Health index degradation prediction of induction motor using deep neural network algorithm

•A deep neural network-based self-designed model predicts the health status of the motor.•Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction.•The effectiveness of the model's accuracy and low mean square loss results show visible improvement...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Results in engineering Ročník 25; s. 104357
Hlavní autori: Amin, Arslan Ahmed, Alsuwian, Turki, Shahid, Aiman, Waseem, Saba
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2025
Elsevier
Predmet:
ISSN:2590-1230, 2590-1230
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A deep neural network-based self-designed model predicts the health status of the motor.•Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction.•The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models.•The research offers greater scope in the industrial sector.•This research will help reduce the maintenance cost for uninterrupted machine operation through predictive modeling. Predictive and preventive methodologies are increasingly playing a role in improving the safety and reliability of the system. Early machine fault detection and health monitoring help avoid severe damage. The conventional methods, such as mathematical modeling, require extensive motor operation data and have become non-adaptive to the level of complications and randomness. Modern advancements in research have proved that Machine and Deep learning models are more effective for monitoring and detection systems offering reliable system accuracy. This paper explores a deep neural network-based self-designed model that not only detects and classifies the fault but also predicts the health status of the motor after the occurrence of the fault. Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction during the operation. The non-linear Deep Neural Network regression model employed in this study performs well achieving 99.6 % accuracy. The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models. Moreover, this model also provides helpful information regarding the motor's health in case of fault, ensuring the cycle rotation of the motor without causing permanent damage. The research offers greater scope in the industrial sector, where continuous health monitoring of a machine is a prime objective, and early detection of faults can prevent more significant losses. This research will also help reduce the maintenance cost for uninterrupted machine operation through predictive modeling.
AbstractList Predictive and preventive methodologies are increasingly playing a role in improving the safety and reliability of the system. Early machine fault detection and health monitoring help avoid severe damage. The conventional methods, such as mathematical modeling, require extensive motor operation data and have become non-adaptive to the level of complications and randomness. Modern advancements in research have proved that Machine and Deep learning models are more effective for monitoring and detection systems offering reliable system accuracy. This paper explores a deep neural network-based self-designed model that not only detects and classifies the fault but also predicts the health status of the motor after the occurrence of the fault. Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction during the operation. The non-linear Deep Neural Network regression model employed in this study performs well achieving 99.6 % accuracy. The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models. Moreover, this model also provides helpful information regarding the motor's health in case of fault, ensuring the cycle rotation of the motor without causing permanent damage. The research offers greater scope in the industrial sector, where continuous health monitoring of a machine is a prime objective, and early detection of faults can prevent more significant losses. This research will also help reduce the maintenance cost for uninterrupted machine operation through predictive modeling.
•A deep neural network-based self-designed model predicts the health status of the motor.•Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction.•The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models.•The research offers greater scope in the industrial sector.•This research will help reduce the maintenance cost for uninterrupted machine operation through predictive modeling. Predictive and preventive methodologies are increasingly playing a role in improving the safety and reliability of the system. Early machine fault detection and health monitoring help avoid severe damage. The conventional methods, such as mathematical modeling, require extensive motor operation data and have become non-adaptive to the level of complications and randomness. Modern advancements in research have proved that Machine and Deep learning models are more effective for monitoring and detection systems offering reliable system accuracy. This paper explores a deep neural network-based self-designed model that not only detects and classifies the fault but also predicts the health status of the motor after the occurrence of the fault. Multiple sensors deployed on the motor provide continuous data for pre-processing and feature extraction during the operation. The non-linear Deep Neural Network regression model employed in this study performs well achieving 99.6 % accuracy. The effectiveness of the model's accuracy and low mean square loss results show visible improvement over previously researched models. Moreover, this model also provides helpful information regarding the motor's health in case of fault, ensuring the cycle rotation of the motor without causing permanent damage. The research offers greater scope in the industrial sector, where continuous health monitoring of a machine is a prime objective, and early detection of faults can prevent more significant losses. This research will also help reduce the maintenance cost for uninterrupted machine operation through predictive modeling.
ArticleNumber 104357
Author Alsuwian, Turki
Shahid, Aiman
Waseem, Saba
Amin, Arslan Ahmed
Author_xml – sequence: 1
  givenname: Arslan Ahmed
  orcidid: 0000-0001-8035-595X
  surname: Amin
  fullname: Amin, Arslan Ahmed
  email: dr.arslanamin@gmail.com
  organization: Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Chiniot Faisalabad Campus, Punjab 35400, Pakistan
– sequence: 2
  givenname: Turki
  surname: Alsuwian
  fullname: Alsuwian, Turki
  organization: Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
– sequence: 3
  givenname: Aiman
  surname: Shahid
  fullname: Shahid, Aiman
  organization: Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Chiniot Faisalabad Campus, Punjab 35400, Pakistan
– sequence: 4
  givenname: Saba
  surname: Waseem
  fullname: Waseem, Saba
  organization: Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Chiniot Faisalabad Campus, Punjab 35400, Pakistan
BookMark eNqFkMtqGzEUhkVIIdc36GJewI5uM5K6CISQNoFAN-0mG3EsnZnIHUtGIyft20f2lBK6aFfnovN_oO-MHMcUkZCPjC4ZZd3VeplDxDgsOeVtXUnRqiNyyltDF4wLevyuPyGX07SmlHJds0Kdkqd7hLE8NyF6_Nl4HDJ4KCHFZpvRB3doU79_383DJpWUm90U4lDvcdtE3GUYaymvKf9oYBxSDuV5c0E-9DBOePm7npPvn---3d4vHr9-ebi9eVw4IXVZSEaN9qpTVMsVMCNNz51iXadX2qCXvUeKWoNA6Z3ruO49o8qAEZq51oA4Jw8z1ydY220OG8i_bIJgD4uUBwu5BDeipVwY1aJqtTYSmFpxb1oQCqDVHe9NZcmZ5XKapoz9Hx6jdq_bru2s2-5121l3jX36K-ZCOWgsGcL4v_D1HMYq6SVgtpMLGF3Vn9GV-ovwb8AbWymf9A
CitedBy_id crossref_primary_10_1016_j_rineng_2025_105670
crossref_primary_10_1016_j_rineng_2025_106169
crossref_primary_10_1016_j_rineng_2025_107214
crossref_primary_10_1016_j_rineng_2025_106061
crossref_primary_10_1016_j_rineng_2025_106739
Cites_doi 10.1016/j.neucom.2018.05.024
10.1109/TIE.2010.2053337
10.1016/j.rineng.2024.103892
10.1016/j.rineng.2024.102422
10.1177/0020294019842593
10.3233/JIFS-169530
10.1109/TIE.2006.888790
10.1007/s42835-021-00965-5
10.1109/TPAMI.2002.1017616
10.1109/ACCESS.2021.3068164
10.1016/j.compind.2019.02.015
10.1007/s11227-023-05658-6
10.1109/ACCESS.2019.2894796
10.1016/j.rineng.2024.103493
10.3390/app12157841
10.1007/s11277-024-11395-7
10.1016/j.measurement.2020.108323
10.3390/s20071884
10.1109/LMWC.2014.2303161
10.1177/00368504221118965
10.1007/s13369-021-05527-5
10.1016/j.measurement.2019.01.063
10.1016/j.measurement.2022.112346
10.1016/j.rineng.2024.103420
10.1109/TR.2014.2299155
10.1177/1077546318783886
10.3390/en17112728
10.1016/j.measurement.2019.04.083
10.3390/s22103864
10.1007/s12652-022-03898-7
10.1016/j.rineng.2024.103884
10.1016/j.ymssp.2018.12.009
10.2174/23520973MTExdNjcu3
10.1016/j.rineng.2024.102961
10.1016/j.eswa.2014.02.028
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2025.104357
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_023975e758894a17b2d95a37aa5862f9
10_1016_j_rineng_2025_104357
S2590123025004384
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c348t-41098d767084ba1949f2c71668b89ed4fde0e88a3e4dcc628fd1079a9381c59a3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001432900900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-1230
IngestDate Fri Oct 03 12:50:28 EDT 2025
Sat Nov 29 07:51:25 EST 2025
Tue Nov 18 22:38:30 EST 2025
Sat Jul 05 17:10:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fault classification
Machine Learning
Health index prediction
Machine Health Estimation
Degradation modeling
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-41098d767084ba1949f2c71668b89ed4fde0e88a3e4dcc628fd1079a9381c59a3
ORCID 0000-0001-8035-595X
OpenAccessLink https://doaj.org/article/023975e758894a17b2d95a37aa5862f9
ParticipantIDs doaj_primary_oai_doaj_org_article_023975e758894a17b2d95a37aa5862f9
crossref_primary_10_1016_j_rineng_2025_104357
crossref_citationtrail_10_1016_j_rineng_2025_104357
elsevier_sciencedirect_doi_10_1016_j_rineng_2025_104357
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Butt, Huda, Amin (bib0004) 2022
Alsuwian, Iqbal, Amin, Qadir, Almasabi, Jalalah (bib0014) 2022; 12
Shahbaz, Amin (bib0019) 2021; 9
“MAFAULDA :: Machinery Fault Database [Online].” Accessed: 17, 2022. [Online]. Available
Ullah, Alam, Aziza, Sebai, Abualigah (bib0016) 2024; 137
“An improved data anomaly detection method based on isolation forest | Semantic Scholar.” Accessed: 03, 2021. [Online]. Available
Xiang, Zhang, Zhang, Xia (bib0032) 2019; 138
Liang, Zhang, Zhong, Yang (bib0030) 2019; 122
Megrini, Gaga, Mehdaoui (bib0048) 2024; 23
Zhu (bib0011) 2023; 206
Martins, Pires, Pires (bib0045) 2007; 54
Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (bib0025) 2002; 24
Amin, Mahmood-ul-Hasan (bib0043) 2022; 17
Wang, Hu, Wang, Si (bib0007) 2014; 63
Yu (bib0033) 2019; 108
Ghate, Dudul (bib0044) 2011; 58
Elminir, El-Brawany, Ibrahim, Elattar, Ramadan (bib0013) 2024; 24
Tao, Mo, Shen, Du, Yan (bib0023) 2016
“(PDF) Industry 4.0 – A glimpse.” Accessed: Oct. 26, 2021. [Online]. Available
Atif, Azmat, Khan, Albogamy, Khan (bib0015) 2024; 24
“What is scheduled maintenance? | how is SMCP calculated?” [Online]. Available
.
Lewis, Nanni, Temkin (bib0034) 2014; 24
A.P. Cédola, R. Rossini, I. Bosi, and D. Conzon, “Feature engineering and machine learning modelling for predictive maintenance based on production and stop events,” 2021. [Online]. Available
“Fault analysis and predictive maintenance of induction motor using machine learning | IEEE Conference publication | IEEE Xplore.” Accessed: 03, 2021. [Online]. Available
Mishra, Singh (bib0010) 2025; 25
Xu, Tse (bib0028) 2019; 25
Wang, Wang, Wang (bib0031) 2018; 310
Alsuwian, Amin, Maqsood, Qadir, Almasabi, Jalalah (bib0021) 2022; 22
Amin, Mahmood-Ul-Hasan (bib0008) 2019; 7
Sikder, Mohammad Arif, Islam, Nahid (bib0055) 2021; 46
Yakhni (bib0009) 2024; 24
“Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy - Arslan Ahmed Amin, Khalid Mahmood-ul-Hasan, 2019.” Accessed: 22, 2022. [Online]. Available
Abu-Hashem, Shehab, Shambour, Sh. Daoud, Abualigah (bib0027) 2024; 41
R, Mutra (bib0002) 2025; 25
G. Staerman, P. Mozharovskyi, and S. Clemencon, “Functional Isolation Forest,” p. 16.
Yaman (bib0054) 2021; 168
Sivaranjith, “What is maintenance? Types of Maintenance,” Instrumentation and Control Engineering. [Online]. Available
Amin, Mahmood-ul-Hasan (bib0017) 2019; 52
Seera, Lim, Nahavandi, Loo (bib0018) 2014; 41
“A systematic literature review of machine learning methods applied to predictive maintenance - ScienceDirect.” Accessed: Oct. 26, 2021. [Online]. Available
Ortega, Rocío, Rojas, García (bib0037) 2009; 534
“Robust active fault-tolerant control for internal combustion gas engine for air–fuel ratio control with statistical regression-based observer model - Arslan Ahmed Amin, Khalid Mahmood-ul-Hasan, 2019.” Accessed: 22, 2022. [Online]. Available
Alzghoul, Jarndal, Alsyouf, Bingamil, Ali, AlBaiti (bib0056) 2020
Baltas, Mazidi, Ma, de Asis Fernandez, Rodriguez (bib0026) 2018
Toma, Prosvirin, Kim (bib0024) 2020; 20
Vapnik (bib0022) 2000
Ahmad, Adnan, Amin, Khan (bib0049) 2022; 105
“Unsupervised machine Learning | SpringerLink.” Accessed: 03, 2021. [Online]. Available
Issa (bib0041) 2024; 17
“A sparse auto-encoder-based deep neural network approach for induction motor faults classification - ScienceDirect.” Accessed: 24, 2022. [Online]. Available
Riaz, Tayyeb, Amin (bib0046) 2021; 14
Jiang, Shao, Chen, Huang (bib0029) 2018; 34
“(PDF) Isolation Forest.” Accessed: 03, 2021. [Online]. Available
Amin, Hasan (bib0020) 2019; 143
Abualigah, Altalhi (bib0042) 2024; 15
Xiao, Pan, Liu, Wang, Zhang, Abualigah (bib0036) 2024; 80
Butt (10.1016/j.rineng.2025.104357_bib0004) 2022
Wang (10.1016/j.rineng.2025.104357_bib0007) 2014; 63
Alzghoul (10.1016/j.rineng.2025.104357_bib0056) 2020
10.1016/j.rineng.2025.104357_bib0040
Ahmad (10.1016/j.rineng.2025.104357_bib0049) 2022; 105
Yakhni (10.1016/j.rineng.2025.104357_bib0009) 2024; 24
10.1016/j.rineng.2025.104357_bib0038
Toma (10.1016/j.rineng.2025.104357_bib0024) 2020; 20
10.1016/j.rineng.2025.104357_bib0035
10.1016/j.rineng.2025.104357_bib0039
Atif (10.1016/j.rineng.2025.104357_bib0015) 2024; 24
Yaman (10.1016/j.rineng.2025.104357_bib0054) 2021; 168
Xu (10.1016/j.rineng.2025.104357_bib0028) 2019; 25
Liang (10.1016/j.rineng.2025.104357_bib0030) 2019; 122
Abu-Hashem (10.1016/j.rineng.2025.104357_bib0027) 2024; 41
Amin (10.1016/j.rineng.2025.104357_bib0020) 2019; 143
Shahbaz (10.1016/j.rineng.2025.104357_bib0019) 2021; 9
10.1016/j.rineng.2025.104357_bib0051
Issa (10.1016/j.rineng.2025.104357_bib0041) 2024; 17
10.1016/j.rineng.2025.104357_bib0052
10.1016/j.rineng.2025.104357_bib0050
Wang (10.1016/j.rineng.2025.104357_bib0031) 2018; 310
10.1016/j.rineng.2025.104357_bib0001
Baltas (10.1016/j.rineng.2025.104357_bib0026) 2018
Xiang (10.1016/j.rineng.2025.104357_bib0032) 2019; 138
10.1016/j.rineng.2025.104357_bib0005
Alsuwian (10.1016/j.rineng.2025.104357_bib0014) 2022; 12
10.1016/j.rineng.2025.104357_bib0003
10.1016/j.rineng.2025.104357_bib0047
Lewis (10.1016/j.rineng.2025.104357_bib0034) 2014; 24
10.1016/j.rineng.2025.104357_bib0006
Ullah (10.1016/j.rineng.2025.104357_bib0016) 2024; 137
Zhu (10.1016/j.rineng.2025.104357_bib0011) 2023; 206
Kanungo (10.1016/j.rineng.2025.104357_bib0025) 2002; 24
Amin (10.1016/j.rineng.2025.104357_bib0008) 2019; 7
R (10.1016/j.rineng.2025.104357_bib0002) 2025; 25
10.1016/j.rineng.2025.104357_bib0012
Riaz (10.1016/j.rineng.2025.104357_bib0046) 2021; 14
10.1016/j.rineng.2025.104357_bib0053
Megrini (10.1016/j.rineng.2025.104357_bib0048) 2024; 23
Mishra (10.1016/j.rineng.2025.104357_bib0010) 2025; 25
Martins (10.1016/j.rineng.2025.104357_bib0045) 2007; 54
Sikder (10.1016/j.rineng.2025.104357_bib0055) 2021; 46
Ortega (10.1016/j.rineng.2025.104357_bib0037) 2009; 534
Abualigah (10.1016/j.rineng.2025.104357_bib0042) 2024; 15
Alsuwian (10.1016/j.rineng.2025.104357_bib0021) 2022; 22
Xiao (10.1016/j.rineng.2025.104357_bib0036) 2024; 80
Elminir (10.1016/j.rineng.2025.104357_bib0013) 2024; 24
Jiang (10.1016/j.rineng.2025.104357_bib0029) 2018; 34
Vapnik (10.1016/j.rineng.2025.104357_bib0022) 2000
Amin (10.1016/j.rineng.2025.104357_bib0043) 2022; 17
Yu (10.1016/j.rineng.2025.104357_bib0033) 2019; 108
Amin (10.1016/j.rineng.2025.104357_bib0017) 2019; 52
Seera (10.1016/j.rineng.2025.104357_bib0018) 2014; 41
Tao (10.1016/j.rineng.2025.104357_bib0023) 2016
Ghate (10.1016/j.rineng.2025.104357_bib0044) 2011; 58
References_xml – volume: 25
  start-page: 473
  year: 2019
  end-page: 482
  ident: bib0028
  article-title: Combined deep belief network in deep learning with affinity propagation clustering algorithm for roller bearings fault diagnosis without data label
  publication-title: J. Vib. Control
– volume: 24
  year: 2024
  ident: bib0015
  article-title: AI-driven thermography-based fault diagnosis in single-phase induction motor
  publication-title: Results. Eng.
– volume: 534
  year: 2009
  ident: bib0037
  article-title: Research issues on K-means algorithm: an experimental trial using Matlab
  publication-title: CEUR Workshop Proceedings
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0026
  article-title: A comparative analysis of decision trees, support vector machines and artificial neural networks for on-line transient stability assessment
  publication-title: 2018 International Conference on Smart Energy Systems and Technologies (SEST)
– reference: “(PDF) Isolation Forest.” Accessed: 03, 2021. [Online]. Available:
– reference: “A sparse auto-encoder-based deep neural network approach for induction motor faults classification - ScienceDirect.” Accessed: 24, 2022. [Online]. Available:
– reference: “Fault analysis and predictive maintenance of induction motor using machine learning | IEEE Conference publication | IEEE Xplore.” Accessed: 03, 2021. [Online]. Available:
– volume: 41
  start-page: 4891
  year: 2014
  end-page: 4903
  ident: bib0018
  article-title: Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models
  publication-title: Expert. Syst. Appl.
– volume: 25
  year: 2025
  ident: bib0002
  article-title: Fault classification in rotor-bearing system using advanced signal processing and machine learning techniques
  publication-title: Results. Eng.
– reference: “What is scheduled maintenance? | how is SMCP calculated?” [Online]. Available:
– volume: 108
  start-page: 62
  year: 2019
  end-page: 72
  ident: bib0033
  article-title: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis
  publication-title: Comput. Ind.
– reference: Sivaranjith, “What is maintenance? Types of Maintenance,” Instrumentation and Control Engineering. [Online]. Available:
– year: 2022
  ident: bib0004
  article-title: Design of fault-tolerant control system for distributed energy resources based power network using Phasor measurement Units
  publication-title: Measurement Control
– volume: 12
  start-page: 15
  year: 2022
  ident: bib0014
  article-title: A comparative study of design of active fault-tolerant control system for air–Fuel ratio control of internal combustion engine using particle swarm optimization, genetic algorithm, and nonlinear regression-based observer model
  publication-title: Appl. Sci.
– volume: 54
  start-page: 259
  year: 2007
  end-page: 264
  ident: bib0045
  article-title: Unsupervised neural-network-based algorithm for an on-line diagnosis of three-phase induction motor stator fault
  publication-title: IEEe Trans. Ind. Electron.
– volume: 25
  year: 2025
  ident: bib0010
  article-title: A comprehensive review on deep learning techniques in power system protection: trends, challenges, applications and future directions
  publication-title: Results. Eng.
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib0023
  article-title: Multi-classifiers ensemble with confidence diversity for fault diagnosis in induction motors
  publication-title: 2016 10th International Conference on Sensing Technology (ICST)
– volume: 310
  start-page: 213
  year: 2018
  end-page: 222
  ident: bib0031
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing.
– reference: “An improved data anomaly detection method based on isolation forest | Semantic Scholar.” Accessed: 03, 2021. [Online]. Available:
– reference: “(PDF) Industry 4.0 – A glimpse.” Accessed: Oct. 26, 2021. [Online]. Available:
– volume: 105
  year: 2022
  ident: bib0049
  article-title: A comprehensive review of fault diagnosis and fault-tolerant control techniques for modular multi-level converters
  publication-title: Sci. Prog.
– volume: 143
  start-page: 58
  year: 2019
  end-page: 68
  ident: bib0020
  article-title: A review of Fault Tolerant Control Systems: advancements and applications
  publication-title: Measurement
– volume: 22
  start-page: 10
  year: 2022
  ident: bib0021
  article-title: Advanced fault-tolerant anti-surge control system of centrifugal compressors for sensor and actuator faults
  publication-title: Sensors
– volume: 46
  start-page: 8475
  year: 2021
  end-page: 8491
  ident: bib0055
  article-title: Induction motor bearing fault classification using extreme learning machine based on power features
  publication-title: Arab. J. Sci. Eng.
– volume: 17
  start-page: 2728
  year: 2024
  ident: bib0041
  article-title: Review of fault diagnosis methods for induction machines in railway traction applications
  publication-title: Energies
– reference: “MAFAULDA :: Machinery Fault Database [Online].” Accessed: 17, 2022. [Online]. Available:
– volume: 52
  start-page: 473
  year: 2019
  end-page: 492
  ident: bib0017
  article-title: Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy
  publication-title: Measurement Control
– volume: 34
  start-page: 3513
  year: 2018
  end-page: 3521
  ident: bib0029
  article-title: A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery
  publication-title: IFS
– volume: 9
  start-page: 46022
  year: 2021
  end-page: 46032
  ident: bib0019
  article-title: Design of active fault tolerant control system for air fuel ratio control of internal combustion engines using artificial neural networks
  publication-title: IEEe Access.
– volume: 58
  start-page: 1555
  year: 2011
  end-page: 1563
  ident: bib0044
  article-title: Cascade neural-network-based fault classifier for three-phase induction motor
  publication-title: IEEe Trans. Ind. Electron.
– volume: 168
  year: 2021
  ident: bib0054
  article-title: An automated faults classification method based on binary pattern and neighborhood component analysis using induction motor
  publication-title: Measurement
– volume: 138
  start-page: 162
  year: 2019
  end-page: 174
  ident: bib0032
  article-title: Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO spectrum and stacking auto-encoder
  publication-title: Measurement
– reference: “A systematic literature review of machine learning methods applied to predictive maintenance - ScienceDirect.” Accessed: Oct. 26, 2021. [Online]. Available:
– volume: 17
  start-page: 1947
  year: 2022
  end-page: 1959
  ident: bib0043
  article-title: Unified fault-tolerant control for air-fuel ratio control of internal combustion engines with advanced analytical and hardware redundancies
  publication-title: J. Electr. Eng. Technol.
– volume: 137
  start-page: 2037
  year: 2024
  end-page: 2060
  ident: bib0016
  article-title: A hybrid strategy for reduction in time consumption for cloud datacenter using HMBC algorithm
  publication-title: Wireless Pers. Commun.
– volume: 20
  start-page: 1884
  year: 2020
  ident: bib0024
  article-title: Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers
  publication-title: Sensors
– volume: 24
  year: 2024
  ident: bib0009
  article-title: Induction motor tacholess fault detection in transient speeds using adaptive generalized Vold Kalman filter
  publication-title: Results. Eng.
– reference: G. Staerman, P. Mozharovskyi, and S. Clemencon, “Functional Isolation Forest,” p. 16.
– volume: 24
  year: 2024
  ident: bib0013
  article-title: An efficient deep learning prognostic model for remaining useful life estimation of high speed CNC milling machine cutters
  publication-title: Results. Eng.
– year: 2020
  ident: bib0056
  article-title: On the usefulness of pre-processing methods in rotating machines faults classification using artificial neural network
  publication-title: J. Appl. Comput. Mech.
– volume: 15
  start-page: 389
  year: 2024
  end-page: 417
  ident: bib0042
  article-title: A novel generalized normal distribution arithmetic optimization algorithm for global optimization and data clustering problems
  publication-title: J. Ambient Intell. Human Comput.
– volume: 122
  start-page: 19
  year: 2019
  end-page: 41
  ident: bib0030
  article-title: A novel multi-segment feature fusion based fault classification approach for rotating machinery
  publication-title: Mech. Syst. Signal. Process.
– volume: 80
  start-page: 5136
  year: 2024
  end-page: 5162
  ident: bib0036
  article-title: Load balancing strategy for SDN multi-controller clusters based on load prediction
  publication-title: J. Supercomput.
– volume: 206
  year: 2023
  ident: bib0011
  article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
  publication-title: Measurement
– start-page: 123
  year: 2000
  end-page: 180
  ident: bib0022
  article-title: Methods of pattern recognition
  publication-title: The Nature of Statistical Learning Theory
– volume: 41
  year: 2024
  ident: bib0027
  article-title: Improved Black Widow Optimization: an investigation into enhancing cloud task scheduling efficiency
  publication-title: Sustainable Comput.
– volume: 24
  start-page: 881
  year: 2002
  end-page: 892
  ident: bib0025
  article-title: An efficient k-means clustering algorithm: analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– volume: 23
  year: 2024
  ident: bib0048
  article-title: Processor in the loop implementation of artificial neural network controller for BLDC motor speed control
  publication-title: Results. Eng.
– reference: “Unsupervised machine Learning | SpringerLink.” Accessed: 03, 2021. [Online]. Available:
– volume: 14
  start-page: 312
  year: 2021
  end-page: 324
  ident: bib0046
  article-title: A review of sliding mode control with the perspective of utilization in fault tolerant control
  publication-title: EEENG
– reference: .
– volume: 24
  start-page: 842
  year: 2014
  end-page: 844
  ident: bib0034
  article-title: Direct machining of low-loss THz waveguide components with an RF choke
  publication-title: IEEE Microw. Wireless Compon. Lett.
– reference: A.P. Cédola, R. Rossini, I. Bosi, and D. Conzon, “Feature engineering and machine learning modelling for predictive maintenance based on production and stop events,” 2021. [Online]. Available:
– volume: 63
  start-page: 208
  year: 2014
  end-page: 222
  ident: bib0007
  article-title: An additive wiener process-based prognostic model for hybrid deteriorating systems
  publication-title: IEEE Trans. Rel.
– reference: “Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy - Arslan Ahmed Amin, Khalid Mahmood-ul-Hasan, 2019.” Accessed: 22, 2022. [Online]. Available:
– volume: 7
  start-page: 17634
  year: 2019
  end-page: 17643
  ident: bib0008
  article-title: Advanced fault tolerant air-fuel ratio control of internal combustion gas engine for sensor and actuator faults
  publication-title: IEEe Access.
– reference: “Robust active fault-tolerant control for internal combustion gas engine for air–fuel ratio control with statistical regression-based observer model - Arslan Ahmed Amin, Khalid Mahmood-ul-Hasan, 2019.” Accessed: 22, 2022. [Online]. Available:
– volume: 310
  start-page: 213
  year: 2018
  ident: 10.1016/j.rineng.2025.104357_bib0031
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2018.05.024
– volume: 58
  start-page: 1555
  issue: 5
  year: 2011
  ident: 10.1016/j.rineng.2025.104357_bib0044
  article-title: Cascade neural-network-based fault classifier for three-phase induction motor
  publication-title: IEEe Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2053337
– ident: 10.1016/j.rineng.2025.104357_bib0051
– ident: 10.1016/j.rineng.2025.104357_bib0003
– volume: 25
  year: 2025
  ident: 10.1016/j.rineng.2025.104357_bib0002
  article-title: Fault classification in rotor-bearing system using advanced signal processing and machine learning techniques
  publication-title: Results. Eng.
  doi: 10.1016/j.rineng.2024.103892
– volume: 23
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0048
  article-title: Processor in the loop implementation of artificial neural network controller for BLDC motor speed control
  publication-title: Results. Eng.
  doi: 10.1016/j.rineng.2024.102422
– volume: 52
  start-page: 473
  issue: 5–6
  year: 2019
  ident: 10.1016/j.rineng.2025.104357_bib0017
  article-title: Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using Kalman filters with advanced redundancy
  publication-title: Measurement Control
  doi: 10.1177/0020294019842593
– volume: 34
  start-page: 3513
  issue: 6
  year: 2018
  ident: 10.1016/j.rineng.2025.104357_bib0029
  article-title: A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery
  publication-title: IFS
  doi: 10.3233/JIFS-169530
– volume: 54
  start-page: 259
  issue: 1
  year: 2007
  ident: 10.1016/j.rineng.2025.104357_bib0045
  article-title: Unsupervised neural-network-based algorithm for an on-line diagnosis of three-phase induction motor stator fault
  publication-title: IEEe Trans. Ind. Electron.
  doi: 10.1109/TIE.2006.888790
– volume: 17
  start-page: 1947
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2025.104357_bib0043
  article-title: Unified fault-tolerant control for air-fuel ratio control of internal combustion engines with advanced analytical and hardware redundancies
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-021-00965-5
– ident: 10.1016/j.rineng.2025.104357_bib0035
– volume: 534
  year: 2009
  ident: 10.1016/j.rineng.2025.104357_bib0037
  article-title: Research issues on K-means algorithm: an experimental trial using Matlab
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  ident: 10.1016/j.rineng.2025.104357_bib0025
  article-title: An efficient k-means clustering algorithm: analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2002.1017616
– volume: 9
  start-page: 46022
  year: 2021
  ident: 10.1016/j.rineng.2025.104357_bib0019
  article-title: Design of active fault tolerant control system for air fuel ratio control of internal combustion engines using artificial neural networks
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3068164
– volume: 108
  start-page: 62
  year: 2019
  ident: 10.1016/j.rineng.2025.104357_bib0033
  article-title: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.02.015
– ident: 10.1016/j.rineng.2025.104357_bib0052
– ident: 10.1016/j.rineng.2025.104357_bib0039
– volume: 80
  start-page: 5136
  issue: 4
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0036
  article-title: Load balancing strategy for SDN multi-controller clusters based on load prediction
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-023-05658-6
– volume: 7
  start-page: 17634
  year: 2019
  ident: 10.1016/j.rineng.2025.104357_bib0008
  article-title: Advanced fault tolerant air-fuel ratio control of internal combustion gas engine for sensor and actuator faults
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2019.2894796
– volume: 24
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0015
  article-title: AI-driven thermography-based fault diagnosis in single-phase induction motor
  publication-title: Results. Eng.
  doi: 10.1016/j.rineng.2024.103493
– year: 2022
  ident: 10.1016/j.rineng.2025.104357_bib0004
  article-title: Design of fault-tolerant control system for distributed energy resources based power network using Phasor measurement Units
  publication-title: Measurement Control
– volume: 41
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0027
  article-title: Improved Black Widow Optimization: an investigation into enhancing cloud task scheduling efficiency
  publication-title: Sustainable Comput.
– volume: 12
  start-page: 15
  issue: 15
  year: 2022
  ident: 10.1016/j.rineng.2025.104357_bib0014
  article-title: A comparative study of design of active fault-tolerant control system for air–Fuel ratio control of internal combustion engine using particle swarm optimization, genetic algorithm, and nonlinear regression-based observer model
  publication-title: Appl. Sci.
  doi: 10.3390/app12157841
– start-page: 1
  year: 2016
  ident: 10.1016/j.rineng.2025.104357_bib0023
  article-title: Multi-classifiers ensemble with confidence diversity for fault diagnosis in induction motors
– volume: 137
  start-page: 2037
  issue: 4
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0016
  article-title: A hybrid strategy for reduction in time consumption for cloud datacenter using HMBC algorithm
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-024-11395-7
– volume: 168
  year: 2021
  ident: 10.1016/j.rineng.2025.104357_bib0054
  article-title: An automated faults classification method based on binary pattern and neighborhood component analysis using induction motor
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108323
– volume: 20
  start-page: 1884
  issue: 7
  year: 2020
  ident: 10.1016/j.rineng.2025.104357_bib0024
  article-title: Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers
  publication-title: Sensors
  doi: 10.3390/s20071884
– start-page: 1
  year: 2018
  ident: 10.1016/j.rineng.2025.104357_bib0026
  article-title: A comparative analysis of decision trees, support vector machines and artificial neural networks for on-line transient stability assessment
– ident: 10.1016/j.rineng.2025.104357_bib0005
– ident: 10.1016/j.rineng.2025.104357_bib0053
– ident: 10.1016/j.rineng.2025.104357_bib0038
– ident: 10.1016/j.rineng.2025.104357_bib0001
– volume: 24
  start-page: 842
  issue: 12
  year: 2014
  ident: 10.1016/j.rineng.2025.104357_bib0034
  article-title: Direct machining of low-loss THz waveguide components with an RF choke
  publication-title: IEEE Microw. Wireless Compon. Lett.
  doi: 10.1109/LMWC.2014.2303161
– volume: 105
  issue: 3
  year: 2022
  ident: 10.1016/j.rineng.2025.104357_bib0049
  article-title: A comprehensive review of fault diagnosis and fault-tolerant control techniques for modular multi-level converters
  publication-title: Sci. Prog.
  doi: 10.1177/00368504221118965
– volume: 46
  start-page: 8475
  issue: 9
  year: 2021
  ident: 10.1016/j.rineng.2025.104357_bib0055
  article-title: Induction motor bearing fault classification using extreme learning machine based on power features
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05527-5
– volume: 138
  start-page: 162
  year: 2019
  ident: 10.1016/j.rineng.2025.104357_bib0032
  article-title: Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO spectrum and stacking auto-encoder
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.063
– ident: 10.1016/j.rineng.2025.104357_bib0040
– volume: 206
  year: 2023
  ident: 10.1016/j.rineng.2025.104357_bib0011
  article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112346
– volume: 24
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0013
  article-title: An efficient deep learning prognostic model for remaining useful life estimation of high speed CNC milling machine cutters
  publication-title: Results. Eng.
  doi: 10.1016/j.rineng.2024.103420
– start-page: 123
  year: 2000
  ident: 10.1016/j.rineng.2025.104357_bib0022
  article-title: Methods of pattern recognition
– volume: 63
  start-page: 208
  issue: 1
  year: 2014
  ident: 10.1016/j.rineng.2025.104357_bib0007
  article-title: An additive wiener process-based prognostic model for hybrid deteriorating systems
  publication-title: IEEE Trans. Rel.
  doi: 10.1109/TR.2014.2299155
– ident: 10.1016/j.rineng.2025.104357_bib0012
– ident: 10.1016/j.rineng.2025.104357_bib0006
– volume: 25
  start-page: 473
  issue: 2
  year: 2019
  ident: 10.1016/j.rineng.2025.104357_bib0028
  article-title: Combined deep belief network in deep learning with affinity propagation clustering algorithm for roller bearings fault diagnosis without data label
  publication-title: J. Vib. Control
  doi: 10.1177/1077546318783886
– volume: 17
  start-page: 2728
  issue: 11
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0041
  article-title: Review of fault diagnosis methods for induction machines in railway traction applications
  publication-title: Energies
  doi: 10.3390/en17112728
– volume: 143
  start-page: 58
  year: 2019
  ident: 10.1016/j.rineng.2025.104357_bib0020
  article-title: A review of Fault Tolerant Control Systems: advancements and applications
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.083
– volume: 22
  start-page: 10
  issue: 10
  year: 2022
  ident: 10.1016/j.rineng.2025.104357_bib0021
  article-title: Advanced fault-tolerant anti-surge control system of centrifugal compressors for sensor and actuator faults
  publication-title: Sensors
  doi: 10.3390/s22103864
– volume: 15
  start-page: 389
  issue: 1
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0042
  article-title: A novel generalized normal distribution arithmetic optimization algorithm for global optimization and data clustering problems
  publication-title: J. Ambient Intell. Human Comput.
  doi: 10.1007/s12652-022-03898-7
– volume: 25
  year: 2025
  ident: 10.1016/j.rineng.2025.104357_bib0010
  article-title: A comprehensive review on deep learning techniques in power system protection: trends, challenges, applications and future directions
  publication-title: Results. Eng.
  doi: 10.1016/j.rineng.2024.103884
– issue: Online First
  year: 2020
  ident: 10.1016/j.rineng.2025.104357_bib0056
  article-title: On the usefulness of pre-processing methods in rotating machines faults classification using artificial neural network
  publication-title: J. Appl. Comput. Mech.
– ident: 10.1016/j.rineng.2025.104357_bib0047
– volume: 122
  start-page: 19
  year: 2019
  ident: 10.1016/j.rineng.2025.104357_bib0030
  article-title: A novel multi-segment feature fusion based fault classification approach for rotating machinery
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2018.12.009
– ident: 10.1016/j.rineng.2025.104357_bib0050
– volume: 14
  start-page: 312
  issue: 3
  year: 2021
  ident: 10.1016/j.rineng.2025.104357_bib0046
  article-title: A review of sliding mode control with the perspective of utilization in fault tolerant control
  publication-title: EEENG
  doi: 10.2174/23520973MTExdNjcu3
– volume: 24
  year: 2024
  ident: 10.1016/j.rineng.2025.104357_bib0009
  article-title: Induction motor tacholess fault detection in transient speeds using adaptive generalized Vold Kalman filter
  publication-title: Results. Eng.
  doi: 10.1016/j.rineng.2024.102961
– volume: 41
  start-page: 4891
  issue: 10
  year: 2014
  ident: 10.1016/j.rineng.2025.104357_bib0018
  article-title: Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2014.02.028
SSID ssj0002810137
Score 2.3237014
Snippet •A deep neural network-based self-designed model predicts the health status of the motor.•Multiple sensors deployed on the motor provide continuous data for...
Predictive and preventive methodologies are increasingly playing a role in improving the safety and reliability of the system. Early machine fault detection...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 104357
SubjectTerms Degradation modeling
Fault classification
Health index prediction
Machine Health Estimation
Machine Learning
Title Health index degradation prediction of induction motor using deep neural network algorithm
URI https://dx.doi.org/10.1016/j.rineng.2025.104357
https://doaj.org/article/023975e758894a17b2d95a37aa5862f9
Volume 25
WOSCitedRecordID wos001432900900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5YI5LYie0RUCsGqBgAVSyRHTulVUmqEBj57ZztpMoEC0tkOY4dnU-57-K77xC6DFNuolyDp6oSHQC-pYGItYCWjgBthAVxB-0v92wy4dOpeOyV-rIxYZ4e2AvuyiZfssQArOWCyogpmCmRhEmZABgvXOpeyETPmVq4X0aR5dLrcuVcQJfNpitn4BLGiT3ZJNYi9WyRo-zvmaSemRnvop0WH-Jr_157aMOU-2i7xxp4gF596hB2RIdYW7YHXxgJr2p77OKaVWHve2pYDNtR1diGuM9gvFlhy2IJq5Q-BhzL5ayq583b-yF6Ho-ebu-CtkRCkBPKm4BGoeCapSzkVMlIUFHEObhAKVdcGE0LbULDuSSG6jxPY15o8PeEFGCo80RIcoQGZVWaY4QZdEcqKuATSMHpipUhgqQqiYXSkqRmiEgnrCxv-cNtGYtl1gWKLTIv4syKOPMiHqJg_dTK82f8Mf7G7sN6rGW_dh2gE1mrE9lfOjFErNvFrAUSHiDAVPNflz_5j-VP0Zad0keqnaFBU3-ac7SZfzXzj_rCKSpcH75HP2xs7KA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Health+index+degradation+prediction+of+induction+motor+using+deep+neural+network+algorithm&rft.jtitle=Results+in+engineering&rft.au=Amin%2C+Arslan+Ahmed&rft.au=Alsuwian%2C+Turki&rft.au=Shahid%2C+Aiman&rft.au=Waseem%2C+Saba&rft.date=2025-03-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=25&rft.spage=104357&rft_id=info:doi/10.1016%2Fj.rineng.2025.104357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rineng_2025_104357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon