Automatic motor and visuospatial cognition screening with ensemble learning: A computerised clock drawing test approach

We propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the detection of neural impairments in patients with early-stage central nervous system disorders (CNSD). The research findings are based on the data samples t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers in biology and medicine Ročník 197; číslo Pt B; s. 111107
Hlavní autori: Lauraitis, Andrius, Ostreika, Armantas, Palubeckis, Gintaras, Motiejunas, Liudas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 01.10.2025
Predmet:
ISSN:0010-4825, 1879-0534, 1879-0534
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the detection of neural impairments in patients with early-stage central nervous system disorders (CNSD). The research findings are based on the data samples that have been collected using the clock construction task of the Neural Impairment Test Suite (NITS) mobile application from 15 test subjects (including Huntington Disease (HD), Parkinson Disease (PD), cerebral palsy (CP), post-stroke, early dementia and control groups) during a pilot study in Lithuania. This work examines finger motion tracking (FMT) on a mobile device and the detection of potential inability of CNSD patients to accurately copy benchmark clock drawings without a pre-drawn clock contour circle, focusing on multimodal (datasets of FMT samples and CDT images) neural impairment screening. Considering the small size of the originally gathered imbalanced datasets, as pre-processing routines, Synthetic Minority Oversampling Technique (SMOTE) was used for the FMT augmentation, and the geometric image transformations (rotation, flip, zoom) were applied for the augmentation of CDT drawings. The following methods for feature extraction are used regarding the FMT and CDT image datasets accordingly: 1) average finger speed while moving on the surface, finger velocity, magnitude of the rate at which finger tap changes its position, standard deviation (SD) of velocity, rate at which finger velocity changes, maximum finger acceleration, finger position change count, average finger screen pressure and touch area ratio (in range [0; 1]), total time duration (in seconds); 2) Edge Histogram Filter (EHD), Pyramid Histogram of Oriented Gradients (PHOG), Gabor wavelet and their fusion. Two experiments (E1, E2) were conducted to solve healthy vs. impaired binary classification problem. The nature of E1 design that is tracking motor impairments in CNSD and detecting cognitive impairments is targeted in E2. All classifiers (K-NN, Naïve Bayes, ANN, SMO, SVM and their ensembles) were tested with a 5-fold stratified cross-validation procedure, and the performances of classification models were evaluated by accuracy, balanced accuracy (BA), F1 score, sensitivity, specificity, kappa, receiver-operating characteristic area under the curve (AUC-ROC), mean absolute error (MAE), root mean squared error (RMSE) metrics. The Principal Component Analysis (PCA) method was used for the dimensionality reduction in high-dimensional image feature vectors. The overfitting of models was addressed by comparing the learning curves (training and validation sets). Results: 1) in E1, the highest 99.20 % accuracy precision (boosted SMO algorithm with PuK kernel) was achieved on SMOTE synthesised FMT train set and 99.40 % accuracy on FMT test set; 2) in E2 (augmented dataset of CDT images), the highest 97.96 % accuracy (94.90 % on test set) was achieved with ensemble of features (EHD, PHOG, Gabor) and KNN + AdaBoost (Naïve Bayes) + AdaBoost (SVM) majority vote classifier ensemble. •Novel methodology for clock drawing test screening without standard scoring.•Incorporation of randomness factor for dynamic clock time display instructions.•Mobile app as a self-assessment tool for the performance of clock drawing test.•Multimodal features for evaluation of an individual's motor-cognitive status.•Boosted classification performance up to 99 % accuracy with ensemble learning models.
AbstractList AbstractWe propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the detection of neural impairments in patients with early-stage central nervous system disorders (CNSD). The research findings are based on the data samples that have been collected using the clock construction task of the Neural Impairment Test Suite (NITS) mobile application from 15 test subjects (including Huntington Disease (HD), Parkinson Disease (PD), cerebral palsy (CP), post-stroke, early dementia and control groups) during a pilot study in Lithuania. This work examines finger motion tracking (FMT) on a mobile device and the detection of potential inability of CNSD patients to accurately copy benchmark clock drawings without a pre-drawn clock contour circle, focusing on multimodal (datasets of FMT samples and CDT images) neural impairment screening. Considering the small size of the originally gathered imbalanced datasets, as pre-processing routines, Synthetic Minority Oversampling Technique (SMOTE) was used for the FMT augmentation, and the geometric image transformations (rotation, flip, zoom) were applied for the augmentation of CDT drawings. The following methods for feature extraction are used regarding the FMT and CDT image datasets accordingly: 1) average finger speed while moving on the surface, finger velocity, magnitude of the rate at which finger tap changes its position, standard deviation (SD) of velocity, rate at which finger velocity changes, maximum finger acceleration, finger position change count, average finger screen pressure and touch area ratio (in range [0; 1]), total time duration (in seconds); 2) Edge Histogram Filter (EHD), Pyramid Histogram of Oriented Gradients (PHOG), Gabor wavelet and their fusion. Two experiments (E1, E2) were conducted to solve healthy vs. impaired binary classification problem. The nature of E1 design that is tracking motor impairments in CNSD and detecting cognitive impairments is targeted in E2. All classifiers (K-NN, Naïve Bayes, ANN, SMO, SVM and their ensembles) were tested with a 5-fold stratified cross-validation procedure, and the performances of classification models were evaluated by accuracy, balanced accuracy (BA), F1 score, sensitivity, specificity, kappa, receiver-operating characteristic area under the curve (AUC-ROC), mean absolute error (MAE), root mean squared error (RMSE) metrics. The Principal Component Analysis (PCA) method was used for the dimensionality reduction in high-dimensional image feature vectors. The overfitting of models was addressed by comparing the learning curves (training and validation sets). Results: 1) in E1, the highest 99.20 % accuracy precision (boosted SMO algorithm with PuK kernel) was achieved on SMOTE synthesised FMT train set and 99.40 % accuracy on FMT test set; 2) in E2 (augmented dataset of CDT images), the highest 97.96 % accuracy (94.90 % on test set) was achieved with ensemble of features (EHD, PHOG, Gabor) and KNN + AdaBoost (Naïve Bayes) + AdaBoost (SVM) majority vote classifier ensemble.
We propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the detection of neural impairments in patients with early-stage central nervous system disorders (CNSD). The research findings are based on the data samples that have been collected using the clock construction task of the Neural Impairment Test Suite (NITS) mobile application from 15 test subjects (including Huntington Disease (HD), Parkinson Disease (PD), cerebral palsy (CP), post-stroke, early dementia and control groups) during a pilot study in Lithuania. This work examines finger motion tracking (FMT) on a mobile device and the detection of potential inability of CNSD patients to accurately copy benchmark clock drawings without a pre-drawn clock contour circle, focusing on multimodal (datasets of FMT samples and CDT images) neural impairment screening. Considering the small size of the originally gathered imbalanced datasets, as pre-processing routines, Synthetic Minority Oversampling Technique (SMOTE) was used for the FMT augmentation, and the geometric image transformations (rotation, flip, zoom) were applied for the augmentation of CDT drawings. The following methods for feature extraction are used regarding the FMT and CDT image datasets accordingly: 1) average finger speed while moving on the surface, finger velocity, magnitude of the rate at which finger tap changes its position, standard deviation (SD) of velocity, rate at which finger velocity changes, maximum finger acceleration, finger position change count, average finger screen pressure and touch area ratio (in range [0; 1]), total time duration (in seconds); 2) Edge Histogram Filter (EHD), Pyramid Histogram of Oriented Gradients (PHOG), Gabor wavelet and their fusion. Two experiments (E1, E2) were conducted to solve healthy vs. impaired binary classification problem. The nature of E1 design that is tracking motor impairments in CNSD and detecting cognitive impairments is targeted in E2. All classifiers (K-NN, Naïve Bayes, ANN, SMO, SVM and their ensembles) were tested with a 5-fold stratified cross-validation procedure, and the performances of classification models were evaluated by accuracy, balanced accuracy (BA), F1 score, sensitivity, specificity, kappa, receiver-operating characteristic area under the curve (AUC-ROC), mean absolute error (MAE), root mean squared error (RMSE) metrics. The Principal Component Analysis (PCA) method was used for the dimensionality reduction in high-dimensional image feature vectors. The overfitting of models was addressed by comparing the learning curves (training and validation sets). Results: 1) in E1, the highest 99.20 % accuracy precision (boosted SMO algorithm with PuK kernel) was achieved on SMOTE synthesised FMT train set and 99.40 % accuracy on FMT test set; 2) in E2 (augmented dataset of CDT images), the highest 97.96 % accuracy (94.90 % on test set) was achieved with ensemble of features (EHD, PHOG, Gabor) and KNN + AdaBoost (Naïve Bayes) + AdaBoost (SVM) majority vote classifier ensemble. •Novel methodology for clock drawing test screening without standard scoring.•Incorporation of randomness factor for dynamic clock time display instructions.•Mobile app as a self-assessment tool for the performance of clock drawing test.•Multimodal features for evaluation of an individual's motor-cognitive status.•Boosted classification performance up to 99 % accuracy with ensemble learning models.
We propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the detection of neural impairments in patients with early-stage central nervous system disorders (CNSD). The research findings are based on the data samples that have been collected using the clock construction task of the Neural Impairment Test Suite (NITS) mobile application from 15 test subjects (including Huntington Disease (HD), Parkinson Disease (PD), cerebral palsy (CP), post-stroke, early dementia and control groups) during a pilot study in Lithuania. This work examines finger motion tracking (FMT) on a mobile device and the detection of potential inability of CNSD patients to accurately copy benchmark clock drawings without a pre-drawn clock contour circle, focusing on multimodal (datasets of FMT samples and CDT images) neural impairment screening. Considering the small size of the originally gathered imbalanced datasets, as pre-processing routines, Synthetic Minority Oversampling Technique (SMOTE) was used for the FMT augmentation, and the geometric image transformations (rotation, flip, zoom) were applied for the augmentation of CDT drawings. The following methods for feature extraction are used regarding the FMT and CDT image datasets accordingly: 1) average finger speed while moving on the surface, finger velocity, magnitude of the rate at which finger tap changes its position, standard deviation (SD) of velocity, rate at which finger velocity changes, maximum finger acceleration, finger position change count, average finger screen pressure and touch area ratio (in range [0; 1]), total time duration (in seconds); 2) Edge Histogram Filter (EHD), Pyramid Histogram of Oriented Gradients (PHOG), Gabor wavelet and their fusion. Two experiments (E1, E2) were conducted to solve healthy vs. impaired binary classification problem. The nature of E1 design that is tracking motor impairments in CNSD and detecting cognitive impairments is targeted in E2. All classifiers (K-NN, Naïve Bayes, ANN, SMO, SVM and their ensembles) were tested with a 5-fold stratified cross-validation procedure, and the performances of classification models were evaluated by accuracy, balanced accuracy (BA), F1 score, sensitivity, specificity, kappa, receiver-operating characteristic area under the curve (AUC-ROC), mean absolute error (MAE), root mean squared error (RMSE) metrics. The Principal Component Analysis (PCA) method was used for the dimensionality reduction in high-dimensional image feature vectors. The overfitting of models was addressed by comparing the learning curves (training and validation sets). Results: 1) in E1, the highest 99.20 % accuracy precision (boosted SMO algorithm with PuK kernel) was achieved on SMOTE synthesised FMT train set and 99.40 % accuracy on FMT test set; 2) in E2 (augmented dataset of CDT images), the highest 97.96 % accuracy (94.90 % on test set) was achieved with ensemble of features (EHD, PHOG, Gabor) and KNN + AdaBoost (Naïve Bayes) + AdaBoost (SVM) majority vote classifier ensemble.
We propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the detection of neural impairments in patients with early-stage central nervous system disorders (CNSD). The research findings are based on the data samples that have been collected using the clock construction task of the Neural Impairment Test Suite (NITS) mobile application from 15 test subjects (including Huntington Disease (HD), Parkinson Disease (PD), cerebral palsy (CP), post-stroke, early dementia and control groups) during a pilot study in Lithuania. This work examines finger motion tracking (FMT) on a mobile device and the detection of potential inability of CNSD patients to accurately copy benchmark clock drawings without a pre-drawn clock contour circle, focusing on multimodal (datasets of FMT samples and CDT images) neural impairment screening. Considering the small size of the originally gathered imbalanced datasets, as pre-processing routines, Synthetic Minority Oversampling Technique (SMOTE) was used for the FMT augmentation, and the geometric image transformations (rotation, flip, zoom) were applied for the augmentation of CDT drawings. The following methods for feature extraction are used regarding the FMT and CDT image datasets accordingly: 1) average finger speed while moving on the surface, finger velocity, magnitude of the rate at which finger tap changes its position, standard deviation (SD) of velocity, rate at which finger velocity changes, maximum finger acceleration, finger position change count, average finger screen pressure and touch area ratio (in range [0; 1]), total time duration (in seconds); 2) Edge Histogram Filter (EHD), Pyramid Histogram of Oriented Gradients (PHOG), Gabor wavelet and their fusion. Two experiments (E1, E2) were conducted to solve healthy vs. impaired binary classification problem. The nature of E1 design that is tracking motor impairments in CNSD and detecting cognitive impairments is targeted in E2. All classifiers (K-NN, Naïve Bayes, ANN, SMO, SVM and their ensembles) were tested with a 5-fold stratified cross-validation procedure, and the performances of classification models were evaluated by accuracy, balanced accuracy (BA), F1 score, sensitivity, specificity, kappa, receiver-operating characteristic area under the curve (AUC-ROC), mean absolute error (MAE), root mean squared error (RMSE) metrics. The Principal Component Analysis (PCA) method was used for the dimensionality reduction in high-dimensional image feature vectors. The overfitting of models was addressed by comparing the learning curves (training and validation sets). Results: 1) in E1, the highest 99.20 % accuracy precision (boosted SMO algorithm with PuK kernel) was achieved on SMOTE synthesised FMT train set and 99.40 % accuracy on FMT test set; 2) in E2 (augmented dataset of CDT images), the highest 97.96 % accuracy (94.90 % on test set) was achieved with ensemble of features (EHD, PHOG, Gabor) and KNN + AdaBoost (Naïve Bayes) + AdaBoost (SVM) majority vote classifier ensemble.We propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the detection of neural impairments in patients with early-stage central nervous system disorders (CNSD). The research findings are based on the data samples that have been collected using the clock construction task of the Neural Impairment Test Suite (NITS) mobile application from 15 test subjects (including Huntington Disease (HD), Parkinson Disease (PD), cerebral palsy (CP), post-stroke, early dementia and control groups) during a pilot study in Lithuania. This work examines finger motion tracking (FMT) on a mobile device and the detection of potential inability of CNSD patients to accurately copy benchmark clock drawings without a pre-drawn clock contour circle, focusing on multimodal (datasets of FMT samples and CDT images) neural impairment screening. Considering the small size of the originally gathered imbalanced datasets, as pre-processing routines, Synthetic Minority Oversampling Technique (SMOTE) was used for the FMT augmentation, and the geometric image transformations (rotation, flip, zoom) were applied for the augmentation of CDT drawings. The following methods for feature extraction are used regarding the FMT and CDT image datasets accordingly: 1) average finger speed while moving on the surface, finger velocity, magnitude of the rate at which finger tap changes its position, standard deviation (SD) of velocity, rate at which finger velocity changes, maximum finger acceleration, finger position change count, average finger screen pressure and touch area ratio (in range [0; 1]), total time duration (in seconds); 2) Edge Histogram Filter (EHD), Pyramid Histogram of Oriented Gradients (PHOG), Gabor wavelet and their fusion. Two experiments (E1, E2) were conducted to solve healthy vs. impaired binary classification problem. The nature of E1 design that is tracking motor impairments in CNSD and detecting cognitive impairments is targeted in E2. All classifiers (K-NN, Naïve Bayes, ANN, SMO, SVM and their ensembles) were tested with a 5-fold stratified cross-validation procedure, and the performances of classification models were evaluated by accuracy, balanced accuracy (BA), F1 score, sensitivity, specificity, kappa, receiver-operating characteristic area under the curve (AUC-ROC), mean absolute error (MAE), root mean squared error (RMSE) metrics. The Principal Component Analysis (PCA) method was used for the dimensionality reduction in high-dimensional image feature vectors. The overfitting of models was addressed by comparing the learning curves (training and validation sets). Results: 1) in E1, the highest 99.20 % accuracy precision (boosted SMO algorithm with PuK kernel) was achieved on SMOTE synthesised FMT train set and 99.40 % accuracy on FMT test set; 2) in E2 (augmented dataset of CDT images), the highest 97.96 % accuracy (94.90 % on test set) was achieved with ensemble of features (EHD, PHOG, Gabor) and KNN + AdaBoost (Naïve Bayes) + AdaBoost (SVM) majority vote classifier ensemble.
ArticleNumber 111107
Author Palubeckis, Gintaras
Motiejunas, Liudas
Lauraitis, Andrius
Ostreika, Armantas
Author_xml – sequence: 1
  givenname: Andrius
  orcidid: 0000-0001-9013-2602
  surname: Lauraitis
  fullname: Lauraitis, Andrius
– sequence: 2
  givenname: Armantas
  orcidid: 0000-0001-5718-3766
  surname: Ostreika
  fullname: Ostreika, Armantas
  email: armantas.ostreika@ktu.lt
– sequence: 3
  givenname: Gintaras
  orcidid: 0000-0002-4991-1505
  surname: Palubeckis
  fullname: Palubeckis, Gintaras
– sequence: 4
  givenname: Liudas
  orcidid: 0000-0002-5048-5275
  surname: Motiejunas
  fullname: Motiejunas, Liudas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40976212$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb6FSSPvsx6M5nMHx_EtagVCj6ozyFz526b7UyyJpku_fbNsFVBEJqXwOWck5vzO2MnzjtijAtYCxD1290a_bTvrZ9oWJdQqrXIB5pnbCXapitAyeqErQAEFFVbqlN2FuMOACqQ8IKdVtA1dSnKFTts5uQnkyzyyScfuHEDv7Nx9nGfp2bk6K-dTdY7HjEQOeuu-cGmG04u0tSPxEcyYRm_4xu-7DUnCjbSwHH0eMuHYA6LKVFM3Oz3wRu8ecmeb80Y6dXjfc5-fv704-KyuPr25evF5qpAWbWpkLIXlWgIZN8MStWq77paNtum72QPEk0DNQKSREUGWzVUgmrZyRZa1bWVkefszTE3P_trzhvoyUakcTSO_By1LJUEKWuALH39KJ373KveBzuZcK9_l5UF7VGAwccYaPtHIkAvXPRO_-WiFy76yCVbPx6tlP96ZynoiJYc0mADYdKDt08Jef9PCI7WWTTjLd1T3Pk5uNylFjqWGvT3Bf9Cv1QgKtXJHPDh_wFP2-EBTuHGsA
Cites_doi 10.3233/JAD-201129
10.1155/1989/470135
10.1016/j.chemolab.2005.09.003
10.1038/s43586-022-00184-w
10.1002/gps.4731
10.1111/j.1532-5415.2005.53221.x
10.1046/j.1532-5415.2003.51465.x
10.1038/s41598-023-44723-1
10.1007/s10994-015-5529-5
10.12740/PP/45368
10.1109/TIP.2003.819861
10.3390/s23042333
10.1590/1980-57642018dn13-010008
10.3233/JAD-170896
10.1002/mds.22748
10.1038/s41598-024-56706-x
10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U
10.1137/0905052
10.4218/etrij.02.0102.0103
10.2197/ipsjtcva.2.39
10.1038/s41598-020-74710-9
10.1109/76.927422
10.3390/s20113236
10.1017/S1355617720000144
10.1080/13854046.2018.1494307
10.1145/1961189.1961199
10.1142/S0129065723500156
10.1046/j.1532-5415.2002.50122.x
10.1016/j.archger.2008.01.010
10.3389/fneur.2022.896403
10.1613/jair.953
10.1097/WAD.0b013e3181b03277
10.1109/ACCESS.2020.2995737
10.1109/TLA.2023.10130841
10.1080/13803395.2020.1793104
10.1109/34.982906
10.1186/s13195-017-0269-3
10.1109/JBHI.2019.2891729
10.1109/ICDAR.1997.620583
10.1016/j.procs.2016.08.166
10.1016/j.parkreldis.2021.08.002
10.1007/s10708-014-9601-7
10.1056/NEJMoa1504327
10.3390/make6020058
10.1016/j.patter.2024.101073
10.1109/TCYB.2018.2856208
10.1109/MSP.2008.930649
10.1093/ageing/afv173
10.1111/j.1532-5415.1993.tb07308.x
10.1093/mnras/stv632
10.1038/s41598-023-34518-9
10.1023/A:1022689900470
10.1155/2018/4581272
10.1213/ANE.0000000000005247
10.1109/JBHI.2017.2762008
10.1159/000203344
10.1109/34.541406
10.1016/j.artmed.2016.12.003
10.1002/gps.4412
10.4304/jcp.4.8.763-770
10.1109/CVPR.2005.177
10.1093/ageing/27.3.399
10.5201/ipol.2015.69
10.1007/978-1-4612-4380-9_6
10.3390/s16010134
10.1155/2023/9919269
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compbiomed.2025.111107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 111107
ExternalDocumentID 40976212
10_1016_j_compbiomed_2025_111107
S0010482525014593
1_s2_0_S0010482525014593
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFHD
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c348t-33b1417e03b7d5565b99637f7b93b03ca706c0ce3c5eac85d41e63938085984a3
ISSN 0010-4825
1879-0534
IngestDate Mon Sep 22 19:31:21 EDT 2025
Sun Oct 05 01:50:26 EDT 2025
Sat Nov 29 06:56:21 EST 2025
Sat Nov 08 18:04:51 EST 2025
Sat Oct 25 09:17:24 EDT 2025
Sat Nov 15 06:41:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Finger movement tracking
Ensemble learning
Clock drawing test (CDT)
Multimodality
Synthetic minority oversampling (SMOTE)
Language English
License Copyright © 2025. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-33b1417e03b7d5565b99637f7b93b03ca706c0ce3c5eac85d41e63938085984a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5718-3766
0000-0001-9013-2602
0000-0002-5048-5275
0000-0002-4991-1505
PMID 40976212
PQID 3253033600
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3253033600
pubmed_primary_40976212
crossref_primary_10_1016_j_compbiomed_2025_111107
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_111107
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525014593
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_111107
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pinto, Peters (bib1) 2009; 27
Aha, Kibler (bib66) 1991; 6
Hu, Hu (bib122) 2005, September
M.G. Kendall, The Advanced Theory of Statistics, fourth ed., vol. 1,Macmillan, 1979.
Binaco, Calzaretto, Epifano, McGuire, Umer, Emrani, Polikar (bib7) 2020; 26
Chen, Stromer, Alabdalrahim, Schwab, Weih, Maier (bib31) 2020; 10
Lazebnik, Schmid, Ponce (bib61) 2006, June; vol. 2
Mungoli (bib117) 2023
Shaikhina, Khovanova (bib112) 2017; 75
Patil, Kale, Bivalkar, Kolhatkar (bib116) 2023; 14
Kim, Lee, Choi, Sohn, Lee (bib4) 2009; 48
Rainio, Teuho, Klén (bib91) 2024; 14
Huang, Liu, Van Der Maaten, Weinberger (bib28) 2017
Feng, Zou, Zhang, Tang, Ding, Wang (bib42) 2020, December
Scharre, Chang, Murden, Lamb, Beversdorf, Kataki, Nagaraja, Bornstein (bib11) jan 2010; 24
Borson, Scanlan, Chen (bib12) 2003; 51
Smartphone app can help diagnose a rare disease. [Online].
Agrell, Dehlin (bib2) 1998; 27
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib34) 2017
Watson, Arfken, Birge (bib5) 1993; 41
Lauraitis, Maskeliūnas, Damaševičius, Polap, Wozniak (bib18) 2019
Niyas, Thiyagarajan (bib120) 2024
Agarwal, Verma, Singh (bib56) 2013, March
Vásquez, Valverde, Aguilar, Gabarain (bib97) 2019; 13
Champod, Gubitz, Phillips, Christian, Reidy, Radu, Eskes (bib110) 2019; 33
Brodaty, Pond, Kemp, Luscombe, Harding, Berman, Huppert (bib13) 2002; 50
Sun, Huang, Varadhan, Agrawal (bib36) 2016; 45
Hutter (bib115) 2021
Zhang (bib50) 2023
Schober, Vetter (bib108) 2021; 132
Harbi, Hicks, Setchi (bib51) 2016; 96
Bosch, Panahi, Ozcelikkale, Dubhashi (bib114) 2023, volume 206, April
Richardson, Trevizani, Greenbaum, Carter, Nielsen, Peters (bib84) 2023
Bunkhumpornpat, Boonchieng, Chouvatut, Lipsky (bib88) 2024; 5
Lee (bib58) 1996; 18
Korzeniecka (bib102) 2024
Üstün, Melssen, Buydens (bib78) 2006; 81
Schejter-Margalit, Kizony, Shirvan, Cedarbaum, Bregman, Thaler, Mirelman (bib8) 2021; 90
Kuncheva (bib92) 2004
A. Mannini, D. Trojaniello, A. Cereatti, A.M. Sabatini, A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and huntington’s disease patients, Sensors 16 (1), vol. 16, issue 1, (2016) , article no.134.
Tan, Tian, Tan (bib86) 2014, October
Hernández-García, König (bib113) 2018
Lauraitis, Maskeliūnas, Damaševičius, Krilavičius (bib21) 2020; 20
Dehzangi, Phon-Amnuaisuk, Dehzangi (bib95) 2010; 26
Wang, Bovik, Sheikh, Simoncelli (bib75) 2004; 13
Xu, Xie, Liao, Hu, Qin, Yang, Luo (bib24) 2023; 2023
Raksasat, Teerapittayanon, Itthipuripat, Praditpornsilpa, Petchlorlian, Chotibut, Chatnuntawech (bib25) 2023; 13
Gonzalez-Huitron, Rodriguez-Mata, Amabilis-Sosa, Baray-Arana, Robledo-Vega, Valencia-Palomo (bib71) 2023; 21
Xu, Zeng, Zeng, Yen (bib70) 2018; 49
Polotskaya, Muñoz-Valencia, Rabasa, Quesada-Rico, Orozco-Beltrán, Barber (bib107) 2024; 6
Dong, Shao, Guo, Wang, Yang, Zhao, Wang (bib9) 2020; 42
Chawla, Bowyer, Hall, Kegelmeyer (bib65) 2002; 16
Bougea, Zikos, Spanou, Efthymiopoulou (bib45) 2021; 13
Ciesielska, Sokołowski, Mazur, Podhorecka, Polak-Szabela, Kędziora-Kornatowska (bib99) 2016; 50
Satizabal, Beiser, Chouraki, Chêne, Dufouil, Seshadri (bib47) 2016; 374
Jiménez-Mesa, Arco, Valentí-Soler, Frades-Payo, Zea-Sevilla, Ortiz, Górriz (bib32) 2023; 33
Dal Pan, Stern, Sano, Mayeux (bib111) 1989; 2
Kuncheva (bib96) 2002; 24
Dieleman, Willett, Dambre (bib67) 2015; 450
Saïdani, Echi (bib57) 2014, August
Griškaitė, Kurtinaitienė, Urbonas, Zybartienė (bib101) 2017
Dietterich (bib94) 2000
Lauraitis, Maskeliūnas, Damaševičius, Krilavičius (bib20) 2020; 8
Bandyopadhyay, Wittmayer, Libon, Tighe, Price, Rashidi (bib39) 2023; 13
Hazan, Frankenburg, Brenkel, Shulman (bib100) 2018; 33
Watanabe, Ito, Yokoi (bib62) 2010; 2
Jian, Liu (bib63) 2009; 4
R.A. Fisher, Statistical Methods for Research Workers, thirteenth ed., pp 66-70,Hafner, 1958.
Kim, Wang, Sahu, Pavlovic (bib41) 2019
Won, Park, Park (bib55) 2002; 24
Lin, Maire, Belongie, Hays, Perona, Ramanan, Zitnick (bib43) 2014
Early Detection of Alzheimer's Disease Using Cognitive Features: A Voting-Based Ensemble Machine Learning Approach..
Szeghalmy, Fazekas (bib83) 2023; 23
(2) Accessed: March, 2024.
Wold, Ruhe, Wold, Dunn, Iii (bib33) 1984; 5
Krizhevsky, Sutskever, Hinton (bib68) 2012; 25
Gopalsamy, Radha (bib119) 2021, November; vol. 2
Sikora (bib59) 2001; 11
Simonyan, Zisserman (bib26) 2014
Davies (bib69) 2004
Chang, Lin (bib82) 2011; 2
Chude-Olisah, Sulong, Chude-Okonkwo, Hashim (bib89) 2014; 2014
Videnovic, Bernard, Fan, Jaglin, Leurgans, Shannon (bib98) 2010; 25
Zham, Arjunan, Raghav, Kumar (bib53) sep 2018; 22
Terwindt, Hubers, Giltay, van der Mast, van Duijn (bib6) 2016; 31
Kingma, Welling (bib40) 2013
Berg, Durant, Léger, Cummings, Nasreddine, Miller (bib15) 2018; 62
Scharre (bib16) 2017; 9
Ho (bib93) 2002
Ioffe (bib72) 2010, December
Greenacre, Groenen, Hastie, d'Enza, Markos, Tuzhilina (bib87) 2022; 2
Souillard-Mandar, Davis, Rudin, Au, Libon, Swenson, Penney (bib23) 2016; 102
Sakho, Scornet, Malherbe (bib103) 2024
Freund, Schapire (bib81) 1996, July; 96
Brown (bib29) 2009, April
Handzlik, Richmond, Skiena, Carr, Clouston, Luft (bib38) 2023; 15
Oyallon, Rabin (bib109) 2015; 5
Park, Jeon, Won (bib54) 2000, November
Alimoglu, Alpaydin (bib52) 1997, August; 2
Lauraitis, Maskeliūnas, Damaševičius (bib19) 2018; 2018
Black (bib73) 2006; vol. 18
Kitchin, Lauriault (bib64) 2015; 80
Hsu, Lachenbruch (bib90) 2014
Krislock, Wolkowicz (bib74) 2012
Wang, Bovik (bib76) 2009; 26
Platt (bib77) 1998
Dalal, Triggs (bib60) 2005, June; 1
John (bib79) 1995
Girshick, Donahue, Darrell, Malik (bib44) 2014
Sandler, Howard, Zhu, Zhmoginov, Chen (bib48) 2018
Chen, Hu, Cheng, Chen (bib35) 2024, January
Davoudi, Dion, Amini, Tighe, Price, Libon, Rashidi (bib30) 2021; 82
Amini, Zhang, Hao, Gupta, Song, Karjadi, Paschalidis (bib46) 2021; 2021–03
Shulman (bib3) 2000; 15
Hempstalk, Frank, Witten (bib106) 2008, September
Redmon, Divvala, Girshick, Farhadi (bib37) 2016
Sato, Niimi, Iwata, Iwatsubo (bib49) 2022; 13
Moghadassi, Parvizian, Hosseini (bib80) 2009; 3
Seeher, Brodaty (bib14) 2017
Nasreddine (bib10) 2005; 53
He, Zhang, Ren, Sun (bib27) 2016
Bosch, Zisserman, Munoz (bib85) 2007, July
bib17
(1).
Vásquez (10.1016/j.compbiomed.2025.111107_bib97) 2019; 13
Aha (10.1016/j.compbiomed.2025.111107_bib66) 1991; 6
Redmon (10.1016/j.compbiomed.2025.111107_bib37) 2016
Feng (10.1016/j.compbiomed.2025.111107_bib42) 2020
Schober (10.1016/j.compbiomed.2025.111107_bib108) 2021; 132
Lauraitis (10.1016/j.compbiomed.2025.111107_bib21) 2020; 20
Bosch (10.1016/j.compbiomed.2025.111107_bib85) 2007
Shaikhina (10.1016/j.compbiomed.2025.111107_bib112) 2017; 75
Niyas (10.1016/j.compbiomed.2025.111107_bib120) 2024
Moghadassi (10.1016/j.compbiomed.2025.111107_bib80) 2009; 3
Chude-Olisah (10.1016/j.compbiomed.2025.111107_bib89) 2014; 2014
Richardson (10.1016/j.compbiomed.2025.111107_bib84) 2023
Agrell (10.1016/j.compbiomed.2025.111107_bib2) 1998; 27
Dehzangi (10.1016/j.compbiomed.2025.111107_bib95) 2010; 26
Kuncheva (10.1016/j.compbiomed.2025.111107_bib96) 2002; 24
Sikora (10.1016/j.compbiomed.2025.111107_bib59) 2001; 11
Zham (10.1016/j.compbiomed.2025.111107_bib53) 2018; 22
Terwindt (10.1016/j.compbiomed.2025.111107_bib6) 2016; 31
Bougea (10.1016/j.compbiomed.2025.111107_bib45) 2021; 13
Ho (10.1016/j.compbiomed.2025.111107_bib93) 2002
Dietterich (10.1016/j.compbiomed.2025.111107_bib94) 2000
Chen (10.1016/j.compbiomed.2025.111107_bib35) 2024
Hutter (10.1016/j.compbiomed.2025.111107_bib115) 2021
Harbi (10.1016/j.compbiomed.2025.111107_bib51) 2016; 96
Dal Pan (10.1016/j.compbiomed.2025.111107_bib111) 1989; 2
Platt (10.1016/j.compbiomed.2025.111107_bib77) 1998
Zhang (10.1016/j.compbiomed.2025.111107_bib50) 2023
Won (10.1016/j.compbiomed.2025.111107_bib55) 2002; 24
Saïdani (10.1016/j.compbiomed.2025.111107_bib57) 2014
Üstün (10.1016/j.compbiomed.2025.111107_bib78) 2006; 81
Shulman (10.1016/j.compbiomed.2025.111107_bib3) 2000; 15
Lazebnik (10.1016/j.compbiomed.2025.111107_bib61) 2006; vol. 2
Polotskaya (10.1016/j.compbiomed.2025.111107_bib107) 2024; 6
Champod (10.1016/j.compbiomed.2025.111107_bib110) 2019; 33
Szeghalmy (10.1016/j.compbiomed.2025.111107_bib83) 2023; 23
Bunkhumpornpat (10.1016/j.compbiomed.2025.111107_bib88) 2024; 5
Bosch (10.1016/j.compbiomed.2025.111107_bib114) 2023
Rainio (10.1016/j.compbiomed.2025.111107_bib91) 2024; 14
Videnovic (10.1016/j.compbiomed.2025.111107_bib98) 2010; 25
Wang (10.1016/j.compbiomed.2025.111107_bib76) 2009; 26
Chang (10.1016/j.compbiomed.2025.111107_bib82) 2011; 2
Binaco (10.1016/j.compbiomed.2025.111107_bib7) 2020; 26
Souillard-Mandar (10.1016/j.compbiomed.2025.111107_bib23) 2016; 102
Handzlik (10.1016/j.compbiomed.2025.111107_bib38) 2023; 15
Xu (10.1016/j.compbiomed.2025.111107_bib70) 2018; 49
Lauraitis (10.1016/j.compbiomed.2025.111107_bib19) 2018; 2018
Jiménez-Mesa (10.1016/j.compbiomed.2025.111107_bib32) 2023; 33
Sandler (10.1016/j.compbiomed.2025.111107_bib48) 2018
Watson (10.1016/j.compbiomed.2025.111107_bib5) 1993; 41
Kim (10.1016/j.compbiomed.2025.111107_bib41) 2019
Park (10.1016/j.compbiomed.2025.111107_bib54) 2000
Selvaraju (10.1016/j.compbiomed.2025.111107_bib34) 2017
Ciesielska (10.1016/j.compbiomed.2025.111107_bib99) 2016; 50
He (10.1016/j.compbiomed.2025.111107_bib27) 2016
Tan (10.1016/j.compbiomed.2025.111107_bib86) 2014
Seeher (10.1016/j.compbiomed.2025.111107_bib14) 2017
Sato (10.1016/j.compbiomed.2025.111107_bib49) 2022; 13
Lauraitis (10.1016/j.compbiomed.2025.111107_bib18) 2019
Wold (10.1016/j.compbiomed.2025.111107_bib33) 1984; 5
Watanabe (10.1016/j.compbiomed.2025.111107_bib62) 2010; 2
Dalal (10.1016/j.compbiomed.2025.111107_bib60) 2005; 1
Brown (10.1016/j.compbiomed.2025.111107_bib29) 2009
Satizabal (10.1016/j.compbiomed.2025.111107_bib47) 2016; 374
Pinto (10.1016/j.compbiomed.2025.111107_bib1) 2009; 27
Simonyan (10.1016/j.compbiomed.2025.111107_bib26) 2014
10.1016/j.compbiomed.2025.111107_bib118
Hu (10.1016/j.compbiomed.2025.111107_bib122) 2005
Kuncheva (10.1016/j.compbiomed.2025.111107_bib92) 2004
10.1016/j.compbiomed.2025.111107_bib121
Nasreddine (10.1016/j.compbiomed.2025.111107_bib10) 2005; 53
Gopalsamy (10.1016/j.compbiomed.2025.111107_bib119) 2021; vol. 2
Raksasat (10.1016/j.compbiomed.2025.111107_bib25) 2023; 13
Dieleman (10.1016/j.compbiomed.2025.111107_bib67) 2015; 450
Oyallon (10.1016/j.compbiomed.2025.111107_bib109) 2015; 5
Krizhevsky (10.1016/j.compbiomed.2025.111107_bib68) 2012; 25
Scharre (10.1016/j.compbiomed.2025.111107_bib16) 2017; 9
Amini (10.1016/j.compbiomed.2025.111107_bib46) 2021; 2021–03
10.1016/j.compbiomed.2025.111107_bib104
Alimoglu (10.1016/j.compbiomed.2025.111107_bib52) 1997; 2
10.1016/j.compbiomed.2025.111107_bib105
Mungoli (10.1016/j.compbiomed.2025.111107_bib117) 2023
Black (10.1016/j.compbiomed.2025.111107_bib73) 2006; vol. 18
Brodaty (10.1016/j.compbiomed.2025.111107_bib13) 2002; 50
Freund (10.1016/j.compbiomed.2025.111107_bib81) 1996; 96
Griškaitė (10.1016/j.compbiomed.2025.111107_bib101) 2017
Ioffe (10.1016/j.compbiomed.2025.111107_bib72) 2010
Jian (10.1016/j.compbiomed.2025.111107_bib63) 2009; 4
Wang (10.1016/j.compbiomed.2025.111107_bib75) 2004; 13
Kitchin (10.1016/j.compbiomed.2025.111107_bib64) 2015; 80
Scharre (10.1016/j.compbiomed.2025.111107_bib11) 2010; 24
Hernández-García (10.1016/j.compbiomed.2025.111107_bib113) 2018
Dong (10.1016/j.compbiomed.2025.111107_bib9) 2020; 42
Borson (10.1016/j.compbiomed.2025.111107_bib12) 2003; 51
Chen (10.1016/j.compbiomed.2025.111107_bib31) 2020; 10
Hempstalk (10.1016/j.compbiomed.2025.111107_bib106) 2008
Davoudi (10.1016/j.compbiomed.2025.111107_bib30) 2021; 82
10.1016/j.compbiomed.2025.111107_bib22
John (10.1016/j.compbiomed.2025.111107_bib79) 1995
Hazan (10.1016/j.compbiomed.2025.111107_bib100) 2018; 33
Kim (10.1016/j.compbiomed.2025.111107_bib4) 2009; 48
Bandyopadhyay (10.1016/j.compbiomed.2025.111107_bib39) 2023; 13
Hsu (10.1016/j.compbiomed.2025.111107_bib90) 2014
Lauraitis (10.1016/j.compbiomed.2025.111107_bib20) 2020; 8
Girshick (10.1016/j.compbiomed.2025.111107_bib44) 2014
Berg (10.1016/j.compbiomed.2025.111107_bib15) 2018; 62
Greenacre (10.1016/j.compbiomed.2025.111107_bib87) 2022; 2
Davies (10.1016/j.compbiomed.2025.111107_bib69) 2004
Patil (10.1016/j.compbiomed.2025.111107_bib116) 2023; 14
Agarwal (10.1016/j.compbiomed.2025.111107_bib56) 2013
Sun (10.1016/j.compbiomed.2025.111107_bib36) 2016; 45
Huang (10.1016/j.compbiomed.2025.111107_bib28) 2017
Lee (10.1016/j.compbiomed.2025.111107_bib58) 1996; 18
Chawla (10.1016/j.compbiomed.2025.111107_bib65) 2002; 16
Xu (10.1016/j.compbiomed.2025.111107_bib24) 2023; 2023
Sakho (10.1016/j.compbiomed.2025.111107_bib103) 2024
Lin (10.1016/j.compbiomed.2025.111107_bib43) 2014
Korzeniecka (10.1016/j.compbiomed.2025.111107_bib102) 2024
Gonzalez-Huitron (10.1016/j.compbiomed.2025.111107_bib71) 2023; 21
Krislock (10.1016/j.compbiomed.2025.111107_bib74) 2012
Schejter-Margalit (10.1016/j.compbiomed.2025.111107_bib8) 2021; 90
Kingma (10.1016/j.compbiomed.2025.111107_bib40) 2013
References_xml – volume: 2
  start-page: 39
  year: 1989
  end-page: 48
  ident: bib111
  article-title: Clock‐drawing in neurological disorders
  publication-title: Behav. Neurol.
– start-page: 231
  year: 2017
  end-page: 239
  ident: bib14
  article-title: The general practitioner assessment of cognition (GPCOG)
  publication-title: Cognitive Screening Instruments: A Practical Approach
– year: 2023
  ident: bib117
  article-title: Adaptive ensemble learning: boosting model performance through intelligent feature fusion in deep neural networks
  publication-title: arXiv preprint arXiv:2304.02653
– volume: 45
  start-page: 120
  year: 2016
  end-page: 127
  ident: bib36
  article-title: Race and fall risk: data from the National health and aging trends study (NHATS)
  publication-title: Age Ageing
– volume: 1
  start-page: 886
  year: 2005, June
  end-page: 893
  ident: bib60
  article-title: Histograms of oriented gradients for human detection
  publication-title: 2005 IEEE comput. soc. conf. computer vision and pattern recogn. (CVPR'05)
– volume: 20
  start-page: 3236
  year: 2020
  ident: bib21
  article-title: A mobile application for smart computer-aided self-administered testing of cognition, speech, and motor impairment
  publication-title: Sensors
– volume: 4
  start-page: 763
  year: 2009
  ident: bib63
  article-title: Texture image classification using visual perceptual texture features and gabor wavelet
  publication-title: J. Comput.
– start-page: 49
  year: 2009, April
  end-page: 56
  ident: bib29
  article-title: A new perspective for information theoretic feature selection
  publication-title: Artificial Intelligence and Statistics
– volume: 15
  year: 2023
  ident: bib38
  article-title: Explainable automated evaluation of the clock drawing task for memory impairment screening
  publication-title: Alzheimer's Dement.: Diagn. Assess Dis. Monit.
– year: 2018
  ident: bib113
  article-title: Data augmentation instead of explicit regularization
  publication-title: arXiv preprint arXiv:1806.03852
– volume: 82
  start-page: 47
  year: 2021
  end-page: 57
  ident: bib30
  article-title: Classifying non-dementia and Alzheimer's disease/vascular dementia patients using kinematic, time-based, and visuospatial parameters: the digital clock drawing test
  publication-title: J. Alzheim. Dis.
– volume: 10
  year: 2020
  ident: bib31
  article-title: Automatic dementia screening and scoring by applying deep learning on clock-drawing tests
  publication-title: Sci. Rep.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib28
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 13
  start-page: 7384
  year: 2023
  ident: bib39
  article-title: Explainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed hands
  publication-title: Sci. Rep.
– volume: 3
  start-page: 1851
  year: 2009
  end-page: 1862
  ident: bib80
  article-title: A new approach based on artificial neural networks for prediction of high pressure vapor-liquid equilibrium
  publication-title: Aust. J. Basic Appl. Sci.
– start-page: 1
  year: 2000
  end-page: 15
  ident: bib94
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Systems, Volume 1857 of Lecture Notes in Computer Science, Cagliari, Italy
– volume: vol. 2
  start-page: 1
  year: 2021, November
  end-page: 19
  ident: bib119
  article-title: Feature selection using multiple ranks with majority vote-based relative aggregate scoring model for Parkinson dataset
  publication-title: Proceedings of International Conference on Data Science and Applications: ICDSA 2021
– volume: 15
  start-page: 548
  year: 2000
  end-page: 561
  ident: bib3
  article-title: Clock‐drawing: is it the ideal cognitive screening test?
  publication-title: Int. J. Geriatr. Psychiatr.
– year: 2004
  ident: bib69
  article-title: Machine Vision: Theory, Algorithms, Practicalities
– reference: (2) Accessed: March, 2024.
– reference: Early Detection of Alzheimer's Disease Using Cognitive Features: A Voting-Based Ensemble Machine Learning Approach..
– volume: 49
  start-page: 3968
  year: 2018
  end-page: 3979
  ident: bib70
  article-title: An evolutionary algorithm based on Minkowski distance for many-objective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 26
  start-page: 98
  year: 2009
  end-page: 117
  ident: bib76
  article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
– volume: 75
  start-page: 51
  year: 2017
  end-page: 63
  ident: bib112
  article-title: Handling limited datasets with neural networks in medical applications: a small-data approach
  publication-title: Artif. Intell. Med.
– volume: 25
  start-page: 401
  year: 2010
  end-page: 404
  ident: bib98
  article-title: The Montreal Cognitive Assessment as a screening tool for cognitive dysfunction in Huntington's disease
  publication-title: Mov. Disord.
– year: 2021
  ident: bib115
  article-title: Learning Curve Theory
– reference: R.A. Fisher, Statistical Methods for Research Workers, thirteenth ed., pp 66-70,Hafner, 1958.
– volume: 9
  start-page: 44
  year: 2017
  ident: bib16
  article-title: Digitally translated Self-Administered Gerocognitive Examination (eSAGE): relationship with its validated paper version, neuropsychological evaluations, and clinical assessments
  publication-title: Alzheimers Res. Ther.
– year: 2017
  ident: bib101
  article-title: Pažinimo funkcijų tyrimas šeimos gydytojo praktikoje taikant Montrealio testą= Evaluation of cognitive functions in family physician practice using Montreal test
  publication-title: Lietuvos bendrosios praktikos gydytojas. Kaunas: Vitae Litera
– year: 2024
  ident: bib102
  article-title: Nemedikamentinės Pažinimo Funkciju Palaikymo Priemonės Sergantiems Neurodegeneracinėmis Ligomis (Master's Thesis
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib27
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2023
  ident: bib50
  article-title: Applications of computer vision in analysis of the clock-drawing test as a metric of cognitive impairment
  publication-title: arXiv preprint arXiv:2305.00063
– volume: 27
  start-page: 399
  year: 1998
  end-page: 404
  ident: bib2
  article-title: The clock-drawing test
  publication-title: Age Ageing
– year: 2013
  ident: bib40
  article-title: Auto-encoding variational bayes
  publication-title: arXiv preprint arXiv:1312.6114
– volume: 62
  start-page: 93
  year: 2018
  end-page: 97
  ident: bib15
  article-title: Comparing the electronic and standard versions of the Montreal Cognitive Assessment in an outpatient memory disorders clinic: a validation study
  publication-title: J. Alzheim. Dis.
– volume: 6
  start-page: 37
  year: 1991
  end-page: 66
  ident: bib66
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
– start-page: 1229
  year: 2020, December
  end-page: 1234
  ident: bib42
  article-title: Clock drawing test evaluation via object detection for automatic cognitive impairment diagnosis
  publication-title: 2020 IEEE 6th International Conference on Computer and Communications (ICCC)
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib43
  article-title: Microsoft coco: common objects in context
  publication-title: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13
– volume: 13
  year: 2021
  ident: bib45
  article-title: Clock-drawing tasks as predictive measurements for disease classification among patients with Parkinson's disease and essential tremor
  publication-title: Cureus
– volume: 2021–03
  year: 2021
  ident: bib46
  article-title: An ai-assisted online tool for cognitive impairment detection using images from the clock drawing test
  publication-title: medRxiv
– year: 2014
  ident: bib26
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– year: 2019
  ident: bib18
  article-title: A smartphone application for automated decision support in cognitive task based evaluation of central nervous system motor disorders
  publication-title: IEEE Journal of Biomedical and Health Informatics
– year: 1998
  ident: bib77
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in Kernel Methods - Support Vector Learning
– volume: 2
  start-page: 637
  year: 1997, August
  end-page: 640
  ident: bib52
  article-title: Combining multiple representations and classifiers for pen-based handwritten digit recognition
  publication-title: Proc. Fourth Int. Conf. Doc. Anal. Recogn.
– start-page: 51
  year: 2000, November
  end-page: 54
  ident: bib54
  article-title: Efficient use of local edge histogram descriptor
  publication-title: Proceedings of the 2000 ACM Workshops on Multimedia
– volume: 2
  start-page: 100
  year: 2022
  ident: bib87
  article-title: Principal component analysis
  publication-title: Nat. Rev. Methods Prim.
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib37
  article-title: You only look once: unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 26
  start-page: 690
  year: 2020
  end-page: 700
  ident: bib7
  article-title: Machine learning analysis of digital clock drawing test performance for differential classification of mild cognitive impairment subtypes versus Alzheimer's disease
  publication-title: J. Int. Neuropsychol. Soc.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib75
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 50
  start-page: 530
  year: 2002
  end-page: 534
  ident: bib13
  article-title: The GPCOG: a new screening test for dementia designed for general practice
  publication-title: J. Am. Geriatr. Soc.
– start-page: 2629
  year: 2014, October
  end-page: 2633
  ident: bib86
  article-title: Using pyramid of histogram of oriented gradients on natural scene text recognition
  publication-title: 2014 IEEE International Conference on Image Processing (ICIP)
– volume: 11
  start-page: 696
  year: 2001
  end-page: 702
  ident: bib59
  article-title: The MPEG-7 visual standard for content description-an overview
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 14
  start-page: 6086
  year: 2024
  ident: bib91
  article-title: Evaluation metrics and statistical tests for machine learning
  publication-title: Sci. Rep.
– year: 2024
  ident: bib103
  article-title: Theoretical and experimental study of SMOTE: limitations and comparisons of rebalancing strategies
  publication-title: arXiv preprint arXiv:2402.03819
– volume: 132
  start-page: 365
  year: 2021
  end-page: 366
  ident: bib108
  article-title: Logistic regression in medical research
  publication-title: Anesth. Analg.
– start-page: 712
  year: 2005, September
  end-page: 717
  ident: bib122
  article-title: Network-based intrusion detection using Adaboost algorithm
  publication-title: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)
– volume: 96
  start-page: 148
  year: 1996, July
  end-page: 156
  ident: bib81
  article-title: Experiments with a new boosting algorithm
  publication-title: icml
– start-page: 1
  year: 2024
  end-page: 21
  ident: bib120
  article-title: Improving dementia prediction using ensemble majority voting classifier
  publication-title: Ann. Data Sci.
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: bib48
  article-title: Mobilenetv2: inverted residuals and linear bottlenecks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 246
  year: 2010, December
  end-page: 255
  ident: bib72
  article-title: Improved consistent sampling, weighted minhash and l1 sketching
  publication-title: 2010 IEEE International Conference on Data Mining
– reference: Smartphone app can help diagnose a rare disease. [Online].
– volume: 25
  year: 2012
  ident: bib68
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib65
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 50
  start-page: 1039
  year: 2016
  end-page: 1052
  ident: bib99
  article-title: Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis
  publication-title: Psychiatr. Pol.
– volume: 23
  start-page: 2333
  year: 2023
  ident: bib83
  article-title: A comparative study of the use of stratified cross-validation and distribution-balanced stratified cross-validation in imbalanced learning
  publication-title: Sensors
– start-page: 55
  year: 2024, January
  end-page: 59
  ident: bib35
  article-title: Automatic CDT scoring using machine learning with interpretable feature
  publication-title: Proceedings of the 2024 14th International Conference on Bioscience, Biochemistry and Bioinformatics
– volume: 13
  start-page: 78
  year: 2019
  end-page: 81
  ident: bib97
  article-title: Montreal cognitive assessment scale in patients with Parkinson disease with normal scores in the mini-mental state examination
  publication-title: Dement. neuropsychologia
– year: 2023
  ident: bib84
  article-title: The ROC-AUC Accurately Assesses Imbalanced Datasets
– volume: 26
  start-page: 32
  year: 2010
  end-page: 34
  ident: bib95
  article-title: Enhancing protein fold prediction accuracy by using ensemble of different classifiers
  publication-title: Aust. J. Intell. Inf. Process. Syst.
– start-page: 19
  year: 2013, March
  end-page: 23
  ident: bib56
  article-title: Content based image retrieval using discrete wavelet transform and edge histogram descriptor
  publication-title: 2013 International Conference on Information Systems and Computer Networks
– reference: M.G. Kendall, The Advanced Theory of Statistics, fourth ed., vol. 1,Macmillan, 1979.
– volume: 33
  start-page: e22
  year: 2018
  end-page: e30
  ident: bib100
  article-title: The test of time: a history of clock drawing
  publication-title: Int. J. Geriatr. Psychiatr.
– start-page: 401
  year: 2007, July
  end-page: 408
  ident: bib85
  article-title: Representing shape with a spatial pyramid kernel
  publication-title: Proceedings of the 6th ACM International Conference on Image and Video Retrieval
– volume: 31
  start-page: 1013
  year: 2016
  end-page: 1020
  ident: bib6
  article-title: Screening for cognitive dysfunction in Huntington's disease with the clock drawing test
  publication-title: Int. J. Geriatr. Psychiatr.
– volume: 90
  start-page: 84
  year: 2021
  end-page: 89
  ident: bib8
  article-title: Quantitative digital clock drawing test as a sensitive tool to detect subtle cognitive impairments in early stage Parkinson's disease
  publication-title: Parkinsonism Relat. Disorders
– volume: 18
  start-page: 959
  year: 1996
  end-page: 971
  ident: bib58
  article-title: Image representation using 2D Gabor wavelets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 39
  year: 2010
  end-page: 47
  ident: bib62
  article-title: Co-occurrence histograms of oriented gradients for human detection
  publication-title: IPSJ Trans. Comp. Vision Appl.
– start-page: 879
  year: 2012
  end-page: 914
  ident: bib74
  article-title: Euclidean Distance Matrices and Applications
– reference: A. Mannini, D. Trojaniello, A. Cereatti, A.M. Sabatini, A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and huntington’s disease patients, Sensors 16 (1), vol. 16, issue 1, (2016) , article no.134.
– year: 2019
  ident: bib41
  article-title: Relevance factor vae: learning and identifying disentangled factors
  publication-title: arXiv preprint arXiv:1902.01568
– year: 2002
  ident: bib93
  article-title: Multiple classifier combination: lessons and the next steps
  publication-title: Hybrid Methods in Pattern Recognition
– volume: 24
  start-page: 64
  year: jan 2010
  end-page: 71
  ident: bib11
  article-title: Self-administered gerocognitive examination (SAGE)
  publication-title: Alzheimer Dis. Assoc. Disord.
– year: 2014
  ident: bib90
  article-title: Paired T Test
– volume: 41
  start-page: 1235
  year: 1993
  end-page: 1240
  ident: bib5
  article-title: Clock completion: an objective screening test for dementia
  publication-title: J. Am. Geriatr. Soc.
– start-page: 580
  year: 2014
  end-page: 587
  ident: bib44
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 81
  start-page: 29
  year: 2006
  end-page: 40
  ident: bib78
  article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: vol. 2
  start-page: 2169
  year: 2006, June
  end-page: 2178
  ident: bib61
  article-title: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories
  publication-title: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)
– start-page: 11371
  year: 2023, volume 206, April
  end-page: 11414
  ident: bib114
  article-title: Random features model with general convex regularization: a fine grained analysis with precise asymptotic learning curves
  publication-title: International Conference on Artificial Intelligence and Statistics
– volume: 6
  start-page: 1243
  year: 2024
  end-page: 1262
  ident: bib107
  article-title: Bayesian networks for the diagnosis and prognosis of diseases: a scoping review
  publication-title: Mach. Learn.Knowl. Extr.
– volume: vol. 18
  start-page: 2012
  year: 2006
  ident: bib73
  publication-title: Manhattan Distance. Dictionary of Algorithms and Data Structures
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib89
  article-title: Face recognition via edge-based Gabor feature representation for plastic surgery-altered images
  publication-title: EURASIP J. Appl. Signal Process.
– volume: 24
  start-page: 281
  year: 2002
  end-page: 286
  ident: bib96
  article-title: A theoretical study on six classifier fusion strategies
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 22
  start-page: 1648
  year: sep 2018
  end-page: 1652
  ident: bib53
  article-title: Efficacy of guided spiral drawing in the classification of Parkinson's disease
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 5
  start-page: 176
  year: 2015
  end-page: 218
  ident: bib109
  article-title: An analysis of the SURF method
  publication-title: Image Process. Line
– volume: 102
  start-page: 393
  year: 2016
  end-page: 441
  ident: bib23
  article-title: Learning classification models of cognitive conditions from subtle behaviors in the digital clock drawing test
  publication-title: Mach. Learn.
– volume: 33
  year: 2023
  ident: bib32
  article-title: Using explainable artificial intelligence in the clock drawing test to reveal the cognitive impairment pattern
  publication-title: Int. J. Neural Syst.
– volume: 2018
  year: 2018
  ident: bib19
  article-title: ANN and fuzzy logic based model to evaluate huntington disease symptoms
  publication-title: J. Healthc. Eng.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bib82
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM trans. Intell. syst. technol. (TIST)
– volume: 14
  year: 2023
  ident: bib116
  article-title: Comparative analysis of weighted ensemble and majority voting algorithms for intrusion detection in OpenStack cloud environments
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 450
  start-page: 1441
  year: 2015
  end-page: 1459
  ident: bib67
  article-title: Rotation-invariant convolutional neural networks for galaxy morphology prediction
  publication-title: Mon. Not. Roy. Astron. Soc.
– volume: 33
  start-page: 817
  year: 2019
  end-page: 830
  ident: bib110
  article-title: Clock Drawing Test in acute stroke and its relationship with long-term functional and cognitive outcomes
  publication-title: Clin. Neuropsychol.
– year: 2004
  ident: bib92
  article-title: Combining Pattern Classifiers: Methods and Algorithms
– volume: 374
  start-page: 523
  year: 2016
  end-page: 532
  ident: bib47
  article-title: Incidence of dementia over three decades in the Framingham Heart study
  publication-title: N. Engl. J. Med.
– volume: 13
  year: 2023
  ident: bib25
  article-title: Attentive pairwise interaction network for AI-assisted clock drawing test assessment of early visuospatial deficits
  publication-title: Sci. Rep.
– volume: 5
  start-page: 735
  year: 1984
  end-page: 743
  ident: bib33
  article-title: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 42
  start-page: 622
  year: 2020
  end-page: 633
  ident: bib9
  article-title: Clock-drawing test in vascular mild cognitive impairment: validity of quantitative and qualitative analyses
  publication-title: J. Clin. Exp. Neuropsychol.
– volume: 48
  start-page: 218
  year: 2009
  end-page: 221
  ident: bib4
  article-title: Relation between the clock drawing test (CDT) and structural changes of brain in dementia
  publication-title: Arch. Gerontol. Geriatr.
– volume: 8
  start-page: 96162
  year: 2020
  end-page: 96172
  ident: bib20
  article-title: Detection of speech impairments using cepstrum, auditory spectrogram and wavelet time scattering domain features
  publication-title: IEEE Access
– volume: 53
  start-page: 695
  year: 2005
  end-page: 699
  ident: bib10
  article-title: The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment
  publication-title: J. Am. Geriatr. Soc.
– volume: 80
  start-page: 463
  year: 2015
  end-page: 475
  ident: bib64
  article-title: Small data in the era of big data
  publication-title: Geojournal
– volume: 51
  start-page: 1451
  year: 2003
  end-page: 1454
  ident: bib12
  article-title: The Mini-Cog as a screen for dementia: validation in a population-based sample
  publication-title: J. Am. Geriatr. Soc.
– start-page: 505
  year: 2008, September
  end-page: 519
  ident: bib106
  article-title: One-class classification by combining density and class probability estimation
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– volume: 5
  year: 2024
  ident: bib88
  article-title: FLEX-SMOTE: synthetic over-sampling technique that flexibly adjusts to different minority class distributions
  publication-title: Patterns
– start-page: 267
  year: 2014, August
  end-page: 272
  ident: bib57
  article-title: Pyramid histogram of oriented gradient for machine-printed/handwritten and Arabic/Latin word discrimination
  publication-title: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR)
– ident: bib17
  article-title: Digital application of the Mini-Cog screening test (iCog). [Online]
– start-page: 338
  year: 1995
  end-page: 345
  ident: bib79
  article-title: Pat Langley: estimating continuous distributions in Bayesian classifiers
  publication-title: Eleventh Conference on Uncertainty in Artificial Intelligence
– volume: 13
  year: 2022
  ident: bib49
  article-title: Automated evaluation of conventional clock-drawing test using deep neural network: potential as a mass screening tool to detect individuals with cognitive decline
  publication-title: Front. Neurol.
– reference: (1).
– volume: 96
  start-page: 1221
  year: 2016
  end-page: 1230
  ident: bib51
  article-title: Clock drawing test digit recognition using static and dynamic features
  publication-title: Procedia Comput. Sci.
– volume: 27
  start-page: 201
  year: 2009
  end-page: 213
  ident: bib1
  article-title: Literature review of the Clock Drawing Test as a tool for cognitive screening
  publication-title: Dement. Geriatr. Cognit. Disord.
– volume: 2023
  year: 2023
  ident: bib24
  article-title: Interpretability of clinical decision support systems based on artificial intelligence from technological and medical perspective: a systematic review
  publication-title: J. Healthc. Eng.
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib34
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 24
  start-page: 23
  year: 2002
  end-page: 30
  ident: bib55
  article-title: Efficient use of MPEG‐7 edge histogram descriptor
  publication-title: ETRI J.
– volume: 21
  start-page: 690
  year: 2023
  end-page: 698
  ident: bib71
  article-title: Jaccard distance as similarity measure for disparity map estimation
  publication-title: IEEE Lat. Am. Trans.
– year: 2002
  ident: 10.1016/j.compbiomed.2025.111107_bib93
  article-title: Multiple classifier combination: lessons and the next steps
– volume: 82
  start-page: 47
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111107_bib30
  article-title: Classifying non-dementia and Alzheimer's disease/vascular dementia patients using kinematic, time-based, and visuospatial parameters: the digital clock drawing test
  publication-title: J. Alzheim. Dis.
  doi: 10.3233/JAD-201129
– volume: 2
  start-page: 39
  issue: 1
  year: 1989
  ident: 10.1016/j.compbiomed.2025.111107_bib111
  article-title: Clock‐drawing in neurological disorders
  publication-title: Behav. Neurol.
  doi: 10.1155/1989/470135
– start-page: 580
  year: 2014
  ident: 10.1016/j.compbiomed.2025.111107_bib44
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 81
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.compbiomed.2025.111107_bib78
  article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2005.09.003
– start-page: 4700
  year: 2017
  ident: 10.1016/j.compbiomed.2025.111107_bib28
  article-title: Densely connected convolutional networks
– volume: 2
  start-page: 100
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2025.111107_bib87
  article-title: Principal component analysis
  publication-title: Nat. Rev. Methods Prim.
  doi: 10.1038/s43586-022-00184-w
– volume: 33
  start-page: e22
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2025.111107_bib100
  article-title: The test of time: a history of clock drawing
  publication-title: Int. J. Geriatr. Psychiatr.
  doi: 10.1002/gps.4731
– volume: 53
  start-page: 695
  issue: 4
  year: 2005
  ident: 10.1016/j.compbiomed.2025.111107_bib10
  article-title: The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.2005.53221.x
– volume: 51
  start-page: 1451
  year: 2003
  ident: 10.1016/j.compbiomed.2025.111107_bib12
  article-title: The Mini-Cog as a screen for dementia: validation in a population-based sample
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1046/j.1532-5415.2003.51465.x
– volume: 13
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib25
  article-title: Attentive pairwise interaction network for AI-assisted clock drawing test assessment of early visuospatial deficits
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-44723-1
– volume: 102
  start-page: 393
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111107_bib23
  article-title: Learning classification models of cognitive conditions from subtle behaviors in the digital clock drawing test
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-015-5529-5
– volume: 50
  start-page: 1039
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111107_bib99
  article-title: Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis
  publication-title: Psychiatr. Pol.
  doi: 10.12740/PP/45368
– ident: 10.1016/j.compbiomed.2025.111107_bib22
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2025.111107_bib75
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 23
  start-page: 2333
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib83
  article-title: A comparative study of the use of stratified cross-validation and distribution-balanced stratified cross-validation in imbalanced learning
  publication-title: Sensors
  doi: 10.3390/s23042333
– start-page: 740
  year: 2014
  ident: 10.1016/j.compbiomed.2025.111107_bib43
  article-title: Microsoft coco: common objects in context
– start-page: 51
  year: 2000
  ident: 10.1016/j.compbiomed.2025.111107_bib54
  article-title: Efficient use of local edge histogram descriptor
– volume: 13
  start-page: 78
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2025.111107_bib97
  article-title: Montreal cognitive assessment scale in patients with Parkinson disease with normal scores in the mini-mental state examination
  publication-title: Dement. neuropsychologia
  doi: 10.1590/1980-57642018dn13-010008
– volume: 62
  start-page: 93
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2025.111107_bib15
  article-title: Comparing the electronic and standard versions of the Montreal Cognitive Assessment in an outpatient memory disorders clinic: a validation study
  publication-title: J. Alzheim. Dis.
  doi: 10.3233/JAD-170896
– start-page: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111107_bib120
  article-title: Improving dementia prediction using ensemble majority voting classifier
  publication-title: Ann. Data Sci.
– start-page: 231
  year: 2017
  ident: 10.1016/j.compbiomed.2025.111107_bib14
  article-title: The general practitioner assessment of cognition (GPCOG)
– ident: 10.1016/j.compbiomed.2025.111107_bib105
– volume: 25
  start-page: 401
  issue: 3
  year: 2010
  ident: 10.1016/j.compbiomed.2025.111107_bib98
  article-title: The Montreal Cognitive Assessment as a screening tool for cognitive dysfunction in Huntington's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22748
– year: 1998
  ident: 10.1016/j.compbiomed.2025.111107_bib77
  article-title: Fast training of support vector machines using sequential minimal optimization
– start-page: 19
  year: 2013
  ident: 10.1016/j.compbiomed.2025.111107_bib56
  article-title: Content based image retrieval using discrete wavelet transform and edge histogram descriptor
– volume: 14
  start-page: 6086
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111107_bib91
  article-title: Evaluation metrics and statistical tests for machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-56706-x
– volume: vol. 2
  start-page: 2169
  year: 2006
  ident: 10.1016/j.compbiomed.2025.111107_bib61
  article-title: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories
– start-page: 505
  year: 2008
  ident: 10.1016/j.compbiomed.2025.111107_bib106
  article-title: One-class classification by combining density and class probability estimation
– volume: 15
  start-page: 548
  issue: 6
  year: 2000
  ident: 10.1016/j.compbiomed.2025.111107_bib3
  article-title: Clock‐drawing: is it the ideal cognitive screening test?
  publication-title: Int. J. Geriatr. Psychiatr.
  doi: 10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U
– year: 2021
  ident: 10.1016/j.compbiomed.2025.111107_bib115
– volume: 15
  issue: 2
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib38
  article-title: Explainable automated evaluation of the clock drawing task for memory impairment screening
  publication-title: Alzheimer's Dement.: Diagn. Assess Dis. Monit.
– volume: 5
  start-page: 735
  issue: 3
  year: 1984
  ident: 10.1016/j.compbiomed.2025.111107_bib33
  article-title: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0905052
– volume: 24
  start-page: 23
  issue: 1
  year: 2002
  ident: 10.1016/j.compbiomed.2025.111107_bib55
  article-title: Efficient use of MPEG‐7 edge histogram descriptor
  publication-title: ETRI J.
  doi: 10.4218/etrij.02.0102.0103
– volume: 2
  start-page: 39
  year: 2010
  ident: 10.1016/j.compbiomed.2025.111107_bib62
  article-title: Co-occurrence histograms of oriented gradients for human detection
  publication-title: IPSJ Trans. Comp. Vision Appl.
  doi: 10.2197/ipsjtcva.2.39
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2025.111107_bib31
  article-title: Automatic dementia screening and scoring by applying deep learning on clock-drawing tests
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74710-9
– volume: 2021–03
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111107_bib46
  article-title: An ai-assisted online tool for cognitive impairment detection using images from the clock drawing test
  publication-title: medRxiv
– volume: 11
  start-page: 696
  issue: 6
  year: 2001
  ident: 10.1016/j.compbiomed.2025.111107_bib59
  article-title: The MPEG-7 visual standard for content description-an overview
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/76.927422
– ident: 10.1016/j.compbiomed.2025.111107_bib121
– volume: 20
  start-page: 3236
  issue: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2025.111107_bib21
  article-title: A mobile application for smart computer-aided self-administered testing of cognition, speech, and motor impairment
  publication-title: Sensors
  doi: 10.3390/s20113236
– start-page: 55
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111107_bib35
  article-title: Automatic CDT scoring using machine learning with interpretable feature
– volume: 26
  start-page: 690
  issue: 7
  year: 2020
  ident: 10.1016/j.compbiomed.2025.111107_bib7
  article-title: Machine learning analysis of digital clock drawing test performance for differential classification of mild cognitive impairment subtypes versus Alzheimer's disease
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/S1355617720000144
– start-page: 401
  year: 2007
  ident: 10.1016/j.compbiomed.2025.111107_bib85
  article-title: Representing shape with a spatial pyramid kernel
– volume: 33
  start-page: 817
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2025.111107_bib110
  article-title: Clock Drawing Test in acute stroke and its relationship with long-term functional and cognitive outcomes
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854046.2018.1494307
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2025.111107_bib82
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM trans. Intell. syst. technol. (TIST)
  doi: 10.1145/1961189.1961199
– volume: 33
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib32
  article-title: Using explainable artificial intelligence in the clock drawing test to reveal the cognitive impairment pattern
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065723500156
– volume: 50
  start-page: 530
  issue: 3
  year: 2002
  ident: 10.1016/j.compbiomed.2025.111107_bib13
  article-title: The GPCOG: a new screening test for dementia designed for general practice
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1046/j.1532-5415.2002.50122.x
– volume: 48
  start-page: 218
  issue: 2
  year: 2009
  ident: 10.1016/j.compbiomed.2025.111107_bib4
  article-title: Relation between the clock drawing test (CDT) and structural changes of brain in dementia
  publication-title: Arch. Gerontol. Geriatr.
  doi: 10.1016/j.archger.2008.01.010
– volume: 13
  year: 2022
  ident: 10.1016/j.compbiomed.2025.111107_bib49
  article-title: Automated evaluation of conventional clock-drawing test using deep neural network: potential as a mass screening tool to detect individuals with cognitive decline
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2022.896403
– start-page: 712
  year: 2005
  ident: 10.1016/j.compbiomed.2025.111107_bib122
  article-title: Network-based intrusion detection using Adaboost algorithm
– volume: 14
  issue: 12
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib116
  article-title: Comparative analysis of weighted ensemble and majority voting algorithms for intrusion detection in OpenStack cloud environments
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2013
  ident: 10.1016/j.compbiomed.2025.111107_bib40
  article-title: Auto-encoding variational bayes
  publication-title: arXiv preprint arXiv:1312.6114
– volume: 25
  year: 2012
  ident: 10.1016/j.compbiomed.2025.111107_bib68
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.compbiomed.2025.111107_bib65
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 24
  start-page: 64
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2025.111107_bib11
  article-title: Self-administered gerocognitive examination (SAGE)
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/WAD.0b013e3181b03277
– volume: 8
  start-page: 96162
  year: 2020
  ident: 10.1016/j.compbiomed.2025.111107_bib20
  article-title: Detection of speech impairments using cepstrum, auditory spectrogram and wavelet time scattering domain features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995737
– start-page: 1
  year: 2000
  ident: 10.1016/j.compbiomed.2025.111107_bib94
  article-title: Ensemble methods in machine learning
– year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib117
  article-title: Adaptive ensemble learning: boosting model performance through intelligent feature fusion in deep neural networks
  publication-title: arXiv preprint arXiv:2304.02653
– volume: vol. 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111107_bib119
  article-title: Feature selection using multiple ranks with majority vote-based relative aggregate scoring model for Parkinson dataset
– year: 2018
  ident: 10.1016/j.compbiomed.2025.111107_bib113
  article-title: Data augmentation instead of explicit regularization
  publication-title: arXiv preprint arXiv:1806.03852
– volume: 21
  start-page: 690
  issue: 5
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib71
  article-title: Jaccard distance as similarity measure for disparity map estimation
  publication-title: IEEE Lat. Am. Trans.
  doi: 10.1109/TLA.2023.10130841
– volume: 42
  start-page: 622
  issue: 6
  year: 2020
  ident: 10.1016/j.compbiomed.2025.111107_bib9
  article-title: Clock-drawing test in vascular mild cognitive impairment: validity of quantitative and qualitative analyses
  publication-title: J. Clin. Exp. Neuropsychol.
  doi: 10.1080/13803395.2020.1793104
– volume: 24
  start-page: 281
  issue: 2
  year: 2002
  ident: 10.1016/j.compbiomed.2025.111107_bib96
  article-title: A theoretical study on six classifier fusion strategies
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.982906
– volume: 9
  start-page: 44
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2025.111107_bib16
  article-title: Digitally translated Self-Administered Gerocognitive Examination (eSAGE): relationship with its validated paper version, neuropsychological evaluations, and clinical assessments
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/s13195-017-0269-3
– year: 2019
  ident: 10.1016/j.compbiomed.2025.111107_bib18
  article-title: A smartphone application for automated decision support in cognitive task based evaluation of central nervous system motor disorders
  doi: 10.1109/JBHI.2019.2891729
– start-page: 1229
  year: 2020
  ident: 10.1016/j.compbiomed.2025.111107_bib42
  article-title: Clock drawing test evaluation via object detection for automatic cognitive impairment diagnosis
– volume: 13
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111107_bib45
  article-title: Clock-drawing tasks as predictive measurements for disease classification among patients with Parkinson's disease and essential tremor
  publication-title: Cureus
– volume: 2
  start-page: 637
  year: 1997
  ident: 10.1016/j.compbiomed.2025.111107_bib52
  article-title: Combining multiple representations and classifiers for pen-based handwritten digit recognition
  publication-title: Proc. Fourth Int. Conf. Doc. Anal. Recogn.
  doi: 10.1109/ICDAR.1997.620583
– volume: 96
  start-page: 1221
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111107_bib51
  article-title: Clock drawing test digit recognition using static and dynamic features
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.08.166
– start-page: 11371
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib114
  article-title: Random features model with general convex regularization: a fine grained analysis with precise asymptotic learning curves
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111107_bib103
  article-title: Theoretical and experimental study of SMOTE: limitations and comparisons of rebalancing strategies
  publication-title: arXiv preprint arXiv:2402.03819
– volume: 90
  start-page: 84
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111107_bib8
  article-title: Quantitative digital clock drawing test as a sensitive tool to detect subtle cognitive impairments in early stage Parkinson's disease
  publication-title: Parkinsonism Relat. Disorders
  doi: 10.1016/j.parkreldis.2021.08.002
– volume: 80
  start-page: 463
  year: 2015
  ident: 10.1016/j.compbiomed.2025.111107_bib64
  article-title: Small data in the era of big data
  publication-title: Geojournal
  doi: 10.1007/s10708-014-9601-7
– year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib50
  article-title: Applications of computer vision in analysis of the clock-drawing test as a metric of cognitive impairment
  publication-title: arXiv preprint arXiv:2305.00063
– volume: 374
  start-page: 523
  issue: 6
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111107_bib47
  article-title: Incidence of dementia over three decades in the Framingham Heart study
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504327
– volume: 6
  start-page: 1243
  issue: 2
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111107_bib107
  article-title: Bayesian networks for the diagnosis and prognosis of diseases: a scoping review
  publication-title: Mach. Learn.Knowl. Extr.
  doi: 10.3390/make6020058
– volume: 3
  start-page: 1851
  issue: 3
  year: 2009
  ident: 10.1016/j.compbiomed.2025.111107_bib80
  article-title: A new approach based on artificial neural networks for prediction of high pressure vapor-liquid equilibrium
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 5
  issue: 11
  year: 2024
  ident: 10.1016/j.compbiomed.2025.111107_bib88
  article-title: FLEX-SMOTE: synthetic over-sampling technique that flexibly adjusts to different minority class distributions
  publication-title: Patterns
  doi: 10.1016/j.patter.2024.101073
– volume: 49
  start-page: 3968
  issue: 11
  year: 2018
  ident: 10.1016/j.compbiomed.2025.111107_bib70
  article-title: An evolutionary algorithm based on Minkowski distance for many-objective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2856208
– year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib84
– start-page: 2629
  year: 2014
  ident: 10.1016/j.compbiomed.2025.111107_bib86
  article-title: Using pyramid of histogram of oriented gradients on natural scene text recognition
– volume: 26
  start-page: 98
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2025.111107_bib76
  article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.930649
– volume: 45
  start-page: 120
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111107_bib36
  article-title: Race and fall risk: data from the National health and aging trends study (NHATS)
  publication-title: Age Ageing
  doi: 10.1093/ageing/afv173
– volume: 41
  start-page: 1235
  issue: 11
  year: 1993
  ident: 10.1016/j.compbiomed.2025.111107_bib5
  article-title: Clock completion: an objective screening test for dementia
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.1993.tb07308.x
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111107_bib27
  article-title: Deep residual learning for image recognition
– volume: 450
  start-page: 1441
  issue: 2
  year: 2015
  ident: 10.1016/j.compbiomed.2025.111107_bib67
  article-title: Rotation-invariant convolutional neural networks for galaxy morphology prediction
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/stv632
– start-page: 267
  year: 2014
  ident: 10.1016/j.compbiomed.2025.111107_bib57
  article-title: Pyramid histogram of oriented gradient for machine-printed/handwritten and Arabic/Latin word discrimination
– volume: 13
  start-page: 7384
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib39
  article-title: Explainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed hands
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34518-9
– year: 2014
  ident: 10.1016/j.compbiomed.2025.111107_bib90
– start-page: 49
  year: 2009
  ident: 10.1016/j.compbiomed.2025.111107_bib29
  article-title: A new perspective for information theoretic feature selection
– year: 2004
  ident: 10.1016/j.compbiomed.2025.111107_bib69
– volume: 6
  start-page: 37
  year: 1991
  ident: 10.1016/j.compbiomed.2025.111107_bib66
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022689900470
– year: 2019
  ident: 10.1016/j.compbiomed.2025.111107_bib41
  article-title: Relevance factor vae: learning and identifying disentangled factors
  publication-title: arXiv preprint arXiv:1902.01568
– volume: 96
  start-page: 148
  year: 1996
  ident: 10.1016/j.compbiomed.2025.111107_bib81
  article-title: Experiments with a new boosting algorithm
  publication-title: icml
– volume: 2018
  year: 2018
  ident: 10.1016/j.compbiomed.2025.111107_bib19
  article-title: ANN and fuzzy logic based model to evaluate huntington disease symptoms
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/4581272
– volume: 132
  start-page: 365
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2025.111107_bib108
  article-title: Logistic regression in medical research
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000005247
– volume: 22
  start-page: 1648
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2025.111107_bib53
  article-title: Efficacy of guided spiral drawing in the classification of Parkinson's disease
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2762008
– year: 2014
  ident: 10.1016/j.compbiomed.2025.111107_bib26
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– volume: 27
  start-page: 201
  issue: 3
  year: 2009
  ident: 10.1016/j.compbiomed.2025.111107_bib1
  article-title: Literature review of the Clock Drawing Test as a tool for cognitive screening
  publication-title: Dement. Geriatr. Cognit. Disord.
  doi: 10.1159/000203344
– volume: 18
  start-page: 959
  issue: 10
  year: 1996
  ident: 10.1016/j.compbiomed.2025.111107_bib58
  article-title: Image representation using 2D Gabor wavelets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.541406
– volume: 75
  start-page: 51
  year: 2017
  ident: 10.1016/j.compbiomed.2025.111107_bib112
  article-title: Handling limited datasets with neural networks in medical applications: a small-data approach
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2016.12.003
– start-page: 338
  year: 1995
  ident: 10.1016/j.compbiomed.2025.111107_bib79
  article-title: Pat Langley: estimating continuous distributions in Bayesian classifiers
– year: 2024
  ident: 10.1016/j.compbiomed.2025.111107_bib102
– volume: 31
  start-page: 1013
  issue: 9
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111107_bib6
  article-title: Screening for cognitive dysfunction in Huntington's disease with the clock drawing test
  publication-title: Int. J. Geriatr. Psychiatr.
  doi: 10.1002/gps.4412
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2025.111107_bib89
  article-title: Face recognition via edge-based Gabor feature representation for plastic surgery-altered images
  publication-title: EURASIP J. Appl. Signal Process.
– year: 2017
  ident: 10.1016/j.compbiomed.2025.111107_bib101
  article-title: Pažinimo funkcijų tyrimas šeimos gydytojo praktikoje taikant Montrealio testą= Evaluation of cognitive functions in family physician practice using Montreal test
  publication-title: Lietuvos bendrosios praktikos gydytojas. Kaunas: Vitae Litera
– start-page: 879
  year: 2012
  ident: 10.1016/j.compbiomed.2025.111107_bib74
– volume: 4
  start-page: 763
  issue: 8
  year: 2009
  ident: 10.1016/j.compbiomed.2025.111107_bib63
  article-title: Texture image classification using visual perceptual texture features and gabor wavelet
  publication-title: J. Comput.
  doi: 10.4304/jcp.4.8.763-770
– start-page: 618
  year: 2017
  ident: 10.1016/j.compbiomed.2025.111107_bib34
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
– year: 2004
  ident: 10.1016/j.compbiomed.2025.111107_bib92
– volume: 1
  start-page: 886
  year: 2005
  ident: 10.1016/j.compbiomed.2025.111107_bib60
  article-title: Histograms of oriented gradients for human detection
  publication-title: 2005 IEEE comput. soc. conf. computer vision and pattern recogn. (CVPR'05)
  doi: 10.1109/CVPR.2005.177
– start-page: 4510
  year: 2018
  ident: 10.1016/j.compbiomed.2025.111107_bib48
  article-title: Mobilenetv2: inverted residuals and linear bottlenecks
– volume: 27
  start-page: 399
  issue: 3
  year: 1998
  ident: 10.1016/j.compbiomed.2025.111107_bib2
  article-title: The clock-drawing test
  publication-title: Age Ageing
  doi: 10.1093/ageing/27.3.399
– start-page: 779
  year: 2016
  ident: 10.1016/j.compbiomed.2025.111107_bib37
  article-title: You only look once: unified, real-time object detection
– volume: 5
  start-page: 176
  year: 2015
  ident: 10.1016/j.compbiomed.2025.111107_bib109
  article-title: An analysis of the SURF method
  publication-title: Image Process. Line
  doi: 10.5201/ipol.2015.69
– volume: vol. 18
  start-page: 2012
  year: 2006
  ident: 10.1016/j.compbiomed.2025.111107_bib73
– ident: 10.1016/j.compbiomed.2025.111107_bib104
  doi: 10.1007/978-1-4612-4380-9_6
– ident: 10.1016/j.compbiomed.2025.111107_bib118
  doi: 10.3390/s16010134
– volume: 2023
  year: 2023
  ident: 10.1016/j.compbiomed.2025.111107_bib24
  article-title: Interpretability of clinical decision support systems based on artificial intelligence from technological and medical perspective: a systematic review
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2023/9919269
– start-page: 246
  year: 2010
  ident: 10.1016/j.compbiomed.2025.111107_bib72
  article-title: Improved consistent sampling, weighted minhash and l1 sketching
– volume: 26
  start-page: 32
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2025.111107_bib95
  article-title: Enhancing protein fold prediction accuracy by using ensemble of different classifiers
  publication-title: Aust. J. Intell. Inf. Process. Syst.
SSID ssj0004030
Score 2.4222126
Snippet We propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the detection of...
AbstractWe propose a supervised ensemble learning-based approach to evaluate the significance of the digitised analogue clock drawing test (CDT) for the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 111107
SubjectTerms Adult
Aged
Clock drawing test (CDT)
Cognition - physiology
Ensemble Learning
Female
Finger movement tracking
Humans
Internal Medicine
Machine Learning
Male
Middle Aged
Multimodality
Neuropsychological Tests
Other
Synthetic minority oversampling (SMOTE)
Title Automatic motor and visuospatial cognition screening with ensemble learning: A computerised clock drawing test approach
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525014593
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525014593
https://dx.doi.org/10.1016/j.compbiomed.2025.111107
https://www.ncbi.nlm.nih.gov/pubmed/40976212
https://www.proquest.com/docview/3253033600
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpO0pfxu7LLkWDvQ0X25IjaXsKo7vRdoF1I2_CVpTipHVCHKf9d_trO7IkJ1kbyB72YoyFLND3-Vzkc0HoraKUCQ2WW5bwNKAdqgORJSzIYpLpMKVM1-3efp2wszPe74teq_Xb58IsLllR8JsbMf2vUMMzANukzv4D3M1L4QHcA-hwBdjhuhXw3Wo-sXVYAQUXIrnIy2pSmuDpuhxIHTEEsIPIADe2OY4Fj1ZfmUwq10riwqatK9f4IS_BOFWg_MbvBrP0us6zAp3SlCVftXN9s4g62na10NPf__JNXnZq6ir56Mq8aqz87yaRJR_bk1-T3DBPm7FeelkBMcZ24uccxmbL0dPJPNejqrDZaid5NUjXzjfipImUA_VkZTJnIgBZQdeEto3qdezszV2PaiuFjRqwvXRvKQh7VjEy-E5tgYMjs-jR7SmwxdOrmiOmJFgndtHe68W5_dAO2otZIkCs7nW_Hve_LVNzQYi6ADIbVnj3wgdo379qk4G0yQGqDaHzB-i-82Bw1zLvIWrp4hHaP3W4PkbXDQFxTUAMsONVAuKGgLghIDYExJ6A2BPwPe7iVfrhmn7Y0Q8b-mFPvyfo56fj849fAtfeI1CE8nlASBbRiOmQZGyQgGORge9N2JBlgmQhUSkLOypUmqgErAOeDGikwZ4m3NTk4zQlT9FuMSn0c4SFAjciyhIt1JCKmAlwHPhARSlXIR1GrI0iv6dyaqu4SB_eOJJLSKSBRFpI2kj4zZc-Sxn0qgQmbTGX3TVXl05OlDKSZSxD-aOuj8VjE1wQ0USQNvrQzHQ2sLVtt1z3jWeJBDVh_v2lhZ5UpSRxAsYqAfemjZ5Z-jQ74Zn3YuPIS3Sw_DRfod35rNKv0T21APEwO0Q7rM8PHfP_AGiM6lk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+motor+and+visuospatial+cognition+screening+with+ensemble+learning%3A+A+computerised+clock+drawing+test+approach&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Lauraitis%2C+Andrius&rft.au=Ostreika%2C+Armantas&rft.au=Palubeckis%2C+Gintaras&rft.au=Motiejunas%2C+Liudas&rft.date=2025-10-01&rft.eissn=1879-0534&rft.volume=197&rft.issue=Pt+B&rft.spage=111107&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.111107&rft_id=info%3Apmid%2F40976212&rft.externalDocID=40976212
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482525X00160%2Fcov150h.gif