Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons

Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints change over time, solving DCOPs is a challenging task. Although solving DCOPs by evolutionary algorithms has attracted increasing interest in...

Full description

Saved in:
Bibliographic Details
Published in:Swarm and evolutionary computation Vol. 50; p. 100559
Main Authors: Wang, Yong, Yu, Jian, Yang, Shengxiang, Jiang, Shouyong, Zhao, Shuang
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2019
Subjects:
ISSN:2210-6502
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints change over time, solving DCOPs is a challenging task. Although solving DCOPs by evolutionary algorithms has attracted increasing interest in the community of evolutionary computation, the design of benchmark test functions of DCOPs is still insufficient. Therefore, we propose a test suite for DCOPs. A dynamic unconstrained optimization benchmark with good time-varying characteristics, called moving peaks benchmark, is chosen to be the objective function of our test suite. In addition, we design adjustable dynamic constraints, by which the size, number, and change severity of the feasible regions can be flexibly controlled. Furthermore, the performance of three dynamic constrained optimization evolutionary algorithms is tested on the proposed test suite, one of which is presented in this paper, named dynamic constrained optimization differential evolution (DyCODE). DyCODE includes three main phases: 1) the first phase intends to enter the feasible region from different directions promptly via a multi-population search strategy; 2) in the second phase, some excellent individuals chosen from the first phase form a new population to search for the optimal solution of the current environment; and 3) the third phase combines the memory individuals of the first two phases with some randomly generated individuals to re-initialize the population for the next environment. From the experiments, one can understand the strengths and weaknesses of the three compared algorithms for solving DCOPs in depth. Moreover, we also give some suggestions for researchers to apply these three algorithms on different occasions.
AbstractList Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints change over time, solving DCOPs is a challenging task. Although solving DCOPs by evolutionary algorithms has attracted increasing interest in the community of evolutionary computation, the design of benchmark test functions of DCOPs is still insufficient. Therefore, we propose a test suite for DCOPs. A dynamic unconstrained optimization benchmark with good time-varying characteristics, called moving peaks benchmark, is chosen to be the objective function of our test suite. In addition, we design adjustable dynamic constraints, by which the size, number, and change severity of the feasible regions can be flexibly controlled. Furthermore, the performance of three dynamic constrained optimization evolutionary algorithms is tested on the proposed test suite, one of which is presented in this paper, named dynamic constrained optimization differential evolution (DyCODE). DyCODE includes three main phases: 1) the first phase intends to enter the feasible region from different directions promptly via a multi-population search strategy; 2) in the second phase, some excellent individuals chosen from the first phase form a new population to search for the optimal solution of the current environment; and 3) the third phase combines the memory individuals of the first two phases with some randomly generated individuals to re-initialize the population for the next environment. From the experiments, one can understand the strengths and weaknesses of the three compared algorithms for solving DCOPs in depth. Moreover, we also give some suggestions for researchers to apply these three algorithms on different occasions.
ArticleNumber 100559
Author Zhao, Shuang
Yu, Jian
Yang, Shengxiang
Jiang, Shouyong
Wang, Yong
Author_xml – sequence: 1
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: ywang@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, 410083, China
– sequence: 2
  givenname: Jian
  surname: Yu
  fullname: Yu, Jian
  organization: School of Automation, Central South University, Changsha, 410083, China
– sequence: 3
  givenname: Shengxiang
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: School of Computer Science and Informatics, De Montfort University, Leicester, LE1 9BH, UK
– sequence: 4
  givenname: Shouyong
  surname: Jiang
  fullname: Jiang, Shouyong
  organization: School of Computer Science, University of Lincoln, Lincoln, LN6 7TS, UK
– sequence: 5
  givenname: Shuang
  surname: Zhao
  fullname: Zhao, Shuang
  email: shuangxy@csu.edu.cn
  organization: Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
BookMark eNqFkM1OAjEUhbvARESewM28wGA7pfNj4sIQ_ElI3OC6dm5bLZlpSVsw-PR2gJULvZub3HO-m5xzhUbWWYXQDcEzgkl5u5mFL7V3swKTJl0wY80IjYuC4LxkuLhE0xA2OE2Ji6SN0fty77pdNM4Kf8jkwYreQAbOhuiFsUpmbhtNb77F4LnL1irELOxMVGfTDgYhE1Zmovtw3sTPPkn9VngTkuMaXWjRBTU97wl6e1yuF8_56vXpZfGwyoHO65jTQjJZaVa3tcBQ1aTUhGjZkAp0EuZQ4BYqCoxKwdq6qlmtgDCttSRVoyidIHr6C96F4JXmW2_6FIoTzIdu-IYfu-FDN_zUTaKaXxSYeIw6xO_-Ye9PrEqx9kZ5HsAoC0oaryBy6cyf_A-RyIjV
CitedBy_id crossref_primary_10_1007_s10462_022_10167_8
crossref_primary_10_1109_TEVC_2021_3104343
crossref_primary_10_1109_ACCESS_2020_2999161
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_1016_j_swevo_2021_100936
crossref_primary_10_1016_j_swevo_2021_100924
crossref_primary_10_1016_j_swevo_2023_101256
crossref_primary_10_1109_TCYB_2020_3011828
crossref_primary_10_1109_TEVC_2021_3051172
crossref_primary_10_1016_j_eswa_2023_120594
crossref_primary_10_1016_j_eswa_2024_123592
crossref_primary_10_1016_j_ins_2021_01_029
crossref_primary_10_3390_pr9060911
Cites_doi 10.1109/TEVC.2006.872344
10.1109/TSMCB.2011.2161467
10.1016/S0045-7825(99)00389-8
10.1016/j.swevo.2018.03.010
10.1007/s00500-013-1048-0
10.1109/TCYB.2018.2809430
10.1109/4235.873238
10.1109/TEVC.2016.2567644
10.1016/j.patrec.2007.12.012
10.1109/4235.985692
10.1109/TEVC.2005.859468
10.1109/TII.2017.2743761
10.1109/TCYB.2018.2802912
10.1109/TEVC.2011.2180533
10.1016/j.swevo.2019.04.008
10.1023/A:1008202821328
10.1109/TEVC.2010.2046667
10.1007/s10951-008-0065-9
10.1016/j.conengprac.2007.09.003
10.1109/TEVC.2010.2059031
10.1109/TSMCB.2010.2097589
10.1016/j.swevo.2016.01.004
10.1016/j.swevo.2012.05.001
10.1109/TEVC.2017.2669098
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2019.100559
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2019_100559
S2210650219301671
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c348t-32d5d7f58b8a0c7816f11fd917cf5d74c20bc73c53da5b87858ec15fffd179e33
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497252300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Sat Nov 29 05:44:58 EST 2025
Tue Nov 18 20:44:46 EST 2025
Sat May 11 15:33:10 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Performance comparison
Evolutionary algorithms
Constraint-handling technique
Dynamic constrained optimization
Benchmark test functions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-32d5d7f58b8a0c7816f11fd917cf5d74c20bc73c53da5b87858ec15fffd179e33
OpenAccessLink https://dora.dmu.ac.uk/handle/2086/18623
ParticipantIDs crossref_primary_10_1016_j_swevo_2019_100559
crossref_citationtrail_10_1016_j_swevo_2019_100559
elsevier_sciencedirect_doi_10_1016_j_swevo_2019_100559
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Swarm and evolutionary computation
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ameca-Alducin, Mezura-Montes, Cruz-Ramirez (bib22) 2014
Bu, Luo, Yue (bib12) 2017; 21
Richter, Dietel (bib29) 2011
Zou, Li, Yang, Zheng, Peng, Pei (bib48) 2019; 44
Lu, Tang, Yao (bib30) 2016
Nguyen (bib1) 2011
Liu, Chen, Wang (bib49) 2011; 41
Singh, Isaacs, Nguyen, Ray, Yao (bib17) 2009
Cobb (bib24) 1990
Pantrigo, Sánchez, Montemayor, Duarte (bib5) 2008; 29
Wang, Li, Li, Wang (bib40) 2018
Zhang, Yue, Liao, Long (bib13) 2014; 18
Mertens, Holvoet, Berbers (bib2) 2006
Pal, Saha, Das, Coello Coello (bib21) 2013
Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello Coello, Herrera (bib42) 2019; 48
Parrott, Li (bib27) 2006; 10
Yang, Li (bib31) 2010; 14
Wang, Yin, Yang, Sun (bib39) May 2019; 49
Branke (bib8) 1999; vol. 3
Mallipeddi, Suganthan (bib16) 24, 2010
D Atkin, Burke, Greenwood, Reeson (bib4) 2008; 11
Nguyen, Yao (bib14) 2012; 16
Ameca-Alducin, Mezura-Montes, Cruz-Ramírez (bib23) 2015
Das, Suganthan (bib35) 2011; 15
Liu, Wang, Yang, Tang (bib38) April 2019; 49
Wang, Xu, Sun, Yang (bib37) 2017; 21
Runarsson, Yao (bib45) 2000; 4
Clerc, Kennedy (bib33) 2002; 6
Liu (bib28) 2010; vol. 5
Storn, Price (bib34) 1997; 11
Liang, Runarsson, Mezura-Montes, Clerc, Suganthan, Coello Coello, Deb (bib15) 2006; 41
Huang, Hamad, Amit, Zhang (bib50) 2017
Mitra, Venayagamoorthy (bib7) 2008
Nguyen, Yao (bib9) 2009
Aragón, Esquivel, Coello Coello (bib20) 2010; 14
Das, Mullick, Suganthan (bib41) 2016; 27
Cai, Wang (bib47) 2006; 10
Richter (bib10) 2010
Nguyen, Yang, Branke (bib44) 2012; 6
Wang, Cai (bib43) 2012; 42
Liu (bib11) 2008; vol. 7
Aragón, Esquivel, Coello Coello (bib19) 2013
Deb (bib32) 2000; 186
Ioannou, Chassiakos, Jula, Unglaub (bib51) 2002
Sonntag, Su, Stursberg, Engell (bib6) 2008; 16
Grefenstette (bib25) 1992; vol. 2
Richter, Yang (bib26) 2008
Takahama, Sakai (bib46) 2010
Jin, Termansen, Hubacek, Holden, Kirkby (bib3) 2007
Alam, Ray, Anavatti (bib18) 2014
Wang, Liu, Long, Zhang, Yang (bib36) 2018; 14
Bu (10.1016/j.swevo.2019.100559_bib12) 2017; 21
Aragón (10.1016/j.swevo.2019.100559_bib19) 2013
Aragón (10.1016/j.swevo.2019.100559_bib20) 2010; 14
Yang (10.1016/j.swevo.2019.100559_bib31) 2010; 14
Liang (10.1016/j.swevo.2019.100559_bib15) 2006; 41
Wang (10.1016/j.swevo.2019.100559_bib37) 2017; 21
Lu (10.1016/j.swevo.2019.100559_bib30) 2016
Liu (10.1016/j.swevo.2019.100559_bib28) 2010; vol. 5
Wang (10.1016/j.swevo.2019.100559_bib40) 2018
Takahama (10.1016/j.swevo.2019.100559_bib46) 2010
Ameca-Alducin (10.1016/j.swevo.2019.100559_bib22) 2014
Pantrigo (10.1016/j.swevo.2019.100559_bib5) 2008; 29
Liu (10.1016/j.swevo.2019.100559_bib11) 2008; vol. 7
D Atkin (10.1016/j.swevo.2019.100559_bib4) 2008; 11
Sonntag (10.1016/j.swevo.2019.100559_bib6) 2008; 16
Wang (10.1016/j.swevo.2019.100559_bib39) 2019; 49
Ameca-Alducin (10.1016/j.swevo.2019.100559_bib23) 2015
Mertens (10.1016/j.swevo.2019.100559_bib2) 2006
Del Ser (10.1016/j.swevo.2019.100559_bib42) 2019; 48
Nguyen (10.1016/j.swevo.2019.100559_bib9) 2009
Richter (10.1016/j.swevo.2019.100559_bib10) 2010
Nguyen (10.1016/j.swevo.2019.100559_bib14) 2012; 16
Mallipeddi (10.1016/j.swevo.2019.100559_bib16) 2010
Runarsson (10.1016/j.swevo.2019.100559_bib45) 2000; 4
Clerc (10.1016/j.swevo.2019.100559_bib33) 2002; 6
Liu (10.1016/j.swevo.2019.100559_bib38) 2019; 49
Branke (10.1016/j.swevo.2019.100559_bib8) 1999; vol. 3
Nguyen (10.1016/j.swevo.2019.100559_bib44) 2012; 6
Ioannou (10.1016/j.swevo.2019.100559_bib51) 2002
Das (10.1016/j.swevo.2019.100559_bib35) 2011; 15
Huang (10.1016/j.swevo.2019.100559_bib50) 2017
Wang (10.1016/j.swevo.2019.100559_bib43) 2012; 42
Richter (10.1016/j.swevo.2019.100559_bib26) 2008
Grefenstette (10.1016/j.swevo.2019.100559_bib25) 1992; vol. 2
Alam (10.1016/j.swevo.2019.100559_bib18) 2014
Pal (10.1016/j.swevo.2019.100559_bib21) 2013
Cobb (10.1016/j.swevo.2019.100559_bib24) 1990
Jin (10.1016/j.swevo.2019.100559_bib3) 2007
Cai (10.1016/j.swevo.2019.100559_bib47) 2006; 10
Parrott (10.1016/j.swevo.2019.100559_bib27) 2006; 10
Nguyen (10.1016/j.swevo.2019.100559_bib1) 2011
Zhang (10.1016/j.swevo.2019.100559_bib13) 2014; 18
Richter (10.1016/j.swevo.2019.100559_bib29) 2011
Storn (10.1016/j.swevo.2019.100559_bib34) 1997; 11
Singh (10.1016/j.swevo.2019.100559_bib17) 2009
Mitra (10.1016/j.swevo.2019.100559_bib7) 2008
Das (10.1016/j.swevo.2019.100559_bib41) 2016; 27
Wang (10.1016/j.swevo.2019.100559_bib36) 2018; 14
Zou (10.1016/j.swevo.2019.100559_bib48) 2019; 44
Liu (10.1016/j.swevo.2019.100559_bib49) 2011; 41
Deb (10.1016/j.swevo.2019.100559_bib32) 2000; 186
References_xml – start-page: 1213
  year: 2007
  end-page: 1220
  ident: bib3
  article-title: Adaptive farming strategies for dynamic economic environment
  publication-title: 2007 IEEE Congress on Evolutionary Computation
– volume: 10
  start-page: 440
  year: 2006
  end-page: 458
  ident: bib27
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Trans. Evol. Comput.
– volume: vol. 3
  start-page: 1875
  year: 1999
  end-page: 1882
  ident: bib8
  article-title: Memory enhanced evolutionary algorithms for changing optimization problems
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation
– start-page: 596
  year: 2008
  end-page: 605
  ident: bib26
  article-title: Memory based on abstraction for dynamic fitness functions
  publication-title: Appl. Evolut. Comput.
– start-page: 552
  year: 2010
  end-page: 561
  ident: bib10
  article-title: Memory design for constrained dynamic optimization problems
  publication-title: Appl. Evolut. Comput.
– volume: 14
  start-page: 959
  year: 2010
  end-page: 974
  ident: bib31
  article-title: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments
  publication-title: IEEE Trans. Evol. Comput.
– volume: 41
  year: 2006
  ident: bib15
  article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization
  publication-title: J. Appl. Mech.
– volume: 27
  start-page: 1
  year: 2016
  end-page: 30
  ident: bib41
  article-title: Recent advances in differential evolution–an updated survey
  publication-title: Swarm Evolut. Comput.
– volume: 16
  start-page: 976
  year: 2008
  end-page: 990
  ident: bib6
  article-title: Optimized start-up control of an industrial-scale evaporation system with hybrid dynamics
  publication-title: Contr. Eng. Pract.
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: bib35
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2008
  end-page: 8
  ident: bib7
  article-title: Real time implementation of an artificial immune system based controller for a dstatcom in an electric ship power system
  publication-title: 2008 IEEE Industry Applications Society Annual Meeting
– volume: 44
  start-page: 247
  year: 2019
  end-page: 259
  ident: bib48
  article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model
  publication-title: Swarm Evolut. Comput.
– start-page: 2825
  year: 2014
  end-page: 2832
  ident: bib18
  article-title: Practical application of an evolutionary algorithm for the design and construction of a six-inch submarine
  publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
– start-page: 368
  year: 2017
  end-page: 372
  ident: bib50
  article-title: Variant PID controller design for autonomous visual tracking of oil and gas pipelines via an unmanned aerial vehicle
  publication-title: 2017 17th International Conference on Control, Automation and Systems (ICCAS)
– volume: 21
  start-page: 14
  year: 2017
  end-page: 33
  ident: bib12
  article-title: Continuous dynamic constrained optimization with ensemble of locating and tracking feasible regions strategies
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2018
  end-page: 14
  ident: bib40
  article-title: Composite differential evolution for constrained evolutionary optimization
  publication-title: IEEE Trans. Syst., Man, Cybern.: Systems
– volume: 41
  start-page: 867
  year: 2011
  end-page: 880
  ident: bib49
  article-title: CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
– volume: 49
  start-page: 1642
  year: May 2019
  end-page: 1656
  ident: bib39
  article-title: Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints
  publication-title: IEEE Trans. Cybern.
– start-page: 1421
  year: 2006
  end-page: 1423
  ident: bib2
  article-title: The DynCOAA algorithm for dynamic constraint optimization problems
  publication-title: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems
– volume: 18
  start-page: 185
  year: 2014
  end-page: 206
  ident: bib13
  article-title: Danger theory based artificial immune system solving dynamic constrained single-objective optimization
  publication-title: Soft Comput.
– start-page: 334
  year: 2011
  end-page: 343
  ident: bib29
  article-title: Solving dynamic constrained optimization problems with asynchronous change pattern
  publication-title: European Conference on the Applications of Evolutionary Computation
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib34
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– start-page: 203
  year: 2016
  end-page: 213
  ident: bib30
  article-title: Speciated evolutionary algorithm for dynamic constrained optimisation
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: bib32
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 1
  year: 2010
  end-page: 9
  ident: bib46
  article-title: Constrained optimization by the
  publication-title: 2010 IEEE Congress on Evolutionary Computation
– volume: vol. 2
  start-page: 137
  year: 1992
  end-page: 144
  ident: bib25
  article-title: Genetic algorithms for changing environments
  publication-title: International Conference on Parallel Problem Solving from Nature (PPSN)
– volume: 21
  start-page: 665
  year: 2017
  end-page: 680
  ident: bib37
  article-title: A two-phase differential evolution for uniform designs in constrained experimental domains
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 975
  year: 2014
  end-page: 982
  ident: bib22
  article-title: Differential evolution with combined variants for dynamic constrained optimization
  publication-title: 2014 IEEE Congress on Evolutionary Computation
– year: 2011
  ident: bib1
  article-title: Continuous Dynamic Optimisation Using Evolutionary Algorithms
– volume: 29
  start-page: 1160
  year: 2008
  end-page: 1174
  ident: bib5
  article-title: Multi-dimensional visual tracking using scatter search particle filter
  publication-title: Pattern Recognit. Lett.
– volume: 6
  start-page: 1
  year: 2012
  end-page: 24
  ident: bib44
  article-title: Evolutionary dynamic optimization: a survey of the state of the art
  publication-title: Swarm Evolut. Comput.
– volume: 11
  start-page: 323
  year: 2008
  ident: bib4
  article-title: On-line decision support for take-off runway scheduling with uncertain taxi times at london heathrow airport
  publication-title: J. Sched.
– volume: 14
  year: 2010
  ident: bib20
  article-title: Artificial immune system for solving global optimization problems
  publication-title: Intel. Artif.
– volume: vol. 7
  start-page: 650
  year: 2008
  end-page: 653
  ident: bib11
  article-title: New dynamic constrained optimization PSO algorithm
  publication-title: Fourth International Conference on Natural Computation, ICNC'08
– volume: 42
  start-page: 203
  year: 2012
  end-page: 217
  ident: bib43
  article-title: A dynamic hybrid framework for constrained evolutionary optimization
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
– start-page: 690
  year: 2009
  end-page: 697
  ident: bib9
  article-title: Benchmarking and solving dynamic constrained problems
  publication-title: 2009 IEEE Congress on Evolutionary Computation
– start-page: 2414
  year: 2013
  end-page: 2421
  ident: bib21
  article-title: Dynamic constrained optimization with offspring repair based gravitational search algorithm
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– year: 24, 2010
  ident: bib16
  article-title: Problem Definitions and Evaluation Criteria for the Cec 2010 Competition on Constrained Real-Parameter Optimization
– volume: 49
  start-page: 1403
  year: April 2019
  end-page: 1416
  ident: bib38
  article-title: An adaptive framework to tune the coordinate systems in nature-inspired optimization algorithms
  publication-title: IEEE Trans. Cybern.
– volume: 14
  start-page: 1040
  year: 2018
  end-page: 1054
  ident: bib36
  article-title: Differential evolution with a new encoding mechanism for optimizing wind farm layout
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 225
  year: 2013
  end-page: 263
  ident: bib19
  article-title: Artificial immune system for solving dynamic constrained optimization problems
  publication-title: Metaheuristics for Dynamic Optimization
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: bib42
  article-title: Bio-inspired computation: where we stand and what's next
  publication-title: Swarm Evolut. Comput.
– volume: 16
  start-page: 769
  year: 2012
  end-page: 786
  ident: bib14
  article-title: Continuous dynamic constrained optimization the challenges
  publication-title: IEEE Trans. Evol. Comput.
– year: 1990
  ident: bib24
  article-title: An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-dependent Nonstationary Environments
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib33
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 658
  year: 2006
  end-page: 675
  ident: bib47
  article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 4
  start-page: 284
  year: 2000
  end-page: 294
  ident: bib45
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 3127
  year: 2009
  end-page: 3134
  ident: bib17
  article-title: Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems
  publication-title: 2009 IEEE Congress on Evolutionary Computation
– start-page: 241
  year: 2015
  end-page: 248
  ident: bib23
  article-title: A repair method for differential evolution with combined variants to solve dynamic constrained optimization problems
  publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
– volume: vol. 5
  start-page: 2400
  year: 2010
  end-page: 2402
  ident: bib28
  article-title: New method for solving a class of dynamic nonlinear constrained optimization problems
  publication-title: The Sixth International Conference on Natural Computation (ICNC)
– year: 2002
  ident: bib51
  article-title: Dynamic Optimization of Cargo Movement by Trucks in Metropolitan Areas with Adjacent Ports
– start-page: 596
  year: 2008
  ident: 10.1016/j.swevo.2019.100559_bib26
  article-title: Memory based on abstraction for dynamic fitness functions
  publication-title: Appl. Evolut. Comput.
– year: 2010
  ident: 10.1016/j.swevo.2019.100559_bib16
– volume: 10
  start-page: 658
  issue: 6
  year: 2006
  ident: 10.1016/j.swevo.2019.100559_bib47
  article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872344
– volume: 42
  start-page: 203
  issue: 1
  year: 2012
  ident: 10.1016/j.swevo.2019.100559_bib43
  article-title: A dynamic hybrid framework for constrained evolutionary optimization
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
  doi: 10.1109/TSMCB.2011.2161467
– start-page: 368
  year: 2017
  ident: 10.1016/j.swevo.2019.100559_bib50
  article-title: Variant PID controller design for autonomous visual tracking of oil and gas pipelines via an unmanned aerial vehicle
– volume: 186
  start-page: 311
  issue: 2
  year: 2000
  ident: 10.1016/j.swevo.2019.100559_bib32
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– start-page: 690
  year: 2009
  ident: 10.1016/j.swevo.2019.100559_bib9
  article-title: Benchmarking and solving dynamic constrained problems
– start-page: 975
  year: 2014
  ident: 10.1016/j.swevo.2019.100559_bib22
  article-title: Differential evolution with combined variants for dynamic constrained optimization
– volume: 44
  start-page: 247
  year: 2019
  ident: 10.1016/j.swevo.2019.100559_bib48
  article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2018.03.010
– start-page: 2825
  year: 2014
  ident: 10.1016/j.swevo.2019.100559_bib18
  article-title: Practical application of an evolutionary algorithm for the design and construction of a six-inch submarine
– start-page: 203
  year: 2016
  ident: 10.1016/j.swevo.2019.100559_bib30
  article-title: Speciated evolutionary algorithm for dynamic constrained optimisation
– start-page: 225
  year: 2013
  ident: 10.1016/j.swevo.2019.100559_bib19
  article-title: Artificial immune system for solving dynamic constrained optimization problems
– start-page: 552
  year: 2010
  ident: 10.1016/j.swevo.2019.100559_bib10
  article-title: Memory design for constrained dynamic optimization problems
  publication-title: Appl. Evolut. Comput.
– volume: 18
  start-page: 185
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2019.100559_bib13
  article-title: Danger theory based artificial immune system solving dynamic constrained single-objective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-013-1048-0
– volume: 49
  start-page: 1642
  issue: 5
  year: 2019
  ident: 10.1016/j.swevo.2019.100559_bib39
  article-title: Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2809430
– year: 2011
  ident: 10.1016/j.swevo.2019.100559_bib1
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.swevo.2019.100559_bib45
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.873238
– volume: 21
  start-page: 14
  issue: 1
  year: 2017
  ident: 10.1016/j.swevo.2019.100559_bib12
  article-title: Continuous dynamic constrained optimization with ensemble of locating and tracking feasible regions strategies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2567644
– volume: vol. 5
  start-page: 2400
  year: 2010
  ident: 10.1016/j.swevo.2019.100559_bib28
  article-title: New method for solving a class of dynamic nonlinear constrained optimization problems
– volume: 29
  start-page: 1160
  issue: 8
  year: 2008
  ident: 10.1016/j.swevo.2019.100559_bib5
  article-title: Multi-dimensional visual tracking using scatter search particle filter
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.12.012
– start-page: 2414
  year: 2013
  ident: 10.1016/j.swevo.2019.100559_bib21
  article-title: Dynamic constrained optimization with offspring repair based gravitational search algorithm
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.swevo.2019.100559_bib40
  article-title: Composite differential evolution for constrained evolutionary optimization
  publication-title: IEEE Trans. Syst., Man, Cybern.: Systems
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.swevo.2019.100559_bib33
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 41
  issue: 8
  year: 2006
  ident: 10.1016/j.swevo.2019.100559_bib15
  article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization
  publication-title: J. Appl. Mech.
– volume: vol. 2
  start-page: 137
  year: 1992
  ident: 10.1016/j.swevo.2019.100559_bib25
  article-title: Genetic algorithms for changing environments
– volume: 10
  start-page: 440
  issue: 4
  year: 2006
  ident: 10.1016/j.swevo.2019.100559_bib27
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.859468
– volume: 14
  start-page: 1040
  issue: 3
  year: 2018
  ident: 10.1016/j.swevo.2019.100559_bib36
  article-title: Differential evolution with a new encoding mechanism for optimizing wind farm layout
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2743761
– volume: 49
  start-page: 1403
  issue: 4
  year: 2019
  ident: 10.1016/j.swevo.2019.100559_bib38
  article-title: An adaptive framework to tune the coordinate systems in nature-inspired optimization algorithms
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2802912
– volume: 16
  start-page: 769
  issue: 6
  year: 2012
  ident: 10.1016/j.swevo.2019.100559_bib14
  article-title: Continuous dynamic constrained optimization the challenges
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2180533
– start-page: 1213
  year: 2007
  ident: 10.1016/j.swevo.2019.100559_bib3
  article-title: Adaptive farming strategies for dynamic economic environment
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.swevo.2019.100559_bib42
  article-title: Bio-inspired computation: where we stand and what's next
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2019.04.008
– volume: vol. 3
  start-page: 1875
  year: 1999
  ident: 10.1016/j.swevo.2019.100559_bib8
  article-title: Memory enhanced evolutionary algorithms for changing optimization problems
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.swevo.2019.100559_bib34
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 14
  issue: 46
  year: 2010
  ident: 10.1016/j.swevo.2019.100559_bib20
  article-title: Artificial immune system for solving global optimization problems
  publication-title: Intel. Artif.
– volume: 14
  start-page: 959
  issue: 6
  year: 2010
  ident: 10.1016/j.swevo.2019.100559_bib31
  article-title: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2046667
– start-page: 1421
  year: 2006
  ident: 10.1016/j.swevo.2019.100559_bib2
  article-title: The DynCOAA algorithm for dynamic constraint optimization problems
– volume: 11
  start-page: 323
  issue: 5
  year: 2008
  ident: 10.1016/j.swevo.2019.100559_bib4
  article-title: On-line decision support for take-off runway scheduling with uncertain taxi times at london heathrow airport
  publication-title: J. Sched.
  doi: 10.1007/s10951-008-0065-9
– volume: 16
  start-page: 976
  issue: 8
  year: 2008
  ident: 10.1016/j.swevo.2019.100559_bib6
  article-title: Optimized start-up control of an industrial-scale evaporation system with hybrid dynamics
  publication-title: Contr. Eng. Pract.
  doi: 10.1016/j.conengprac.2007.09.003
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2019.100559_bib35
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume: 41
  start-page: 867
  issue: 3
  year: 2011
  ident: 10.1016/j.swevo.2019.100559_bib49
  article-title: CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
  doi: 10.1109/TSMCB.2010.2097589
– volume: 27
  start-page: 1
  year: 2016
  ident: 10.1016/j.swevo.2019.100559_bib41
  article-title: Recent advances in differential evolution–an updated survey
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2016.01.004
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.swevo.2019.100559_bib44
  article-title: Evolutionary dynamic optimization: a survey of the state of the art
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2012.05.001
– start-page: 1
  year: 2008
  ident: 10.1016/j.swevo.2019.100559_bib7
  article-title: Real time implementation of an artificial immune system based controller for a dstatcom in an electric ship power system
– start-page: 241
  year: 2015
  ident: 10.1016/j.swevo.2019.100559_bib23
  article-title: A repair method for differential evolution with combined variants to solve dynamic constrained optimization problems
– year: 2002
  ident: 10.1016/j.swevo.2019.100559_bib51
– start-page: 1
  year: 2010
  ident: 10.1016/j.swevo.2019.100559_bib46
  article-title: Constrained optimization by the ϵ constrained differential evolution with an archive and gradient-based mutation
– volume: vol. 7
  start-page: 650
  year: 2008
  ident: 10.1016/j.swevo.2019.100559_bib11
  article-title: New dynamic constrained optimization PSO algorithm
– start-page: 334
  year: 2011
  ident: 10.1016/j.swevo.2019.100559_bib29
  article-title: Solving dynamic constrained optimization problems with asynchronous change pattern
– year: 1990
  ident: 10.1016/j.swevo.2019.100559_bib24
– volume: 21
  start-page: 665
  issue: 5
  year: 2017
  ident: 10.1016/j.swevo.2019.100559_bib37
  article-title: A two-phase differential evolution for uniform designs in constrained experimental domains
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669098
– start-page: 3127
  year: 2009
  ident: 10.1016/j.swevo.2019.100559_bib17
  article-title: Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems
SSID ssj0000602559
Score 2.281405
Snippet Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100559
SubjectTerms Benchmark test functions
Constraint-handling technique
Dynamic constrained optimization
Evolutionary algorithms
Performance comparison
Title Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons
URI https://dx.doi.org/10.1016/j.swevo.2019.100559
Volume 50
WOSCitedRecordID wos000497252300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuUF6iQJEP3CDV5mmHW4UWtRwqJIrYnkLi2H1om1Sb3e3yB_jdjO1x6oVqRQ9colU8mTzmy2Q8O56PkLdhlVQpi7IAXkIRJEzwoCwVvFdKN_Mu60SOlCGbYEdHfDLJvwwGv9xamOWUNQ1frfKr_2pq2AfG1ktn72DuXinsgN9gdNiC2WH7T4YfL1G9roerLeG8Li7vDBsExJcteIlLXH5ps-vd_F23gNgTxRZIH67buE5P29n5_OwSi9V17VHnB7Rfr8uZZdmQ_nmFIYtY-5f_O2amT1r8WBo6MIMiD6InLn99JpvTFQz0sloKh9rFT6cEExZhjiv3er8WwSwzgMBwzQnb7rPoRUPdGSy_1cHbXMPFXncNd6Ur8_K9G-n1dtp_fOb64kNX13ZRGCWFVlJYJffIVsTSnA_J1v7hePK5z9aNMjP30kyF7updCytTLPjX5dwe5nihy_E2eYhzDrpvsfKYDGTzhDxyfB4U3ftT8sOHDkXoUA861IfOB6qBQw1wqA8cCmigPXCoB5xn5Nun8fHHgwAZOAIRJ3wexFGd1kylvOLlSDAeZioMVQ1TfKFgIBHRqBIsFmlcl2nFGU-5FGGqlKrB0cs4fk6GTdvIF4RmTCVhpaSAmDFRVVYxiIpiFSvQyspa7pDIPbBCYHt6fXPTYoO9dsj7_qAr251ls3jmLFFggGkDxwLgtenAl3c7zyvy4Ab4r8kQnr_cJffFcn7ezd4gtn4Dcu-ktQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+dynamic+constrained+optimization%3A+Test+suite+construction+and+algorithm+comparisons&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Yong&rft.au=Yu%2C+Jian&rft.au=Yang%2C+Shengxiang&rft.au=Jiang%2C+Shouyong&rft.date=2019-11-01&rft.issn=2210-6502&rft.volume=50&rft.spage=100559&rft_id=info:doi/10.1016%2Fj.swevo.2019.100559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2019_100559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon