d4vHr9-ebi9eVw4IXVZSEaN9qpTVMsVMCNNz51iXadX2qCXvUeKWoNA6Z3ruO49o8qAEZq51oA4Jw8z1ydY220OG8i_bIJgD4uUBwu5BDeipVwY1aJqtTYSmFpxb1oQCqDVHe9NZcmZ5XKapoz9Hx6jdq_bru2s2-5121l3jX36K-ZCOWgsGcL4v_D1HMYq6SVgtpMLGF3Vn9GV-ovwb8AbWymf9A |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_105670 crossref_primary_10_1016_j_rineng_2025_106169 crossref_primary_10_1016_j_rineng_2025_107214 crossref_primary_10_1016_j_rineng_2025_106061 crossref_primary_10_1016_j_rineng_2025_106739 |
| Cites_doi | 10.1016/j.neucom.2018.05.024 10.1109/TIE.2010.2053337 10.1016/j.rineng.2024.103892 10.1016/j.rineng.2024.102422 10.1177/0020294019842593 10.3233/JIFS-169530 10.1109/TIE.2006.888790 10.1007/s42835-021-00965-5 10.1109/TPAMI.2002.1017616 10.1109/ACCESS.2021.3068164 10.1016/j.compind.2019.02.015 10.1007/s11227-023-05658-6 10.1109/ACCESS.2019.2894796 10.1016/j.rineng.2024.103493 10.3390/app12157841 10.1007/s11277-024-11395-7 10.1016/j.measurement.2020.108323 10.3390/s20071884 10.1109/LMWC.2014.2303161 10.1177/00368504221118965 10.1007/s13369-021-05527-5 10.1016/j.measurement.2019.01.063 10.1016/j.measurement.2022.112346 10.1016/j.rineng.2024.103420 10.1109/TR.2014.2299155 10.1177/1077546318783886 10.3390/en17112728 10.1016/j.measurement.2019.04.083 10.3390/s22103864 10.1007/s12652-022-03898-7 10.1016/j.rineng.2024.103884 10.1016/j.ymssp.2018.12.009 10.2174/23520973MTExdNjcu3 10.1016/j.rineng.2024.102961 10.1016/j.eswa.2014.02.028 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.rineng.2025.104357 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2590-1230 |
| ExternalDocumentID | oai_doaj_org_article_023975e758894a17b2d95a37aa5862f9 10_1016_j_rineng_2025_104357 S2590123025004384 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c348t-41098d767084ba1949f2c71668b89ed4fde0e88a3e4dcc628fd1079a9381c59a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001432900900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2590-1230 |
| IngestDate | Fri Oct 03 12:50:28 EDT 2025 Sat Nov 29 07:51:25 EST 2025 Tue Nov 18 22:38:30 EST 2025 Sat Jul 05 17:10:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault classification Machine Learning Health index prediction Machine Health Estimation Degradation modeling |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-41098d767084ba1949f2c71668b89ed4fde0e88a3e4dcc628fd1079a9381c59a3 |
| ORCID | 0000-0001-8035-595X |
| OpenAccessLink | https://doaj.org/article/023975e758894a17b2d95a37aa5862f9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_023975e758894a17b2d95a37aa5862f9 crossref_primary_10_1016_j_rineng_2025_104357 crossref_citationtrail_10_1016_j_rineng_2025_104357 elsevier_sciencedirect_doi_10_1016_j_rineng_2025_104357 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Results in engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Butt, Huda, Amin (bib0004) 2022 Alsuwian, Iqbal, Amin, Qadir, Almasabi, Jalalah (bib0014) 2022; 12 Shahbaz, Amin (bib0019) 2021; 9 “MAFAULDA :: Machinery Fault Database [Online].” Accessed: 17, 2022. [Online]. Available Ullah, Alam, Aziza, Sebai, Abualigah (bib0016) 2024; 137 “An improved data anomaly detection method based on isolation forest | Semantic Scholar.” Accessed: 03, 2021. [Online]. Available Xiang, Zhang, Zhang, Xia (bib0032) 2019; 138 Liang, Zhang, Zhong, Yang (bib0030) 2019; 122 Megrini, Gaga, Mehdaoui (bib0048) 2024; 23 Zhu (bib0011) 2023; 206 Martins, Pires, Pires (bib0045) 2007; 54 Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (bib0025) 2002; 24 Amin, Mahmood-ul-Hasan (bib0043) 2022; 17 Wang, Hu, Wang, Si (bib0007) 2014; 63 Yu (bib0033) 2019; 108 Ghate, Dudul (bib0044) 2011; 58 Elminir, El-Brawany, Ibrahim, Elattar, Ramadan (bib0013) 2024; 24 Tao, Mo, Shen, Du, Yan (bib0023) 2016 “(PDF) Industry 4.0 – A glimpse.” Accessed: Oct. 26, 2021. [Online]. Available Atif, Azmat, Khan, Albogamy, Khan (bib0015) 2024; 24 “What is scheduled maintenance? | how is SMCP calculated?” [Online]. Available . Lewis, Nanni, Temkin (bib0034) 2014; 24 A.P. Cédola, R. Rossini, I. Bosi, and D. Conzon, “Feature engineering and machine learning modelling for predictive maintenance based on production and stop events,” 2021. [Online]. Available “Fault analysis and predictive maintenance of induction motor using machine learning | IEEE Conference publication | IEEE Xplore.” Accessed: 03, 2021. [Online]. Available Mishra, Singh (bib0010) 2025; 25 Xu, Tse (bib0028) 2019; 25 Wang, Wang, Wang (bib0031) 2018; 310 Alsuwian, Amin, Maqsood, Qadir, Almasabi, Jalalah (bib0021) 2022; 22 Amin, Mahmood-Ul-Hasan (bib0008) 2019; 7 Sikder, Mohammad Arif, Islam, Nahid (bib0055) 2021; 46 Yakhni (bib0009) 2024; 24 “Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy - Arslan Ahmed Amin, Khalid Mahmood-ul-Hasan, 2019.” Accessed: 22, 2022. [Online]. Available Abu-Hashem, Shehab, Shambour, Sh. Daoud, Abualigah (bib0027) 2024; 41 R, Mutra (bib0002) 2025; 25 G. Staerman, P. Mozharovskyi, and S. Clemencon, “Functional Isolation Forest,” p. 16. Yaman (bib0054) 2021; 168 Sivaranjith, “What is maintenance? Types of Maintenance,” Instrumentation and Control Engineering. [Online]. Available Amin, Mahmood-ul-Hasan (bib0017) 2019; 52 Seera, Lim, Nahavandi, Loo (bib0018) 2014; 41 “A systematic literature review of machine learning methods applied to predictive maintenance - ScienceDirect.” Accessed: Oct. 26, 2021. [Online]. Available Ortega, Rocío, Rojas, García (bib0037) 2009; 534 “Robust active fault-tolerant control for internal combustion gas engine for air–fuel ratio control with statistical regression-based observer model - Arslan Ahmed Amin, Khalid Mahmood-ul-Hasan, 2019.” Accessed: 22, 2022. [Online]. Available Alzghoul, Jarndal, Alsyouf, Bingamil, Ali, AlBaiti (bib0056) 2020 Baltas, Mazidi, Ma, de Asis Fernandez, Rodriguez (bib0026) 2018 Toma, Prosvirin, Kim (bib0024) 2020; 20 Vapnik (bib0022) 2000 Ahmad, Adnan, Amin, Khan (bib0049) 2022; 105 “Unsupervised machine Learning | SpringerLink.” Accessed: 03, 2021. [Online]. Available Issa (bib0041) 2024; 17 “A sparse auto-encoder-based deep neural network approach for induction motor faults classification - ScienceDirect.” Accessed: 24, 2022. [Online]. Available Riaz, Tayyeb, Amin (bib0046) 2021; 14 Jiang, Shao, Chen, Huang (bib0029) 2018; 34 “(PDF) Isolation Forest.” Accessed: 03, 2021. [Online]. Available Amin, Hasan (bib0020) 2019; 143 Abualigah, Altalhi (bib0042) 2024; 15 Xiao, Pan, Liu, Wang, Zhang, Abualigah (bib0036) 2024; 80 Butt (10.1016/j.rineng.2025.104357_bib0004) 2022 Wang (10.1016/j.rineng.2025.104357_bib0007) 2014; 63 Alzghoul (10.1016/j.rineng.2025.104357_bib0056) 2020 10.1016/j.rineng.2025.104357_bib0040 Ahmad (10.1016/j.rineng.2025.104357_bib0049) 2022; 105 Yakhni (10.1016/j.rineng.2025.104357_bib0009) 2024; 24 10.1016/j.rineng.2025.104357_bib0038 Toma (10.1016/j.rineng.2025.104357_bib0024) 2020; 20 10.1016/j.rineng.2025.104357_bib0035 10.1016/j.rineng.2025.104357_bib0039 Atif (10.1016/j.rineng.2025.104357_bib0015) 2024; 24 Yaman (10.1016/j.rineng.2025.104357_bib0054) 2021; 168 Xu (10.1016/j.rineng.2025.104357_bib0028) 2019; 25 Liang (10.1016/j.rineng.2025.104357_bib0030) 2019; 122 Abu-Hashem (10.1016/j.rineng.2025.104357_bib0027) 2024; 41 Amin (10.1016/j.rineng.2025.104357_bib0020) 2019; 143 Shahbaz (10.1016/j.rineng.2025.104357_bib0019) 2021; 9 10.1016/j.rineng.2025.104357_bib0051 Issa (10.1016/j.rineng.2025.104357_bib0041) 2024; 17 10.1016/j.rineng.2025.104357_bib0052 10.1016/j.rineng.2025.104357_bib0050 Wang (10.1016/j.rineng.2025.104357_bib0031) 2018; 310 10.1016/j.rineng.2025.104357_bib0001 Baltas (10.1016/j.rineng.2025.104357_bib0026) 2018 Xiang (10.1016/j.rineng.2025.104357_bib0032) 2019; 138 10.1016/j.rineng.2025.104357_bib0005 Alsuwian (10.1016/j.rineng.2025.104357_bib0014) 2022; 12 10.1016/j.rineng.2025.104357_bib0003 10.1016/j.rineng.2025.104357_bib0047 Lewis (10.1016/j.rineng.2025.104357_bib0034) 2014; 24 10.1016/j.rineng.2025.104357_bib0006 Ullah (10.1016/j.rineng.2025.104357_bib0016) 2024; 137 Zhu (10.1016/j.rineng.2025.104357_bib0011) 2023; 206 Kanungo (10.1016/j.rineng.2025.104357_bib0025) 2002; 24 Amin (10.1016/j.rineng.2025.104357_bib0008) 2019; 7 R (10.1016/j.rineng.2025.104357_bib0002) 2025; 25 10.1016/j.rineng.2025.104357_bib0012 Riaz (10.1016/j.rineng.2025.104357_bib0046) 2021; 14 10.1016/j.rineng.2025.104357_bib0053 Megrini (10.1016/j.rineng.2025.104357_bib0048) 2024; 23 Mishra (10.1016/j.rineng.2025.104357_bib0010) 2025; 25 Martins (10.1016/j.rineng.2025.104357_bib0045) 2007; 54 Sikder (10.1016/j.rineng.2025.104357_bib0055) 2021; 46 Ortega (10.1016/j.rineng.2025.104357_bib0037) 2009; 534 Abualigah (10.1016/j.rineng.2025.104357_bib0042) 2024; 15 Alsuwian (10.1016/j.rineng.2025.104357_bib0021) 2022; 22 Xiao (10.1016/j.rineng.2025.104357_bib0036) 2024; 80 Elminir (10.1016/j.rineng.2025.104357_bib0013) 2024; 24 Jiang (10.1016/j.rineng.2025.104357_bib0029) 2018; 34 Vapnik (10.1016/j.rineng.2025.104357_bib0022) 2000 Amin (10.1016/j.rineng.2025.104357_bib0043) 2022; 17 Yu (10.1016/j.rineng.2025.104357_bib0033) 2019; 108 Amin (10.1016/j.rineng.2025.104357_bib0017) 2019; 52 Seera (10.1016/j.rineng.2025.104357_bib0018) 2014; 41 Tao (10.1016/j.rineng.2025.104357_bib0023) 2016 Ghate (10.1016/j.rineng.2025.104357_bib0044) 2011; 58 |
| References_xml | – volume: 25 start-page: 473 year: 2019 end-page: 482 ident: bib0028 article-title: Combined deep belief network in deep learning with affinity propagation clustering algorithm for roller bearings fault diagnosis without data label publication-title: J. Vib. Control – volume: 24 year: 2024 ident: bib0015 article-title: AI-driven thermography-based fault diagnosis in single-phase induction motor publication-title: Results. Eng. – volume: 534 year: 2009 ident: bib0037 article-title: Research issues on K-means algorithm: an experimental trial using Matlab publication-title: CEUR Workshop Proceedings – start-page: 1 year: 2018 end-page: 6 ident: bib0026 article-title: A comparative analysis of decision trees, support vector machines and artificial neural networks for on-line transient stability assessment publication-title: 2018 International Conference on Smart Energy Systems and Technologies (SEST) – reference: “(PDF) Isolation Forest.” Accessed: 03, 2021. [Online]. Available: – reference: “A sparse auto-encoder-based deep neural network approach for induction motor faults classification - ScienceDirect.” Accessed: 24, 2022. [Online]. Available: – reference: “Fault analysis and predictive maintenance of induction motor using machine learning | IEEE Conference publication | IEEE Xplore.” Accessed: 03, 2021. [Online]. Available: – volume: 41 start-page: 4891 year: 2014 end-page: 4903 ident: bib0018 article-title: Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models publication-title: Expert. Syst. Appl. – volume: 25 year: 2025 ident: bib0002 article-title: Fault classification in rotor-bearing system using advanced signal processing and machine learning techniques publication-title: Results. Eng. – reference: “What is scheduled maintenance? | how is SMCP calculated?” [Online]. Available: – volume: 108 start-page: 62 year: 2019 end-page: 72 ident: bib0033 article-title: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis publication-title: Comput. Ind. – reference: Sivaranjith, “What is maintenance? Types of Maintenance,” Instrumentation and Control Engineering. [Online]. Available: – year: 2022 ident: bib0004 article-title: Design of fault-tolerant control system for distributed energy resources based power network using Phasor measurement Units publication-title: Measurement Control – volume: 12 start-page: 15 year: 2022 ident: bib0014 article-title: A comparative study of design of active fault-tolerant control system for air–Fuel ratio control of internal combustion engine using particle swarm optimization, genetic algorithm, and nonlinear regression-based observer model publication-title: Appl. Sci. – volume: 54 start-page: 259 year: 2007 end-page: 264 ident: bib0045 article-title: Unsupervised neural-network-based algorithm for an on-line diagnosis of three-phase induction motor stator fault publication-title: IEEe Trans. Ind. Electron. – volume: 25 year: 2025 ident: bib0010 article-title: A comprehensive review on deep learning techniques in power system protection: trends, challenges, applications and future directions publication-title: Results. Eng. – start-page: 1 year: 2016 end-page: 5 ident: bib0023 article-title: Multi-classifiers ensemble with confidence diversity for fault diagnosis in induction motors publication-title: 2016 10th International Conference on Sensing Technology (ICST) – volume: 310 start-page: 213 year: 2018 end-page: 222 ident: bib0031 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing. – reference: “An improved data anomaly detection method based on isolation forest | Semantic Scholar.” Accessed: 03, 2021. [Online]. Available: – reference: “(PDF) Industry 4.0 – A glimpse.” Accessed: Oct. 26, 2021. [Online]. Available: – volume: 105 year: 2022 ident: bib0049 article-title: A comprehensive review of fault diagnosis and fault-tolerant control techniques for modular multi-level converters publication-title: Sci. Prog. – volume: 143 start-page: 58 year: 2019 end-page: 68 ident: bib0020 article-title: A review of Fault Tolerant Control Systems: advancements and applications publication-title: Measurement – volume: 22 start-page: 10 year: 2022 ident: bib0021 article-title: Advanced fault-tolerant anti-surge control system of centrifugal compressors for sensor and actuator faults publication-title: Sensors – volume: 46 start-page: 8475 year: 2021 end-page: 8491 ident: bib0055 article-title: Induction motor bearing fault classification using extreme learning machine based on power features publication-title: Arab. J. Sci. Eng. – volume: 17 start-page: 2728 year: 2024 ident: bib0041 article-title: Review of fault diagnosis methods for induction machines in railway traction applications publication-title: Energies – reference: “MAFAULDA :: Machinery Fault Database [Online].” Accessed: 17, 2022. [Online]. Available: – volume: 52 start-page: 473 year: 2019 end-page: 492 ident: bib0017 article-title: Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy publication-title: Measurement Control – volume: 34 start-page: 3513 year: 2018 end-page: 3521 ident: bib0029 article-title: A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery publication-title: IFS – volume: 9 start-page: 46022 year: 2021 end-page: 46032 ident: bib0019 article-title: Design of active fault tolerant control system for air fuel ratio control of internal combustion engines using artificial neural networks publication-title: IEEe Access. – volume: 58 start-page: 1555 year: 2011 end-page: 1563 ident: bib0044 article-title: Cascade neural-network-based fault classifier for three-phase induction motor publication-title: IEEe Trans. Ind. Electron. – volume: 168 year: 2021 ident: bib0054 article-title: An automated faults classification method based on binary pattern and neighborhood component analysis using induction motor publication-title: Measurement – volume: 138 start-page: 162 year: 2019 end-page: 174 ident: bib0032 article-title: Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO spectrum and stacking auto-encoder publication-title: Measurement – reference: “A systematic literature review of machine learning methods applied to predictive maintenance - ScienceDirect.” Accessed: Oct. 26, 2021. [Online]. Available: – volume: 17 start-page: 1947 year: 2022 end-page: 1959 ident: bib0043 article-title: Unified fault-tolerant control for air-fuel ratio control of internal combustion engines with advanced analytical and hardware redundancies publication-title: J. Electr. Eng. Technol. – volume: 137 start-page: 2037 year: 2024 end-page: 2060 ident: bib0016 article-title: A hybrid strategy for reduction in time consumption for cloud datacenter using HMBC algorithm publication-title: Wireless Pers. Commun. – volume: 20 start-page: 1884 year: 2020 ident: bib0024 article-title: Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers publication-title: Sensors – volume: 24 year: 2024 ident: bib0009 article-title: Induction motor tacholess fault detection in transient speeds using adaptive generalized Vold Kalman filter publication-title: Results. Eng. – reference: G. Staerman, P. Mozharovskyi, and S. Clemencon, “Functional Isolation Forest,” p. 16. – volume: 24 year: 2024 ident: bib0013 article-title: An efficient deep learning prognostic model for remaining useful life estimation of high speed CNC milling machine cutters publication-title: Results. Eng. – year: 2020 ident: bib0056 article-title: On the usefulness of pre-processing methods in rotating machines faults classification using artificial neural network publication-title: J. Appl. Comput. Mech. – volume: 15 start-page: 389 year: 2024 end-page: 417 ident: bib0042 article-title: A novel generalized normal distribution arithmetic optimization algorithm for global optimization and data clustering problems publication-title: J. Ambient Intell. Human Comput. – volume: 122 start-page: 19 year: 2019 end-page: 41 ident: bib0030 article-title: A novel multi-segment feature fusion based fault classification approach for rotating machinery publication-title: Mech. Syst. Signal. Process. – volume: 80 start-page: 5136 year: 2024 end-page: 5162 ident: bib0036 article-title: Load balancing strategy for SDN multi-controller clusters based on load prediction publication-title: J. Supercomput. – volume: 206 year: 2023 ident: bib0011 article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery publication-title: Measurement – start-page: 123 year: 2000 end-page: 180 ident: bib0022 article-title: Methods of pattern recognition publication-title: The Nature of Statistical Learning Theory – volume: 41 year: 2024 ident: bib0027 article-title: Improved Black Widow Optimization: an investigation into enhancing cloud task scheduling efficiency publication-title: Sustainable Comput. – volume: 24 start-page: 881 year: 2002 end-page: 892 ident: bib0025 article-title: An efficient k-means clustering algorithm: analysis and implementation publication-title: IEEE Trans. Pattern Anal. Machine Intell. – volume: 23 year: 2024 ident: bib0048 article-title: Processor in the loop implementation of artificial neural network controller for BLDC motor speed control publication-title: Results. Eng. – reference: “Unsupervised machine Learning | SpringerLink.” Accessed: 03, 2021. [Online]. Available: – volume: 14 start-page: 312 year: 2021 end-page: 324 ident: bib0046 article-title: A review of sliding mode control with the perspective of utilization in fault tolerant control publication-title: EEENG – reference: . – volume: 24 start-page: 842 year: 2014 end-page: 844 ident: bib0034 article-title: Direct machining of low-loss THz waveguide components with an RF choke publication-title: IEEE Microw. Wireless Compon. Lett. – reference: A.P. Cédola, R. Rossini, I. Bosi, and D. Conzon, “Feature engineering and machine learning modelling for predictive maintenance based on production and stop events,” 2021. [Online]. Available: – volume: 63 start-page: 208 year: 2014 end-page: 222 ident: bib0007 article-title: An additive wiener process-based prognostic model for hybrid deteriorating systems publication-title: IEEE Trans. Rel. – reference: “Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy - Arslan Ahmed Amin, Khalid Mahmood-ul-Hasan, 2019.” Accessed: 22, 2022. [Online]. Available: – volume: 7 start-page: 17634 year: 2019 end-page: 17643 ident: bib0008 article-title: Advanced fault tolerant air-fuel ratio control of internal combustion gas engine for sensor and actuator faults publication-title: IEEe Access. – reference: “Robust active fault-tolerant control for internal combustion gas engine for air–fuel ratio control with statistical regression-based observer model - Arslan Ahmed Amin, Khalid Mahmood-ul-Hasan, 2019.” Accessed: 22, 2022. [Online]. Available: – volume: 310 start-page: 213 year: 2018 ident: 10.1016/j.rineng.2025.104357_bib0031 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing. doi: 10.1016/j.neucom.2018.05.024 – volume: 58 start-page: 1555 issue: 5 year: 2011 ident: 10.1016/j.rineng.2025.104357_bib0044 article-title: Cascade neural-network-based fault classifier for three-phase induction motor publication-title: IEEe Trans. Ind. Electron. doi: 10.1109/TIE.2010.2053337 – ident: 10.1016/j.rineng.2025.104357_bib0051 – ident: 10.1016/j.rineng.2025.104357_bib0003 – volume: 25 year: 2025 ident: 10.1016/j.rineng.2025.104357_bib0002 article-title: Fault classification in rotor-bearing system using advanced signal processing and machine learning techniques publication-title: Results. Eng. doi: 10.1016/j.rineng.2024.103892 – volume: 23 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0048 article-title: Processor in the loop implementation of artificial neural network controller for BLDC motor speed control publication-title: Results. Eng. doi: 10.1016/j.rineng.2024.102422 – volume: 52 start-page: 473 issue: 5–6 year: 2019 ident: 10.1016/j.rineng.2025.104357_bib0017 article-title: Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy publication-title: Measurement Control doi: 10.1177/0020294019842593 – volume: 34 start-page: 3513 issue: 6 year: 2018 ident: 10.1016/j.rineng.2025.104357_bib0029 article-title: A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery publication-title: IFS doi: 10.3233/JIFS-169530 – volume: 54 start-page: 259 issue: 1 year: 2007 ident: 10.1016/j.rineng.2025.104357_bib0045 article-title: Unsupervised neural-network-based algorithm for an on-line diagnosis of three-phase induction motor stator fault publication-title: IEEe Trans. Ind. Electron. doi: 10.1109/TIE.2006.888790 – volume: 17 start-page: 1947 issue: 3 year: 2022 ident: 10.1016/j.rineng.2025.104357_bib0043 article-title: Unified fault-tolerant control for air-fuel ratio control of internal combustion engines with advanced analytical and hardware redundancies publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-021-00965-5 – ident: 10.1016/j.rineng.2025.104357_bib0035 – volume: 534 year: 2009 ident: 10.1016/j.rineng.2025.104357_bib0037 article-title: Research issues on K-means algorithm: an experimental trial using Matlab – volume: 24 start-page: 881 issue: 7 year: 2002 ident: 10.1016/j.rineng.2025.104357_bib0025 article-title: An efficient k-means clustering algorithm: analysis and implementation publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/TPAMI.2002.1017616 – volume: 9 start-page: 46022 year: 2021 ident: 10.1016/j.rineng.2025.104357_bib0019 article-title: Design of active fault tolerant control system for air fuel ratio control of internal combustion engines using artificial neural networks publication-title: IEEe Access. doi: 10.1109/ACCESS.2021.3068164 – volume: 108 start-page: 62 year: 2019 ident: 10.1016/j.rineng.2025.104357_bib0033 article-title: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.02.015 – ident: 10.1016/j.rineng.2025.104357_bib0052 – ident: 10.1016/j.rineng.2025.104357_bib0039 – volume: 80 start-page: 5136 issue: 4 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0036 article-title: Load balancing strategy for SDN multi-controller clusters based on load prediction publication-title: J. Supercomput. doi: 10.1007/s11227-023-05658-6 – volume: 7 start-page: 17634 year: 2019 ident: 10.1016/j.rineng.2025.104357_bib0008 article-title: Advanced fault tolerant air-fuel ratio control of internal combustion gas engine for sensor and actuator faults publication-title: IEEe Access. doi: 10.1109/ACCESS.2019.2894796 – volume: 24 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0015 article-title: AI-driven thermography-based fault diagnosis in single-phase induction motor publication-title: Results. Eng. doi: 10.1016/j.rineng.2024.103493 – year: 2022 ident: 10.1016/j.rineng.2025.104357_bib0004 article-title: Design of fault-tolerant control system for distributed energy resources based power network using Phasor measurement Units publication-title: Measurement Control – volume: 41 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0027 article-title: Improved Black Widow Optimization: an investigation into enhancing cloud task scheduling efficiency publication-title: Sustainable Comput. – volume: 12 start-page: 15 issue: 15 year: 2022 ident: 10.1016/j.rineng.2025.104357_bib0014 article-title: A comparative study of design of active fault-tolerant control system for air–Fuel ratio control of internal combustion engine using particle swarm optimization, genetic algorithm, and nonlinear regression-based observer model publication-title: Appl. Sci. doi: 10.3390/app12157841 – start-page: 1 year: 2016 ident: 10.1016/j.rineng.2025.104357_bib0023 article-title: Multi-classifiers ensemble with confidence diversity for fault diagnosis in induction motors – volume: 137 start-page: 2037 issue: 4 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0016 article-title: A hybrid strategy for reduction in time consumption for cloud datacenter using HMBC algorithm publication-title: Wireless Pers. Commun. doi: 10.1007/s11277-024-11395-7 – volume: 168 year: 2021 ident: 10.1016/j.rineng.2025.104357_bib0054 article-title: An automated faults classification method based on binary pattern and neighborhood component analysis using induction motor publication-title: Measurement doi: 10.1016/j.measurement.2020.108323 – volume: 20 start-page: 1884 issue: 7 year: 2020 ident: 10.1016/j.rineng.2025.104357_bib0024 article-title: Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers publication-title: Sensors doi: 10.3390/s20071884 – start-page: 1 year: 2018 ident: 10.1016/j.rineng.2025.104357_bib0026 article-title: A comparative analysis of decision trees, support vector machines and artificial neural networks for on-line transient stability assessment – ident: 10.1016/j.rineng.2025.104357_bib0005 – ident: 10.1016/j.rineng.2025.104357_bib0053 – ident: 10.1016/j.rineng.2025.104357_bib0038 – ident: 10.1016/j.rineng.2025.104357_bib0001 – volume: 24 start-page: 842 issue: 12 year: 2014 ident: 10.1016/j.rineng.2025.104357_bib0034 article-title: Direct machining of low-loss THz waveguide components with an RF choke publication-title: IEEE Microw. Wireless Compon. Lett. doi: 10.1109/LMWC.2014.2303161 – volume: 105 issue: 3 year: 2022 ident: 10.1016/j.rineng.2025.104357_bib0049 article-title: A comprehensive review of fault diagnosis and fault-tolerant control techniques for modular multi-level converters publication-title: Sci. Prog. doi: 10.1177/00368504221118965 – volume: 46 start-page: 8475 issue: 9 year: 2021 ident: 10.1016/j.rineng.2025.104357_bib0055 article-title: Induction motor bearing fault classification using extreme learning machine based on power features publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05527-5 – volume: 138 start-page: 162 year: 2019 ident: 10.1016/j.rineng.2025.104357_bib0032 article-title: Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO spectrum and stacking auto-encoder publication-title: Measurement doi: 10.1016/j.measurement.2019.01.063 – ident: 10.1016/j.rineng.2025.104357_bib0040 – volume: 206 year: 2023 ident: 10.1016/j.rineng.2025.104357_bib0011 article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery publication-title: Measurement doi: 10.1016/j.measurement.2022.112346 – volume: 24 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0013 article-title: An efficient deep learning prognostic model for remaining useful life estimation of high speed CNC milling machine cutters publication-title: Results. Eng. doi: 10.1016/j.rineng.2024.103420 – start-page: 123 year: 2000 ident: 10.1016/j.rineng.2025.104357_bib0022 article-title: Methods of pattern recognition – volume: 63 start-page: 208 issue: 1 year: 2014 ident: 10.1016/j.rineng.2025.104357_bib0007 article-title: An additive wiener process-based prognostic model for hybrid deteriorating systems publication-title: IEEE Trans. Rel. doi: 10.1109/TR.2014.2299155 – ident: 10.1016/j.rineng.2025.104357_bib0012 – ident: 10.1016/j.rineng.2025.104357_bib0006 – volume: 25 start-page: 473 issue: 2 year: 2019 ident: 10.1016/j.rineng.2025.104357_bib0028 article-title: Combined deep belief network in deep learning with affinity propagation clustering algorithm for roller bearings fault diagnosis without data label publication-title: J. Vib. Control doi: 10.1177/1077546318783886 – volume: 17 start-page: 2728 issue: 11 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0041 article-title: Review of fault diagnosis methods for induction machines in railway traction applications publication-title: Energies doi: 10.3390/en17112728 – volume: 143 start-page: 58 year: 2019 ident: 10.1016/j.rineng.2025.104357_bib0020 article-title: A review of Fault Tolerant Control Systems: advancements and applications publication-title: Measurement doi: 10.1016/j.measurement.2019.04.083 – volume: 22 start-page: 10 issue: 10 year: 2022 ident: 10.1016/j.rineng.2025.104357_bib0021 article-title: Advanced fault-tolerant anti-surge control system of centrifugal compressors for sensor and actuator faults publication-title: Sensors doi: 10.3390/s22103864 – volume: 15 start-page: 389 issue: 1 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0042 article-title: A novel generalized normal distribution arithmetic optimization algorithm for global optimization and data clustering problems publication-title: J. Ambient Intell. Human Comput. doi: 10.1007/s12652-022-03898-7 – volume: 25 year: 2025 ident: 10.1016/j.rineng.2025.104357_bib0010 article-title: A comprehensive review on deep learning techniques in power system protection: trends, challenges, applications and future directions publication-title: Results. Eng. doi: 10.1016/j.rineng.2024.103884 – issue: Online First year: 2020 ident: 10.1016/j.rineng.2025.104357_bib0056 article-title: On the usefulness of pre-processing methods in rotating machines faults classification using artificial neural network publication-title: J. Appl. Comput. Mech. – ident: 10.1016/j.rineng.2025.104357_bib0047 – volume: 122 start-page: 19 year: 2019 ident: 10.1016/j.rineng.2025.104357_bib0030 article-title: A novel multi-segment feature fusion based fault classification approach for rotating machinery publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2018.12.009 – ident: 10.1016/j.rineng.2025.104357_bib0050 – volume: 14 start-page: 312 issue: 3 year: 2021 ident: 10.1016/j.rineng.2025.104357_bib0046 article-title: A review of sliding mode control with the perspective of utilization in fault tolerant control publication-title: EEENG doi: 10.2174/23520973MTExdNjcu3 – volume: 24 year: 2024 ident: 10.1016/j.rineng.2025.104357_bib0009 article-title: Induction motor tacholess fault detection in transient speeds using adaptive generalized Vold Kalman filter publication-title: Results. Eng. doi: 10.1016/j.rineng.2024.102961 – volume: 41 start-page: 4891 issue: 10 year: 2014 ident: 10.1016/j.rineng.2025.104357_bib0018 article-title: Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2014.02.028 |
| SSID | ssj0002810137 |
| Score | 2.3237014 |
| Snippet | •A deep neural network-based self-designed model predicts the health status of the motor.•Multiple sensors deployed on the motor provide continuous data for... Predictive and preventive methodologies are increasingly playing a role in improving the safety and reliability of the system. Early machine fault detection... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 104357 |
| SubjectTerms | Degradation modeling Fault classification Health index prediction Machine Health Estimation Machine Learning |
| Title | Health index degradation prediction of induction motor using deep neural network algorithm |
| URI | https://dx.doi.org/10.1016/j.rineng.2025.104357 https://doaj.org/article/023975e758894a17b2d95a37aa5862f9 |
| Volume | 25 |
| WOSCitedRecordID | wos001432900900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5YI5LYie0RUCsGqBgAVSyRHTulVUmqEBj57ZztpMoEC0tkOY4dnU-57-K77xC6DFNuolyDp6oSHQC-pYGItYCWjgBthAVxB-0v92wy4dOpeOyV-rIxYZ4e2AvuyiZfssQArOWCyogpmCmRhEmZABgvXOpeyETPmVq4X0aR5dLrcuVcQJfNpitn4BLGiT3ZJNYi9WyRo-zvmaSemRnvop0WH-Jr_157aMOU-2i7xxp4gF596hB2RIdYW7YHXxgJr2p77OKaVWHve2pYDNtR1diGuM9gvFlhy2IJq5Q-BhzL5ayq583b-yF6Ho-ebu-CtkRCkBPKm4BGoeCapSzkVMlIUFHEObhAKVdcGE0LbULDuSSG6jxPY15o8PeEFGCo80RIcoQGZVWaY4QZdEcqKuATSMHpipUhgqQqiYXSkqRmiEgnrCxv-cNtGYtl1gWKLTIv4syKOPMiHqJg_dTK82f8Mf7G7sN6rGW_dh2gE1mrE9lfOjFErNvFrAUSHiDAVPNflz_5j-VP0Zad0keqnaFBU3-ac7SZfzXzj_rCKSpcH75HP2xs7KA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Health+index+degradation+prediction+of+induction+motor+using+deep+neural+network+algorithm&rft.jtitle=Results+in+engineering&rft.au=Amin%2C+Arslan+Ahmed&rft.au=Alsuwian%2C+Turki&rft.au=Shahid%2C+Aiman&rft.au=Waseem%2C+Saba&rft.date=2025-03-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=25&rft.spage=104357&rft_id=info:doi/10.1016%2Fj.rineng.2025.104357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rineng_2025_104357 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |