Duality Between the Local Score of One Sequence and Constrained Hidden Markov Model

We are interested here in a theoretical and practical approach for detecting atypical segments in a multi-state sequence. We prove in this article that the segmentation approach through an underlying constrained Hidden Markov Model (HMM) is equivalent to using the maximum scoring subsequence (also c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Methodology and computing in applied probability Ročník 24; číslo 3; s. 1411 - 1438
Hlavní autoři: Mercier, Sabine, Nuel, Grégory
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2022
Springer Nature B.V
Springer Verlag
Edice:Methodology and Computing in Applied Probability
Témata:
ISSN:1387-5841, 1573-7713
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We are interested here in a theoretical and practical approach for detecting atypical segments in a multi-state sequence. We prove in this article that the segmentation approach through an underlying constrained Hidden Markov Model (HMM) is equivalent to using the maximum scoring subsequence (also called local score), when the latter uses an appropriate rescaled scoring function. This equivalence allows results from both HMM or local score to be transposed into each other. We propose an adaptation of the standard forward-backward algorithm which provides exact estimates of posterior probabilities in a linear time. Additionally it can provide posterior probabilities on the segment length and starting/ending indexes. We explain how this equivalence allows one to manage ambiguous or uncertain sequence letters and to construct relevant scoring functions. We illustrate our approach by considering the TM-tendency scoring function.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1387-5841
1573-7713
DOI:10.1007/s11009-021-09856-8