Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons
Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints change over time, solving DCOPs is a challenging task. Although solving DCOPs by evolutionary algorithms has attracted increasing interest in...
Saved in:
| Published in: | Swarm and evolutionary computation Vol. 50; p. 100559 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2019
|
| Subjects: | |
| ISSN: | 2210-6502 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints change over time, solving DCOPs is a challenging task. Although solving DCOPs by evolutionary algorithms has attracted increasing interest in the community of evolutionary computation, the design of benchmark test functions of DCOPs is still insufficient. Therefore, we propose a test suite for DCOPs. A dynamic unconstrained optimization benchmark with good time-varying characteristics, called moving peaks benchmark, is chosen to be the objective function of our test suite. In addition, we design adjustable dynamic constraints, by which the size, number, and change severity of the feasible regions can be flexibly controlled. Furthermore, the performance of three dynamic constrained optimization evolutionary algorithms is tested on the proposed test suite, one of which is presented in this paper, named dynamic constrained optimization differential evolution (DyCODE). DyCODE includes three main phases: 1) the first phase intends to enter the feasible region from different directions promptly via a multi-population search strategy; 2) in the second phase, some excellent individuals chosen from the first phase form a new population to search for the optimal solution of the current environment; and 3) the third phase combines the memory individuals of the first two phases with some randomly generated individuals to re-initialize the population for the next environment. From the experiments, one can understand the strengths and weaknesses of the three compared algorithms for solving DCOPs in depth. Moreover, we also give some suggestions for researchers to apply these three algorithms on different occasions. |
|---|---|
| AbstractList | Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints change over time, solving DCOPs is a challenging task. Although solving DCOPs by evolutionary algorithms has attracted increasing interest in the community of evolutionary computation, the design of benchmark test functions of DCOPs is still insufficient. Therefore, we propose a test suite for DCOPs. A dynamic unconstrained optimization benchmark with good time-varying characteristics, called moving peaks benchmark, is chosen to be the objective function of our test suite. In addition, we design adjustable dynamic constraints, by which the size, number, and change severity of the feasible regions can be flexibly controlled. Furthermore, the performance of three dynamic constrained optimization evolutionary algorithms is tested on the proposed test suite, one of which is presented in this paper, named dynamic constrained optimization differential evolution (DyCODE). DyCODE includes three main phases: 1) the first phase intends to enter the feasible region from different directions promptly via a multi-population search strategy; 2) in the second phase, some excellent individuals chosen from the first phase form a new population to search for the optimal solution of the current environment; and 3) the third phase combines the memory individuals of the first two phases with some randomly generated individuals to re-initialize the population for the next environment. From the experiments, one can understand the strengths and weaknesses of the three compared algorithms for solving DCOPs in depth. Moreover, we also give some suggestions for researchers to apply these three algorithms on different occasions. |
| ArticleNumber | 100559 |
| Author | Zhao, Shuang Yu, Jian Yang, Shengxiang Jiang, Shouyong Wang, Yong |
| Author_xml | – sequence: 1 givenname: Yong surname: Wang fullname: Wang, Yong email: ywang@csu.edu.cn organization: School of Automation, Central South University, Changsha, 410083, China – sequence: 2 givenname: Jian surname: Yu fullname: Yu, Jian organization: School of Automation, Central South University, Changsha, 410083, China – sequence: 3 givenname: Shengxiang surname: Yang fullname: Yang, Shengxiang email: syang@dmu.ac.uk organization: School of Computer Science and Informatics, De Montfort University, Leicester, LE1 9BH, UK – sequence: 4 givenname: Shouyong surname: Jiang fullname: Jiang, Shouyong organization: School of Computer Science, University of Lincoln, Lincoln, LN6 7TS, UK – sequence: 5 givenname: Shuang surname: Zhao fullname: Zhao, Shuang email: shuangxy@csu.edu.cn organization: Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China |
| BookMark | eNqFkM1OAjEUhbvARESewM28wGA7pfNj4sIQ_ElI3OC6dm5bLZlpSVsw-PR2gJULvZub3HO-m5xzhUbWWYXQDcEzgkl5u5mFL7V3swKTJl0wY80IjYuC4LxkuLhE0xA2OE2Ji6SN0fty77pdNM4Kf8jkwYreQAbOhuiFsUpmbhtNb77F4LnL1irELOxMVGfTDgYhE1Zmovtw3sTPPkn9VngTkuMaXWjRBTU97wl6e1yuF8_56vXpZfGwyoHO65jTQjJZaVa3tcBQ1aTUhGjZkAp0EuZQ4BYqCoxKwdq6qlmtgDCttSRVoyidIHr6C96F4JXmW2_6FIoTzIdu-IYfu-FDN_zUTaKaXxSYeIw6xO_-Ye9PrEqx9kZ5HsAoC0oaryBy6cyf_A-RyIjV |
| CitedBy_id | crossref_primary_10_1007_s10462_022_10167_8 crossref_primary_10_1109_TEVC_2021_3104343 crossref_primary_10_1109_ACCESS_2020_2999161 crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_1016_j_swevo_2021_100936 crossref_primary_10_1016_j_swevo_2021_100924 crossref_primary_10_1016_j_swevo_2023_101256 crossref_primary_10_1109_TCYB_2020_3011828 crossref_primary_10_1109_TEVC_2021_3051172 crossref_primary_10_1016_j_eswa_2023_120594 crossref_primary_10_1016_j_eswa_2024_123592 crossref_primary_10_1016_j_ins_2021_01_029 crossref_primary_10_3390_pr9060911 |
| Cites_doi | 10.1109/TEVC.2006.872344 10.1109/TSMCB.2011.2161467 10.1016/S0045-7825(99)00389-8 10.1016/j.swevo.2018.03.010 10.1007/s00500-013-1048-0 10.1109/TCYB.2018.2809430 10.1109/4235.873238 10.1109/TEVC.2016.2567644 10.1016/j.patrec.2007.12.012 10.1109/4235.985692 10.1109/TEVC.2005.859468 10.1109/TII.2017.2743761 10.1109/TCYB.2018.2802912 10.1109/TEVC.2011.2180533 10.1016/j.swevo.2019.04.008 10.1023/A:1008202821328 10.1109/TEVC.2010.2046667 10.1007/s10951-008-0065-9 10.1016/j.conengprac.2007.09.003 10.1109/TEVC.2010.2059031 10.1109/TSMCB.2010.2097589 10.1016/j.swevo.2016.01.004 10.1016/j.swevo.2012.05.001 10.1109/TEVC.2017.2669098 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2019.100559 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2019_100559 S2210650219301671 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c348t-32d5d7f58b8a0c7816f11fd917cf5d74c20bc73c53da5b87858ec15fffd179e33 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497252300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Sat Nov 29 05:44:58 EST 2025 Tue Nov 18 20:44:46 EST 2025 Sat May 11 15:33:10 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Performance comparison Evolutionary algorithms Constraint-handling technique Dynamic constrained optimization Benchmark test functions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-32d5d7f58b8a0c7816f11fd917cf5d74c20bc73c53da5b87858ec15fffd179e33 |
| OpenAccessLink | https://dora.dmu.ac.uk/handle/2086/18623 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2019_100559 crossref_citationtrail_10_1016_j_swevo_2019_100559 elsevier_sciencedirect_doi_10_1016_j_swevo_2019_100559 |
| PublicationCentury | 2000 |
| PublicationDate | November 2019 2019-11-00 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ameca-Alducin, Mezura-Montes, Cruz-Ramirez (bib22) 2014 Bu, Luo, Yue (bib12) 2017; 21 Richter, Dietel (bib29) 2011 Zou, Li, Yang, Zheng, Peng, Pei (bib48) 2019; 44 Lu, Tang, Yao (bib30) 2016 Nguyen (bib1) 2011 Liu, Chen, Wang (bib49) 2011; 41 Singh, Isaacs, Nguyen, Ray, Yao (bib17) 2009 Cobb (bib24) 1990 Pantrigo, Sánchez, Montemayor, Duarte (bib5) 2008; 29 Wang, Li, Li, Wang (bib40) 2018 Zhang, Yue, Liao, Long (bib13) 2014; 18 Mertens, Holvoet, Berbers (bib2) 2006 Pal, Saha, Das, Coello Coello (bib21) 2013 Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello Coello, Herrera (bib42) 2019; 48 Parrott, Li (bib27) 2006; 10 Yang, Li (bib31) 2010; 14 Wang, Yin, Yang, Sun (bib39) May 2019; 49 Branke (bib8) 1999; vol. 3 Mallipeddi, Suganthan (bib16) 24, 2010 D Atkin, Burke, Greenwood, Reeson (bib4) 2008; 11 Nguyen, Yao (bib14) 2012; 16 Ameca-Alducin, Mezura-Montes, Cruz-Ramírez (bib23) 2015 Das, Suganthan (bib35) 2011; 15 Liu, Wang, Yang, Tang (bib38) April 2019; 49 Wang, Xu, Sun, Yang (bib37) 2017; 21 Runarsson, Yao (bib45) 2000; 4 Clerc, Kennedy (bib33) 2002; 6 Liu (bib28) 2010; vol. 5 Storn, Price (bib34) 1997; 11 Liang, Runarsson, Mezura-Montes, Clerc, Suganthan, Coello Coello, Deb (bib15) 2006; 41 Huang, Hamad, Amit, Zhang (bib50) 2017 Mitra, Venayagamoorthy (bib7) 2008 Nguyen, Yao (bib9) 2009 Aragón, Esquivel, Coello Coello (bib20) 2010; 14 Das, Mullick, Suganthan (bib41) 2016; 27 Cai, Wang (bib47) 2006; 10 Richter (bib10) 2010 Nguyen, Yang, Branke (bib44) 2012; 6 Wang, Cai (bib43) 2012; 42 Liu (bib11) 2008; vol. 7 Aragón, Esquivel, Coello Coello (bib19) 2013 Deb (bib32) 2000; 186 Ioannou, Chassiakos, Jula, Unglaub (bib51) 2002 Sonntag, Su, Stursberg, Engell (bib6) 2008; 16 Grefenstette (bib25) 1992; vol. 2 Richter, Yang (bib26) 2008 Takahama, Sakai (bib46) 2010 Jin, Termansen, Hubacek, Holden, Kirkby (bib3) 2007 Alam, Ray, Anavatti (bib18) 2014 Wang, Liu, Long, Zhang, Yang (bib36) 2018; 14 Bu (10.1016/j.swevo.2019.100559_bib12) 2017; 21 Aragón (10.1016/j.swevo.2019.100559_bib19) 2013 Aragón (10.1016/j.swevo.2019.100559_bib20) 2010; 14 Yang (10.1016/j.swevo.2019.100559_bib31) 2010; 14 Liang (10.1016/j.swevo.2019.100559_bib15) 2006; 41 Wang (10.1016/j.swevo.2019.100559_bib37) 2017; 21 Lu (10.1016/j.swevo.2019.100559_bib30) 2016 Liu (10.1016/j.swevo.2019.100559_bib28) 2010; vol. 5 Wang (10.1016/j.swevo.2019.100559_bib40) 2018 Takahama (10.1016/j.swevo.2019.100559_bib46) 2010 Ameca-Alducin (10.1016/j.swevo.2019.100559_bib22) 2014 Pantrigo (10.1016/j.swevo.2019.100559_bib5) 2008; 29 Liu (10.1016/j.swevo.2019.100559_bib11) 2008; vol. 7 D Atkin (10.1016/j.swevo.2019.100559_bib4) 2008; 11 Sonntag (10.1016/j.swevo.2019.100559_bib6) 2008; 16 Wang (10.1016/j.swevo.2019.100559_bib39) 2019; 49 Ameca-Alducin (10.1016/j.swevo.2019.100559_bib23) 2015 Mertens (10.1016/j.swevo.2019.100559_bib2) 2006 Del Ser (10.1016/j.swevo.2019.100559_bib42) 2019; 48 Nguyen (10.1016/j.swevo.2019.100559_bib9) 2009 Richter (10.1016/j.swevo.2019.100559_bib10) 2010 Nguyen (10.1016/j.swevo.2019.100559_bib14) 2012; 16 Mallipeddi (10.1016/j.swevo.2019.100559_bib16) 2010 Runarsson (10.1016/j.swevo.2019.100559_bib45) 2000; 4 Clerc (10.1016/j.swevo.2019.100559_bib33) 2002; 6 Liu (10.1016/j.swevo.2019.100559_bib38) 2019; 49 Branke (10.1016/j.swevo.2019.100559_bib8) 1999; vol. 3 Nguyen (10.1016/j.swevo.2019.100559_bib44) 2012; 6 Ioannou (10.1016/j.swevo.2019.100559_bib51) 2002 Das (10.1016/j.swevo.2019.100559_bib35) 2011; 15 Huang (10.1016/j.swevo.2019.100559_bib50) 2017 Wang (10.1016/j.swevo.2019.100559_bib43) 2012; 42 Richter (10.1016/j.swevo.2019.100559_bib26) 2008 Grefenstette (10.1016/j.swevo.2019.100559_bib25) 1992; vol. 2 Alam (10.1016/j.swevo.2019.100559_bib18) 2014 Pal (10.1016/j.swevo.2019.100559_bib21) 2013 Cobb (10.1016/j.swevo.2019.100559_bib24) 1990 Jin (10.1016/j.swevo.2019.100559_bib3) 2007 Cai (10.1016/j.swevo.2019.100559_bib47) 2006; 10 Parrott (10.1016/j.swevo.2019.100559_bib27) 2006; 10 Nguyen (10.1016/j.swevo.2019.100559_bib1) 2011 Zhang (10.1016/j.swevo.2019.100559_bib13) 2014; 18 Richter (10.1016/j.swevo.2019.100559_bib29) 2011 Storn (10.1016/j.swevo.2019.100559_bib34) 1997; 11 Singh (10.1016/j.swevo.2019.100559_bib17) 2009 Mitra (10.1016/j.swevo.2019.100559_bib7) 2008 Das (10.1016/j.swevo.2019.100559_bib41) 2016; 27 Wang (10.1016/j.swevo.2019.100559_bib36) 2018; 14 Zou (10.1016/j.swevo.2019.100559_bib48) 2019; 44 Liu (10.1016/j.swevo.2019.100559_bib49) 2011; 41 Deb (10.1016/j.swevo.2019.100559_bib32) 2000; 186 |
| References_xml | – start-page: 1213 year: 2007 end-page: 1220 ident: bib3 article-title: Adaptive farming strategies for dynamic economic environment publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: 10 start-page: 440 year: 2006 end-page: 458 ident: bib27 article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation publication-title: IEEE Trans. Evol. Comput. – volume: vol. 3 start-page: 1875 year: 1999 end-page: 1882 ident: bib8 article-title: Memory enhanced evolutionary algorithms for changing optimization problems publication-title: Proceedings of the 1999 Congress on Evolutionary Computation – start-page: 596 year: 2008 end-page: 605 ident: bib26 article-title: Memory based on abstraction for dynamic fitness functions publication-title: Appl. Evolut. Comput. – start-page: 552 year: 2010 end-page: 561 ident: bib10 article-title: Memory design for constrained dynamic optimization problems publication-title: Appl. Evolut. Comput. – volume: 14 start-page: 959 year: 2010 end-page: 974 ident: bib31 article-title: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments publication-title: IEEE Trans. Evol. Comput. – volume: 41 year: 2006 ident: bib15 article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization publication-title: J. Appl. Mech. – volume: 27 start-page: 1 year: 2016 end-page: 30 ident: bib41 article-title: Recent advances in differential evolution–an updated survey publication-title: Swarm Evolut. Comput. – volume: 16 start-page: 976 year: 2008 end-page: 990 ident: bib6 article-title: Optimized start-up control of an industrial-scale evaporation system with hybrid dynamics publication-title: Contr. Eng. Pract. – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: bib35 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2008 end-page: 8 ident: bib7 article-title: Real time implementation of an artificial immune system based controller for a dstatcom in an electric ship power system publication-title: 2008 IEEE Industry Applications Society Annual Meeting – volume: 44 start-page: 247 year: 2019 end-page: 259 ident: bib48 article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model publication-title: Swarm Evolut. Comput. – start-page: 2825 year: 2014 end-page: 2832 ident: bib18 article-title: Practical application of an evolutionary algorithm for the design and construction of a six-inch submarine publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC) – start-page: 368 year: 2017 end-page: 372 ident: bib50 article-title: Variant PID controller design for autonomous visual tracking of oil and gas pipelines via an unmanned aerial vehicle publication-title: 2017 17th International Conference on Control, Automation and Systems (ICCAS) – volume: 21 start-page: 14 year: 2017 end-page: 33 ident: bib12 article-title: Continuous dynamic constrained optimization with ensemble of locating and tracking feasible regions strategies publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2018 end-page: 14 ident: bib40 article-title: Composite differential evolution for constrained evolutionary optimization publication-title: IEEE Trans. Syst., Man, Cybern.: Systems – volume: 41 start-page: 867 year: 2011 end-page: 880 ident: bib49 article-title: CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern.) – volume: 49 start-page: 1642 year: May 2019 end-page: 1656 ident: bib39 article-title: Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints publication-title: IEEE Trans. Cybern. – start-page: 1421 year: 2006 end-page: 1423 ident: bib2 article-title: The DynCOAA algorithm for dynamic constraint optimization problems publication-title: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems – volume: 18 start-page: 185 year: 2014 end-page: 206 ident: bib13 article-title: Danger theory based artificial immune system solving dynamic constrained single-objective optimization publication-title: Soft Comput. – start-page: 334 year: 2011 end-page: 343 ident: bib29 article-title: Solving dynamic constrained optimization problems with asynchronous change pattern publication-title: European Conference on the Applications of Evolutionary Computation – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib34 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – start-page: 203 year: 2016 end-page: 213 ident: bib30 article-title: Speciated evolutionary algorithm for dynamic constrained optimisation publication-title: International Conference on Parallel Problem Solving from Nature – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: bib32 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 1 year: 2010 end-page: 9 ident: bib46 article-title: Constrained optimization by the publication-title: 2010 IEEE Congress on Evolutionary Computation – volume: vol. 2 start-page: 137 year: 1992 end-page: 144 ident: bib25 article-title: Genetic algorithms for changing environments publication-title: International Conference on Parallel Problem Solving from Nature (PPSN) – volume: 21 start-page: 665 year: 2017 end-page: 680 ident: bib37 article-title: A two-phase differential evolution for uniform designs in constrained experimental domains publication-title: IEEE Trans. Evol. Comput. – start-page: 975 year: 2014 end-page: 982 ident: bib22 article-title: Differential evolution with combined variants for dynamic constrained optimization publication-title: 2014 IEEE Congress on Evolutionary Computation – year: 2011 ident: bib1 article-title: Continuous Dynamic Optimisation Using Evolutionary Algorithms – volume: 29 start-page: 1160 year: 2008 end-page: 1174 ident: bib5 article-title: Multi-dimensional visual tracking using scatter search particle filter publication-title: Pattern Recognit. Lett. – volume: 6 start-page: 1 year: 2012 end-page: 24 ident: bib44 article-title: Evolutionary dynamic optimization: a survey of the state of the art publication-title: Swarm Evolut. Comput. – volume: 11 start-page: 323 year: 2008 ident: bib4 article-title: On-line decision support for take-off runway scheduling with uncertain taxi times at london heathrow airport publication-title: J. Sched. – volume: 14 year: 2010 ident: bib20 article-title: Artificial immune system for solving global optimization problems publication-title: Intel. Artif. – volume: vol. 7 start-page: 650 year: 2008 end-page: 653 ident: bib11 article-title: New dynamic constrained optimization PSO algorithm publication-title: Fourth International Conference on Natural Computation, ICNC'08 – volume: 42 start-page: 203 year: 2012 end-page: 217 ident: bib43 article-title: A dynamic hybrid framework for constrained evolutionary optimization publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern.) – start-page: 690 year: 2009 end-page: 697 ident: bib9 article-title: Benchmarking and solving dynamic constrained problems publication-title: 2009 IEEE Congress on Evolutionary Computation – start-page: 2414 year: 2013 end-page: 2421 ident: bib21 article-title: Dynamic constrained optimization with offspring repair based gravitational search algorithm publication-title: 2013 IEEE Congress on Evolutionary Computation – year: 24, 2010 ident: bib16 article-title: Problem Definitions and Evaluation Criteria for the Cec 2010 Competition on Constrained Real-Parameter Optimization – volume: 49 start-page: 1403 year: April 2019 end-page: 1416 ident: bib38 article-title: An adaptive framework to tune the coordinate systems in nature-inspired optimization algorithms publication-title: IEEE Trans. Cybern. – volume: 14 start-page: 1040 year: 2018 end-page: 1054 ident: bib36 article-title: Differential evolution with a new encoding mechanism for optimizing wind farm layout publication-title: IEEE Trans. Ind. Inf. – start-page: 225 year: 2013 end-page: 263 ident: bib19 article-title: Artificial immune system for solving dynamic constrained optimization problems publication-title: Metaheuristics for Dynamic Optimization – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: bib42 article-title: Bio-inspired computation: where we stand and what's next publication-title: Swarm Evolut. Comput. – volume: 16 start-page: 769 year: 2012 end-page: 786 ident: bib14 article-title: Continuous dynamic constrained optimization the challenges publication-title: IEEE Trans. Evol. Comput. – year: 1990 ident: bib24 article-title: An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-dependent Nonstationary Environments – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib33 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 10 start-page: 658 year: 2006 end-page: 675 ident: bib47 article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization publication-title: IEEE Trans. Evol. Comput. – volume: 4 start-page: 284 year: 2000 end-page: 294 ident: bib45 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 3127 year: 2009 end-page: 3134 ident: bib17 article-title: Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems publication-title: 2009 IEEE Congress on Evolutionary Computation – start-page: 241 year: 2015 end-page: 248 ident: bib23 article-title: A repair method for differential evolution with combined variants to solve dynamic constrained optimization problems publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation – volume: vol. 5 start-page: 2400 year: 2010 end-page: 2402 ident: bib28 article-title: New method for solving a class of dynamic nonlinear constrained optimization problems publication-title: The Sixth International Conference on Natural Computation (ICNC) – year: 2002 ident: bib51 article-title: Dynamic Optimization of Cargo Movement by Trucks in Metropolitan Areas with Adjacent Ports – start-page: 596 year: 2008 ident: 10.1016/j.swevo.2019.100559_bib26 article-title: Memory based on abstraction for dynamic fitness functions publication-title: Appl. Evolut. Comput. – year: 2010 ident: 10.1016/j.swevo.2019.100559_bib16 – volume: 10 start-page: 658 issue: 6 year: 2006 ident: 10.1016/j.swevo.2019.100559_bib47 article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872344 – volume: 42 start-page: 203 issue: 1 year: 2012 ident: 10.1016/j.swevo.2019.100559_bib43 article-title: A dynamic hybrid framework for constrained evolutionary optimization publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern.) doi: 10.1109/TSMCB.2011.2161467 – start-page: 368 year: 2017 ident: 10.1016/j.swevo.2019.100559_bib50 article-title: Variant PID controller design for autonomous visual tracking of oil and gas pipelines via an unmanned aerial vehicle – volume: 186 start-page: 311 issue: 2 year: 2000 ident: 10.1016/j.swevo.2019.100559_bib32 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – start-page: 690 year: 2009 ident: 10.1016/j.swevo.2019.100559_bib9 article-title: Benchmarking and solving dynamic constrained problems – start-page: 975 year: 2014 ident: 10.1016/j.swevo.2019.100559_bib22 article-title: Differential evolution with combined variants for dynamic constrained optimization – volume: 44 start-page: 247 year: 2019 ident: 10.1016/j.swevo.2019.100559_bib48 article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2018.03.010 – start-page: 2825 year: 2014 ident: 10.1016/j.swevo.2019.100559_bib18 article-title: Practical application of an evolutionary algorithm for the design and construction of a six-inch submarine – start-page: 203 year: 2016 ident: 10.1016/j.swevo.2019.100559_bib30 article-title: Speciated evolutionary algorithm for dynamic constrained optimisation – start-page: 225 year: 2013 ident: 10.1016/j.swevo.2019.100559_bib19 article-title: Artificial immune system for solving dynamic constrained optimization problems – start-page: 552 year: 2010 ident: 10.1016/j.swevo.2019.100559_bib10 article-title: Memory design for constrained dynamic optimization problems publication-title: Appl. Evolut. Comput. – volume: 18 start-page: 185 issue: 1 year: 2014 ident: 10.1016/j.swevo.2019.100559_bib13 article-title: Danger theory based artificial immune system solving dynamic constrained single-objective optimization publication-title: Soft Comput. doi: 10.1007/s00500-013-1048-0 – volume: 49 start-page: 1642 issue: 5 year: 2019 ident: 10.1016/j.swevo.2019.100559_bib39 article-title: Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2809430 – year: 2011 ident: 10.1016/j.swevo.2019.100559_bib1 – volume: 4 start-page: 284 issue: 3 year: 2000 ident: 10.1016/j.swevo.2019.100559_bib45 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.873238 – volume: 21 start-page: 14 issue: 1 year: 2017 ident: 10.1016/j.swevo.2019.100559_bib12 article-title: Continuous dynamic constrained optimization with ensemble of locating and tracking feasible regions strategies publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2567644 – volume: vol. 5 start-page: 2400 year: 2010 ident: 10.1016/j.swevo.2019.100559_bib28 article-title: New method for solving a class of dynamic nonlinear constrained optimization problems – volume: 29 start-page: 1160 issue: 8 year: 2008 ident: 10.1016/j.swevo.2019.100559_bib5 article-title: Multi-dimensional visual tracking using scatter search particle filter publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.12.012 – start-page: 2414 year: 2013 ident: 10.1016/j.swevo.2019.100559_bib21 article-title: Dynamic constrained optimization with offspring repair based gravitational search algorithm – start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.swevo.2019.100559_bib40 article-title: Composite differential evolution for constrained evolutionary optimization publication-title: IEEE Trans. Syst., Man, Cybern.: Systems – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.swevo.2019.100559_bib33 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 41 issue: 8 year: 2006 ident: 10.1016/j.swevo.2019.100559_bib15 article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization publication-title: J. Appl. Mech. – volume: vol. 2 start-page: 137 year: 1992 ident: 10.1016/j.swevo.2019.100559_bib25 article-title: Genetic algorithms for changing environments – volume: 10 start-page: 440 issue: 4 year: 2006 ident: 10.1016/j.swevo.2019.100559_bib27 article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.859468 – volume: 14 start-page: 1040 issue: 3 year: 2018 ident: 10.1016/j.swevo.2019.100559_bib36 article-title: Differential evolution with a new encoding mechanism for optimizing wind farm layout publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2743761 – volume: 49 start-page: 1403 issue: 4 year: 2019 ident: 10.1016/j.swevo.2019.100559_bib38 article-title: An adaptive framework to tune the coordinate systems in nature-inspired optimization algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2802912 – volume: 16 start-page: 769 issue: 6 year: 2012 ident: 10.1016/j.swevo.2019.100559_bib14 article-title: Continuous dynamic constrained optimization the challenges publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2180533 – start-page: 1213 year: 2007 ident: 10.1016/j.swevo.2019.100559_bib3 article-title: Adaptive farming strategies for dynamic economic environment – volume: 48 start-page: 220 year: 2019 ident: 10.1016/j.swevo.2019.100559_bib42 article-title: Bio-inspired computation: where we stand and what's next publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2019.04.008 – volume: vol. 3 start-page: 1875 year: 1999 ident: 10.1016/j.swevo.2019.100559_bib8 article-title: Memory enhanced evolutionary algorithms for changing optimization problems – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.swevo.2019.100559_bib34 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 14 issue: 46 year: 2010 ident: 10.1016/j.swevo.2019.100559_bib20 article-title: Artificial immune system for solving global optimization problems publication-title: Intel. Artif. – volume: 14 start-page: 959 issue: 6 year: 2010 ident: 10.1016/j.swevo.2019.100559_bib31 article-title: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2046667 – start-page: 1421 year: 2006 ident: 10.1016/j.swevo.2019.100559_bib2 article-title: The DynCOAA algorithm for dynamic constraint optimization problems – volume: 11 start-page: 323 issue: 5 year: 2008 ident: 10.1016/j.swevo.2019.100559_bib4 article-title: On-line decision support for take-off runway scheduling with uncertain taxi times at london heathrow airport publication-title: J. Sched. doi: 10.1007/s10951-008-0065-9 – volume: 16 start-page: 976 issue: 8 year: 2008 ident: 10.1016/j.swevo.2019.100559_bib6 article-title: Optimized start-up control of an industrial-scale evaporation system with hybrid dynamics publication-title: Contr. Eng. Pract. doi: 10.1016/j.conengprac.2007.09.003 – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.swevo.2019.100559_bib35 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 41 start-page: 867 issue: 3 year: 2011 ident: 10.1016/j.swevo.2019.100559_bib49 article-title: CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybern.) doi: 10.1109/TSMCB.2010.2097589 – volume: 27 start-page: 1 year: 2016 ident: 10.1016/j.swevo.2019.100559_bib41 article-title: Recent advances in differential evolution–an updated survey publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2016.01.004 – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.swevo.2019.100559_bib44 article-title: Evolutionary dynamic optimization: a survey of the state of the art publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2012.05.001 – start-page: 1 year: 2008 ident: 10.1016/j.swevo.2019.100559_bib7 article-title: Real time implementation of an artificial immune system based controller for a dstatcom in an electric ship power system – start-page: 241 year: 2015 ident: 10.1016/j.swevo.2019.100559_bib23 article-title: A repair method for differential evolution with combined variants to solve dynamic constrained optimization problems – year: 2002 ident: 10.1016/j.swevo.2019.100559_bib51 – start-page: 1 year: 2010 ident: 10.1016/j.swevo.2019.100559_bib46 article-title: Constrained optimization by the ϵ constrained differential evolution with an archive and gradient-based mutation – volume: vol. 7 start-page: 650 year: 2008 ident: 10.1016/j.swevo.2019.100559_bib11 article-title: New dynamic constrained optimization PSO algorithm – start-page: 334 year: 2011 ident: 10.1016/j.swevo.2019.100559_bib29 article-title: Solving dynamic constrained optimization problems with asynchronous change pattern – year: 1990 ident: 10.1016/j.swevo.2019.100559_bib24 – volume: 21 start-page: 665 issue: 5 year: 2017 ident: 10.1016/j.swevo.2019.100559_bib37 article-title: A two-phase differential evolution for uniform designs in constrained experimental domains publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2669098 – start-page: 3127 year: 2009 ident: 10.1016/j.swevo.2019.100559_bib17 article-title: Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems |
| SSID | ssj0000602559 |
| Score | 2.281405 |
| Snippet | Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100559 |
| SubjectTerms | Benchmark test functions Constraint-handling technique Dynamic constrained optimization Evolutionary algorithms Performance comparison |
| Title | Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons |
| URI | https://dx.doi.org/10.1016/j.swevo.2019.100559 |
| Volume | 50 |
| WOSCitedRecordID | wos000497252300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuUF6iQJEP3CDV5mmHW4UWtRwqJIrYnkLi2H1om1Sb3e3yB_jdjO1x6oVqRQ9colU8mTzmy2Q8O56PkLdhlVQpi7IAXkIRJEzwoCwVvFdKN_Mu60SOlCGbYEdHfDLJvwwGv9xamOWUNQ1frfKr_2pq2AfG1ktn72DuXinsgN9gdNiC2WH7T4YfL1G9roerLeG8Li7vDBsExJcteIlLXH5ps-vd_F23gNgTxRZIH67buE5P29n5_OwSi9V17VHnB7Rfr8uZZdmQ_nmFIYtY-5f_O2amT1r8WBo6MIMiD6InLn99JpvTFQz0sloKh9rFT6cEExZhjiv3er8WwSwzgMBwzQnb7rPoRUPdGSy_1cHbXMPFXncNd6Ur8_K9G-n1dtp_fOb64kNX13ZRGCWFVlJYJffIVsTSnA_J1v7hePK5z9aNMjP30kyF7updCytTLPjX5dwe5nihy_E2eYhzDrpvsfKYDGTzhDxyfB4U3ftT8sOHDkXoUA861IfOB6qBQw1wqA8cCmigPXCoB5xn5Nun8fHHgwAZOAIRJ3wexFGd1kylvOLlSDAeZioMVQ1TfKFgIBHRqBIsFmlcl2nFGU-5FGGqlKrB0cs4fk6GTdvIF4RmTCVhpaSAmDFRVVYxiIpiFSvQyspa7pDIPbBCYHt6fXPTYoO9dsj7_qAr251ls3jmLFFggGkDxwLgtenAl3c7zyvy4Ab4r8kQnr_cJffFcn7ezd4gtn4Dcu-ktQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+dynamic+constrained+optimization%3A+Test+suite+construction+and+algorithm+comparisons&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Yong&rft.au=Yu%2C+Jian&rft.au=Yang%2C+Shengxiang&rft.au=Jiang%2C+Shouyong&rft.date=2019-11-01&rft.issn=2210-6502&rft.volume=50&rft.spage=100559&rft_id=info:doi/10.1016%2Fj.swevo.2019.100559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2019_100559 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |