Multi-Label Learning with Class-Based Features Using Extended Centroid-Based Classification Technique (CCBF)

Real world applications, such as news feeds categorization deal with multi-label classification problem, where the objects are associated with multiple class labels and each object is represented by a single instance (feature vector). In this paper, a new algorithm adaptation method called centroid-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia computer science Ročník 54; s. 405 - 411
Hlavní autori: Devi, P.R. Suganya, Baskaran, R., Abirami, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2015
Predmet:
ISSN:1877-0509, 1877-0509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Real world applications, such as news feeds categorization deal with multi-label classification problem, where the objects are associated with multiple class labels and each object is represented by a single instance (feature vector). In this paper, a new algorithm adaptation method called centroid-based multi-label classification using class-based features (CCBF) algorithm has been proposed to tackle the multi-label classification problem. It includes class-based feature vectors generation and local label correlations exploitation. In the testing stage, centroid-based classification algorithm is extended for multi-label classification problem. Experiments on reuters multi-label dataset with 103 labels demonstrate the performance and efficiency of CCBF algorithm and the result is compared with those obtained using other multi-label classification algorithms. The CCBF algorithm obtains competitive F measures with respect to the most accurate algorithms.
AbstractList Real world applications, such as news feeds categorization deal with multi-label classification problem, where the objects are associated with multiple class labels and each object is represented by a single instance (feature vector). In this paper, a new algorithm adaptation method called centroid-based multi-label classification using class-based features (CCBF) algorithm has been proposed to tackle the multi-label classification problem. It includes class-based feature vectors generation and local label correlations exploitation. In the testing stage, centroid-based classification algorithm is extended for multi-label classification problem. Experiments on reuters multi-label dataset with 103 labels demonstrate the performance and efficiency of CCBF algorithm and the result is compared with those obtained using other multi-label classification algorithms. The CCBF algorithm obtains competitive F measures with respect to the most accurate algorithms.
Author Baskaran, R.
Abirami, S.
Devi, P.R. Suganya
Author_xml – sequence: 1
  givenname: P.R. Suganya
  surname: Devi
  fullname: Devi, P.R. Suganya
  email: suganya.rvks5@gmail.com
– sequence: 2
  givenname: R.
  surname: Baskaran
  fullname: Baskaran, R.
– sequence: 3
  givenname: S.
  surname: Abirami
  fullname: Abirami, S.
BookMark eNqFkDtPwzAQgC1UJErpL2DJCEOCnaSJOzDQqAWkIpZ2tuzzhboKTrFdHv-e9DEgBvBy1t19p7vvnPRsa5GQS0YTRllxs042rgWfpJSNElokNC9PSJ_xsozpiI57P_5nZOj9mnYv43zMyj5pnrZNMPFcKmyiOUpnjX2JPkxYRVUjvY8n0qOOZijD1qGPln5Xn34GtLrLV2iDa40-tu0RUxuQwbQ2WiCsrHnbYnRVVZPZ9QU5rWXjcXiMA7KcTRfVQzx_vn-s7uYxZDkPcSrrUQaQ61xJzdJCMapSpWVRqAwULSWFNM-h1FypUUYLDnIsgSsOvFRpDdmAjA9zwbXeO6wFmLBfKThpGsGo2JkTa7E3J3bmBC1EZ65js1_sxplX6b7-oW4PFHZnvRt0woNBC6iNQwhCt-ZP_hvxcIzK
CitedBy_id crossref_primary_10_1007_s13202_021_01302_2
crossref_primary_10_1002_dug2_12098
Cites_doi 10.1016/j.patcog.2013.09.029
10.1016/j.patcog.2006.12.019
10.1016/j.eswa.2007.06.028
10.1016/j.ins.2013.02.029
10.1016/j.patcog.2012.03.004
10.1007/978-0-387-09823-4_34
10.1016/j.eswa.2013.10.030
10.1007/s10994-011-5256-5
10.1109/ICMLC.2002.1174512
10.1016/j.eswa.2014.02.017
ContentType Journal Article
Copyright 2015 The Authors
Copyright_xml – notice: 2015 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2015.06.047
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 411
ExternalDocumentID 10_1016_j_procs_2015_06_047
S187705091501371X
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c348t-2af53cc4d4bad126b10b2bda66b3cb07a0c244c7d8bb53068ca9ac8b8c87b2fc3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373793900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-0509
IngestDate Tue Nov 18 20:36:09 EST 2025
Sat Nov 29 02:44:43 EST 2025
Wed May 17 01:33:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-label learning
Cure clustering algorithm
Class-based features
Document classification
Label correlations
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-2af53cc4d4bad126b10b2bda66b3cb07a0c244c7d8bb53068ca9ac8b8c87b2fc3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2015.06.047
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2015_06_047
crossref_primary_10_1016_j_procs_2015_06_047
elsevier_sciencedirect_doi_10_1016_j_procs_2015_06_047
PublicationCentury 2000
PublicationDate 2015
2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ren, Sohrab (bib0055) 2013
pp. 667-685, (2010).
Vale, Dias, Canuto, Souto (bib0070) 2008
Tsoumakas, Vlahavas (bib0015) 2007
Lewis, Yang, Rose, Li (bib0025) 2004
Montanes, Senge, Barranquero, Ramon Quevedo, Jose del Coz, Hullermeier (bib0040) 2014; 47
Read, Pfahringer, Holmes, Frank (bib0050) 2011; 85
Read, Pfahringer, Holmes (bib0045) 2008
Yun-Tao Qian, Qing-Song Shi and Qi Wang, CURE-NS: A Hierarchical Clustering Algorithm with New Shrinking Scheme
Spyromitros, Tsoumakas, Ioannis (bib0005) 2008
Ricardo Nanculef, IliasFlaounas, NelloCristianini (bib0060) 2014; 41
Tan (bib0065) 2008; 35
Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, Saso Dzeroski (bib0020) 2012
1st
G. Tsoumakas, I. Katakis and I. Vlahavas, Mining Multi-Label Data
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0030) 2009; 11
Zhang, Zhou (bib0035) 2007; 40
Yu, Pedrycz, Miao (bib0075) 2014; 41
pp. 895-899, (2002).
Lewis (10.1016/j.procs.2015.06.047_bib0025) 2004
10.1016/j.procs.2015.06.047_bib0080
Spyromitros (10.1016/j.procs.2015.06.047_bib0005) 2008
Read (10.1016/j.procs.2015.06.047_bib0050) 2011; 85
Montanes (10.1016/j.procs.2015.06.047_bib0040) 2014; 47
Read (10.1016/j.procs.2015.06.047_bib0045) 2008
Ricardo Nanculef (10.1016/j.procs.2015.06.047_bib0060) 2014; 41
Tsoumakas (10.1016/j.procs.2015.06.047_bib0015) 2007
Hall (10.1016/j.procs.2015.06.047_bib0030) 2009; 11
Yu (10.1016/j.procs.2015.06.047_bib0075) 2014; 41
Ren (10.1016/j.procs.2015.06.047_bib0055) 2013
10.1016/j.procs.2015.06.047_bib0010
Gjorgji Madjarov (10.1016/j.procs.2015.06.047_bib0020) 2012
Zhang (10.1016/j.procs.2015.06.047_bib0035) 2007; 40
Tan (10.1016/j.procs.2015.06.047_bib0065) 2008; 35
Vale (10.1016/j.procs.2015.06.047_bib0070) 2008
References_xml – start-page: 361
  year: 2004
  end-page: 397
  ident: bib0025
  article-title: RCV1: A New Benchmark Collection for Text Categorization Research
  publication-title: Journal of Machine Learning Research
– volume: 41
  start-page: 2989
  year: 2014
  end-page: 3004
  ident: bib0075
  article-title: Multi-Label Classification by Exploiting Label Correlations
  publication-title: International Journal on Expert Systems with Applications Elsevier
– reference: G. Tsoumakas, I. Katakis and I. Vlahavas, Mining Multi-Label Data,
– start-page: 406
  year: 2007
  end-page: 417
  ident: bib0015
  article-title: Random
  publication-title: Proceedings of the 18th European Conference on Machine Learning
– start-page: 3084
  year: 2012
  end-page: 3104
  ident: bib0020
  article-title: An Extensive Experimental Comparison of Methods for Multi-Label Learning
  publication-title: International Journal on Pattern Recognition Elsevier
– reference: , 1st
– start-page: 401
  year: 2008
  end-page: 406
  ident: bib0005
  article-title: An Empirical Study of Lazy Multilabel Classification Algorithms
  publication-title: Hellenic Conference on Artificial Intelligence Springer
– volume: 47
  start-page: 1494
  year: 2014
  end-page: 1508
  ident: bib0040
  article-title: Dependent Binary Relevance Models for Multi-Label Classification
  publication-title: International Journal on Pattern Recognition Elsevier
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0030
  article-title: The WEKA Data Mining Software: An Update
  publication-title: Special Interest Group on Knowledge Discovery and Data Mining Explorations
– start-page: 995
  year: 2008
  end-page: 1000
  ident: bib0045
  article-title: Multi-Label Classification Using Ensembles of Pruned Sets
  publication-title: IEEE International Conference on Data Mining
– start-page: 109
  year: 2013
  end-page: 125
  ident: bib0055
  article-title: Class-Indexing-Based Term Weighting for Automatic Text Classification
  publication-title: International Journal on Information Sciences Elsevier
– volume: 40
  start-page: 2038
  year: 2007
  end-page: 2048
  ident: bib0035
  article-title: Ml-Knn: A Lazy Learning Approch to Multi-Label Learning
  publication-title: International Journal on Pattern Recognition Elsevier
– volume: 85
  start-page: 333
  year: 2011
  end-page: 359
  ident: bib0050
  article-title: Classifier Chains for Multilabel Classification
  publication-title: International Journal on Machine Learning Springer
– year: 2008
  ident: bib0070
  article-title: A Class Based Feature Selection Method for Ensemble Systems
  publication-title: International Conference on Hybrid Intelligent Systems
– volume: 35
  start-page: 279
  year: 2008
  end-page: 285
  ident: bib0065
  article-title: An Improved Centroid Classifier for Text Categorization
  publication-title: International Journal on Expert Systems with Applications Elsevier
– reference: , pp. 895-899, (2002).
– reference: ,. pp. 667-685, (2010).
– volume: 41
  start-page: 5431
  year: 2014
  end-page: 5450
  ident: bib0060
  article-title: Efficient Classification of Multi-Labeled Text Streams by Clashing
  publication-title: International Journal on Expert Systems with Applications Elsevier
– reference: Yun-Tao Qian, Qing-Song Shi and Qi Wang, CURE-NS: A Hierarchical Clustering Algorithm with New Shrinking Scheme,
– volume: 47
  start-page: 1494
  issue: 3
  year: 2014
  ident: 10.1016/j.procs.2015.06.047_bib0040
  article-title: Dependent Binary Relevance Models for Multi-Label Classification
  publication-title: International Journal on Pattern Recognition Elsevier
  doi: 10.1016/j.patcog.2013.09.029
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: 10.1016/j.procs.2015.06.047_bib0035
  article-title: Ml-Knn: A Lazy Learning Approch to Multi-Label Learning
  publication-title: International Journal on Pattern Recognition Elsevier
  doi: 10.1016/j.patcog.2006.12.019
– start-page: 406
  year: 2007
  ident: 10.1016/j.procs.2015.06.047_bib0015
  article-title: Random k-Labelsets: An Ensemble Method for Multilabel Classification
  publication-title: Proceedings of the 18th European Conference on Machine Learning
– volume: 35
  start-page: 279
  issue: 2
  year: 2008
  ident: 10.1016/j.procs.2015.06.047_bib0065
  article-title: An Improved Centroid Classifier for Text Categorization
  publication-title: International Journal on Expert Systems with Applications Elsevier
  doi: 10.1016/j.eswa.2007.06.028
– start-page: 109
  year: 2013
  ident: 10.1016/j.procs.2015.06.047_bib0055
  article-title: Class-Indexing-Based Term Weighting for Automatic Text Classification
  publication-title: International Journal on Information Sciences Elsevier
  doi: 10.1016/j.ins.2013.02.029
– volume: 11
  start-page: 10
  year: 2009
  ident: 10.1016/j.procs.2015.06.047_bib0030
  article-title: The WEKA Data Mining Software: An Update
  publication-title: Special Interest Group on Knowledge Discovery and Data Mining Explorations
– start-page: 3084
  year: 2012
  ident: 10.1016/j.procs.2015.06.047_bib0020
  article-title: An Extensive Experimental Comparison of Methods for Multi-Label Learning
  publication-title: International Journal on Pattern Recognition Elsevier
  doi: 10.1016/j.patcog.2012.03.004
– ident: 10.1016/j.procs.2015.06.047_bib0010
  doi: 10.1007/978-0-387-09823-4_34
– year: 2008
  ident: 10.1016/j.procs.2015.06.047_bib0070
  article-title: A Class Based Feature Selection Method for Ensemble Systems
  publication-title: International Conference on Hybrid Intelligent Systems
– volume: 41
  start-page: 2989
  issue: 6
  year: 2014
  ident: 10.1016/j.procs.2015.06.047_bib0075
  article-title: Multi-Label Classification by Exploiting Label Correlations
  publication-title: International Journal on Expert Systems with Applications Elsevier
  doi: 10.1016/j.eswa.2013.10.030
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 10.1016/j.procs.2015.06.047_bib0050
  article-title: Classifier Chains for Multilabel Classification
  publication-title: International Journal on Machine Learning Springer
  doi: 10.1007/s10994-011-5256-5
– start-page: 361
  year: 2004
  ident: 10.1016/j.procs.2015.06.047_bib0025
  article-title: RCV1: A New Benchmark Collection for Text Categorization Research
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.procs.2015.06.047_bib0080
  doi: 10.1109/ICMLC.2002.1174512
– start-page: 995
  year: 2008
  ident: 10.1016/j.procs.2015.06.047_bib0045
  article-title: Multi-Label Classification Using Ensembles of Pruned Sets
  publication-title: IEEE International Conference on Data Mining
– start-page: 401
  year: 2008
  ident: 10.1016/j.procs.2015.06.047_bib0005
  article-title: An Empirical Study of Lazy Multilabel Classification Algorithms
  publication-title: Hellenic Conference on Artificial Intelligence Springer
– volume: 41
  start-page: 5431
  issue: 11
  year: 2014
  ident: 10.1016/j.procs.2015.06.047_bib0060
  article-title: Efficient Classification of Multi-Labeled Text Streams by Clashing
  publication-title: International Journal on Expert Systems with Applications Elsevier
  doi: 10.1016/j.eswa.2014.02.017
SSID ssj0000388917
Score 1.9835591
Snippet Real world applications, such as news feeds categorization deal with multi-label classification problem, where the objects are associated with multiple class...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 405
SubjectTerms Class-based features
Cure clustering algorithm
Document classification
Label correlations
Multi-label learning
Title Multi-Label Learning with Class-Based Features Using Extended Centroid-Based Classification Technique (CCBF)
URI https://dx.doi.org/10.1016/j.procs.2015.06.047
Volume 54
WOSCitedRecordID wos000373793900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFB4F2gOXriCWtppDD0XBkZcZz_hYEKgHhKo2RdysWWyUkBoUAuLEj-AX983mOAVF5dCLlYw84yTvy9vmzfcQ-kxZrKUoSFTxWkKAAjGrBMMW6VxSWuuiriyV0ukxOznhZ2fF917vIZyFuZ2wpuF3d8XVfxU1jIGwzdHZZ4i7XRQG4DUIHa4gdrj-k-DtkdroWMhqEthTfbrVNsCM9sFu6b5x_W4g1O67moFDnwt32d7Lkfa32SmmmsjhZNgyvprN34P9o5BI8O6tPXYAiLOV6qZZRN9b2NZfBjtsHdfBjwEorXNQRfOMgLi-EFO_LzWY70uNpuK3nfRz0M1RuPOZXqFyxiLDMePszRNjXgtT0lGjJKYdi0ycOn6k7F3eYWxMjTLM6wm1VKyOwXORWvsvk9cWIoYat3FpFynNIqWp9CNsBb1IGYRbphz0fp63M-w5hW3k3H6NQGZlywYffZinHZ6OEzN8g1756AN_dah5i3pV8w69Dp09sFf079GkAyIcQIQNiHAHRDiACFsQ4QAivAgivAgi3IIIfzEQ2l1Hv44OhwffIt-XI1IZ4bMoFTXNlCKaSKGTNJdJLFOpRZ7LTMmYiViB06iY5lJSCEm5EoVQXHLFmUxrlW2g1eayqTYRZhVLFFNJqrOaZIQInlYkU0SCnRBZTrdQGn68UnnSetM7ZVIukdwW2msnXTnOluW350Eqpf9TOHeyBKAtm7j9vOfsoDXzzuXvPqDV2fSm-oheqtvZ6Hr6yaLsD1JopIw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Label+Learning+with+Class-Based+Features+Using+Extended+Centroid-Based+Classification+Technique+%28CCBF%29&rft.jtitle=Procedia+computer+science&rft.au=Devi%2C+P.R.+Suganya&rft.au=Baskaran%2C+R.&rft.au=Abirami%2C+S.&rft.date=2015&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=54&rft.spage=405&rft.epage=411&rft_id=info:doi/10.1016%2Fj.procs.2015.06.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2015_06_047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon