Conceptual framework addressing timescale mismatch uncertainty: Nitrous-oxide (N2O) modeled and measured, Kansas, USA

•The uncertainty arises from the differences in time scales between modeled and measured variables are not explicitly addressed in literature.•A conceptual framework was developed to represent this known-unknown uncertainty for a combinations of integration methods, management practices, sensitivity...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ecological modelling Ročník 486; s. 110536
Hlavní autori: Arango, Miguel A., Anandhi, Aavudai, Rice, Charles W.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2023
Predmet:
ISSN:0304-3800, 1872-7026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The uncertainty arises from the differences in time scales between modeled and measured variables are not explicitly addressed in literature.•A conceptual framework was developed to represent this known-unknown uncertainty for a combinations of integration methods, management practices, sensitivity analysis methods, calibration, and validation performance measures.•The framework is demonstrated by applying it to Denitrification–Decomposition model modeled/measured N2O when the timescales are not equal.•Although the model is used as an example, the techniques described can be applied to many modeling problems across locations at multiple time scales. The uncertainty that arises from the differences in time scales between modeled and measured variables during sensitivity analysis, calibration, and validation in process-based models are often not addressed in the literature. A conceptual framework was developed to represent the uncertainty arising due to this mismatch in timescales. Modeling N2O fluxes from agricultural lands in Manhattan, Kansas using Denitrification–Decomposition (DNDC) model, and with measurements available at biweekly time scale is chosen in the demonstration. A conceptual framework was developed to represent the known-unknown uncertainty using integration methods, management practices, sensitivity analysis methods, calibration and validation performance measures. The known-known and known-unknown uncertainty were represented for combinations of three integration methods (mean, median and cumulative sum), four management practice combinations (till-urea, no-till-urea, till-compost, no-till-compost), three sensitivity analysis methods (two graphical approaches and an index based method), and two calibration and validation performance measures (ME, R2). In the framework, the unknown uncertainty was represented but not quantified. The various assumptions and some of the implications were also discussed. The framework followed in this exercise and insights gained can be applicable to other process-based models.
AbstractList The uncertainty that arises from the differences in time scales between modeled and measured variables during sensitivity analysis, calibration, and validation in process-based models are often not addressed in the literature. A conceptual framework was developed to represent the uncertainty arising due to this mismatch in timescales. Modeling N2O fluxes from agricultural lands in Manhattan, Kansas using Denitrification–Decomposition (DNDC) model, and with measurements available at biweekly time scale is chosen in the demonstration. A conceptual framework was developed to represent the known-unknown uncertainty using integration methods, management practices, sensitivity analysis methods, calibration and validation performance measures. The known-known and known-unknown uncertainty were represented for combinations of three integration methods (mean, median and cumulative sum), four management practice combinations (till-urea, no-till-urea, till-compost, no-till-compost), three sensitivity analysis methods (two graphical approaches and an index based method), and two calibration and validation performance measures (ME, R2). In the framework, the unknown uncertainty was represented but not quantified. The various assumptions and some of the implications were also discussed. The framework followed in this exercise and insights gained can be applicable to other process-based models.
•The uncertainty arises from the differences in time scales between modeled and measured variables are not explicitly addressed in literature.•A conceptual framework was developed to represent this known-unknown uncertainty for a combinations of integration methods, management practices, sensitivity analysis methods, calibration, and validation performance measures.•The framework is demonstrated by applying it to Denitrification–Decomposition model modeled/measured N2O when the timescales are not equal.•Although the model is used as an example, the techniques described can be applied to many modeling problems across locations at multiple time scales. The uncertainty that arises from the differences in time scales between modeled and measured variables during sensitivity analysis, calibration, and validation in process-based models are often not addressed in the literature. A conceptual framework was developed to represent the uncertainty arising due to this mismatch in timescales. Modeling N2O fluxes from agricultural lands in Manhattan, Kansas using Denitrification–Decomposition (DNDC) model, and with measurements available at biweekly time scale is chosen in the demonstration. A conceptual framework was developed to represent the known-unknown uncertainty using integration methods, management practices, sensitivity analysis methods, calibration and validation performance measures. The known-known and known-unknown uncertainty were represented for combinations of three integration methods (mean, median and cumulative sum), four management practice combinations (till-urea, no-till-urea, till-compost, no-till-compost), three sensitivity analysis methods (two graphical approaches and an index based method), and two calibration and validation performance measures (ME, R2). In the framework, the unknown uncertainty was represented but not quantified. The various assumptions and some of the implications were also discussed. The framework followed in this exercise and insights gained can be applicable to other process-based models.
ArticleNumber 110536
Author Arango, Miguel A.
Rice, Charles W.
Anandhi, Aavudai
Author_xml – sequence: 1
  givenname: Miguel A.
  surname: Arango
  fullname: Arango, Miguel A.
  organization: Colombian Corporation for Agricultural Research, AGROSAVIA, Villavicencio, Meta, Colombia
– sequence: 2
  givenname: Aavudai
  orcidid: 0000-0002-5323-1983
  surname: Anandhi
  fullname: Anandhi, Aavudai
  email: anandhi@famu.edu
  organization: Biological Systems Engineering, Florida A&M University, FL, 32307, USA
– sequence: 3
  givenname: Charles W.
  surname: Rice
  fullname: Rice, Charles W.
  organization: Department of Agronomy, Kansas State University, KS, 66502, USA
BookMark eNqNkEFvEzEQhS1UJNKU34CPReqGsb1Zb5A4RBEtiKo9QM_WxJ4Fh1072F5K_303BHHgUk5zme_pve-UnYQYiLFXAhYCRPNmtyAb-yE66hcSpFoIAUvVPGMz0WpZaZDNCZuBgrpSLcALdprzDgCEbOWMjZsYLO3LiD3vEg50H9N3js4lytmHr7z4gbLFnvjg84DFfuPjRKSCPpSHt_zGlxTHXMVf3hE_v5G3r_nvMuQ4BscHwjwmchf8E4aM-YLffV6fsecd9ple_rlzdnf5_svmQ3V9e_Vxs76urKrbUkndKbCdarHeapomuHoptcPWEWkApSxCu9IrtdJqS9utXS7rumtwJa0WSjZqzs6PufsUf4yUi5lGWOp7DDSVNkpMpur2EDVn746vNsWcE3XG-oLFx1AS-t4IMAfdZmf-6jYH3eaoe-L1P_w--QHTw3-Q6yNJk4mfnpLJ1tPk2PlEthgX_ZMZj1XlohY
CitedBy_id crossref_primary_10_1016_j_agsy_2024_104213
crossref_primary_10_3390_agriculture14050679
Cites_doi 10.1029/1999JD900948
10.1111/j.1365-2486.2010.02260.x
10.1029/92JD00509
10.1016/j.envpol.2011.11.027
10.1029/2019WR025227
10.5194/bg-7-2039-2010
10.1016/j.ecolmodel.2017.06.007
10.1016/j.agee.2015.03.014
10.1108/01443571111165848
10.5194/hess-22-5675-2018
10.1080/02626667.2015.1091460
10.1016/j.agee.2015.09.001
10.1016/j.chnaes.2010.11.006
10.1037/xge0000202
10.1098/rsta.2017.0301
10.1016/S0038-0717(99)00137-6
10.1029/1999JD900949
10.1016/j.geoderma.2010.06.009
10.1023/A:1026076914167
10.1029/2006GB002909
10.1007/s12040-011-0079-0
10.1007/s11270-013-1677-z
10.1111/j.1365-2486.2004.00873.x
10.1016/j.agee.2009.06.014
10.1023/A:1009780109748
10.1023/A:1015544715608
10.1016/j.catena.2018.06.005
10.1007/s11229-009-9565-1
10.5194/nhess-19-2497-2019
10.1002/hyp.9625
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2023.110536
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1872-7026
ExternalDocumentID 10_1016_j_ecolmodel_2023_110536
S0304380023002661
GeographicLocations Kansas
GeographicLocations_xml – name: Kansas
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABLST
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
VH1
WH7
WUQ
Y6R
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c348t-27f30cf38a4b7e030d4527da8dee70033ca089793973bebbc5544f6a92c713263
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100445200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3800
IngestDate Thu Oct 02 21:40:22 EDT 2025
Tue Nov 18 21:32:33 EST 2025
Sat Nov 29 07:21:09 EST 2025
Sat Mar 02 16:00:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Known-unknowns framework
Uncertainty during model calibration and validation
Denitrification–Decomposition (DNDC) model
Theoretical framework to represent uncertainty
Model uncertainty
Three sensitivity analysis approaches
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-27f30cf38a4b7e030d4527da8dee70033ca089793973bebbc5544f6a92c713263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5323-1983
PQID 3153648003
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153648003
crossref_citationtrail_10_1016_j_ecolmodel_2023_110536
crossref_primary_10_1016_j_ecolmodel_2023_110536
elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2023_110536
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Ecological modelling
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chataut, Bhatta, Joshi, Subedi, Kafle (bib0008) 2023
Armstrong, Lazarus (bib0004) 2019; 19
Li, Frolking, Frolking (bib0022) 1992; 97
Rafique, Fienen, Parkin, Anex (bib0026) 2013; 224
Chow, Sarin (bib0009) 2002; 52
Li, Aber, Stange, Butterbach-Bahl, Papen (bib0021) 2000; 105
Li, Qiu, Wang, Yang (bib0023) 2011; 31
Ansari, Udawatta, Anderson (bib0003) 2023
Anandhi, Bentley (bib0002) 2018; 170
Gasser (bib0014) 2006; 6
Ülkümen, Fox, Malle (bib0031) 2016; 145
Yung, Louder, Gallagher, Jones, Wyborn (bib0036) 2019; 7
Di Baldassarre, Brandimarte, Beven (bib0011) 2016; 61
Harken, Chang, Dietrich, Kalbacher, Rubin (bib0017) 2019
Werner, Butterbach-Bahl, Haas, Hickler, Kiese (bib0034) 2007; 21
Wang (bib0033) 2012; 162
Izaurralde (bib0018) 2017; 359
Challinor (bib0007) 2018; 376
Stange (bib0030) 2000; 105
Geraldi, Maylor, Williams (bib0015) 2011; 31
Rubin (bib0027) 2018; 22
Simek, Cooper, Picek, Santruckova (bib0029) 2000; 32
Du, Cui, Cao, Zhao, Yang (bib0012) 2011; 59
Kiese, Li, Hilbert, Papen, Butterbach-Bahl (bib0020) 2005; 11
Bokulich (bib0006) 2011; 180
Uzoma (bib0032) 2015; 206
Juston, J.M. et al., 2012. Smiling in the rain: seven reasons to be positive about uncertainty in hydrological modelling.
Li (bib0024) 2019
Zhang, Qi, Li, Li, Li (bib0037) 2010; 7
Nol, Heuvelink, Veldkamp, De Vries, Kros (bib0025) 2010; 159
Giltrap, Li, Saggar (bib0016) 2010; 136
Anandhi (bib0001) 2011; 120
Xu, Wang, Zheng, Ji, Wang (bib0035) 2003; 255
Frolking (bib0013) 1998; 52
Deng (bib0010) 2011
Barton, Butterbach-Bahl, Kiese, Murphy (bib0005) 2011; 17
Sándor (bib0028) 2016; 215
Anandhi (10.1016/j.ecolmodel.2023.110536_bib0001) 2011; 120
Armstrong (10.1016/j.ecolmodel.2023.110536_bib0004) 2019; 19
Li (10.1016/j.ecolmodel.2023.110536_bib0022) 1992; 97
Zhang (10.1016/j.ecolmodel.2023.110536_bib0037) 2010; 7
Bokulich (10.1016/j.ecolmodel.2023.110536_bib0006) 2011; 180
Wang (10.1016/j.ecolmodel.2023.110536_bib0033) 2012; 162
Li (10.1016/j.ecolmodel.2023.110536_bib0024) 2019
Frolking (10.1016/j.ecolmodel.2023.110536_bib0013) 1998; 52
Ansari (10.1016/j.ecolmodel.2023.110536_bib0003) 2023
Yung (10.1016/j.ecolmodel.2023.110536_bib0036) 2019; 7
Gasser (10.1016/j.ecolmodel.2023.110536_bib0014) 2006; 6
Rubin (10.1016/j.ecolmodel.2023.110536_bib0027) 2018; 22
Anandhi (10.1016/j.ecolmodel.2023.110536_bib0002) 2018; 170
Barton (10.1016/j.ecolmodel.2023.110536_bib0005) 2011; 17
Deng (10.1016/j.ecolmodel.2023.110536_bib0010) 2011
Di Baldassarre (10.1016/j.ecolmodel.2023.110536_bib0011) 2016; 61
Li (10.1016/j.ecolmodel.2023.110536_bib0023) 2011; 31
Xu (10.1016/j.ecolmodel.2023.110536_bib0035) 2003; 255
Rafique (10.1016/j.ecolmodel.2023.110536_bib0026) 2013; 224
Sándor (10.1016/j.ecolmodel.2023.110536_bib0028) 2016; 215
Chataut (10.1016/j.ecolmodel.2023.110536_bib0008) 2023
Stange (10.1016/j.ecolmodel.2023.110536_bib0030) 2000; 105
Uzoma (10.1016/j.ecolmodel.2023.110536_bib0032) 2015; 206
Geraldi (10.1016/j.ecolmodel.2023.110536_bib0015) 2011; 31
Izaurralde (10.1016/j.ecolmodel.2023.110536_bib0018) 2017; 359
Ülkümen (10.1016/j.ecolmodel.2023.110536_bib0031) 2016; 145
Kiese (10.1016/j.ecolmodel.2023.110536_bib0020) 2005; 11
Challinor (10.1016/j.ecolmodel.2023.110536_bib0007) 2018; 376
Chow (10.1016/j.ecolmodel.2023.110536_bib0009) 2002; 52
Harken (10.1016/j.ecolmodel.2023.110536_bib0017) 2019
Giltrap (10.1016/j.ecolmodel.2023.110536_bib0016) 2010; 136
Du (10.1016/j.ecolmodel.2023.110536_bib0012) 2011; 59
10.1016/j.ecolmodel.2023.110536_bib0019
Werner (10.1016/j.ecolmodel.2023.110536_bib0034) 2007; 21
Li (10.1016/j.ecolmodel.2023.110536_bib0021) 2000; 105
Nol (10.1016/j.ecolmodel.2023.110536_bib0025) 2010; 159
Simek (10.1016/j.ecolmodel.2023.110536_bib0029) 2000; 32
References_xml – volume: 145
  start-page: 1280
  year: 2016
  ident: bib0031
  article-title: Two dimensions of subjective uncertainty: clues from natural language
  publication-title: J. Exp. Psychol.: General
– volume: 105
  start-page: 4369
  year: 2000
  end-page: 4384
  ident: bib0021
  article-title: A process-oriented model of N
  publication-title: J. Geophys. Res.
– volume: 22
  year: 2018
  ident: bib0027
  article-title: Stochastic hydrogeology's biggest hurdles analyzed and its big blind spot
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 6
  start-page: 128
  year: 2006
  ident: bib0014
  article-title: Coupled or uncoupled remodelling, is that the question?
  publication-title: J. Musculoskeletal Neuronal Interact.
– year: 2023
  ident: bib0008
  article-title: Greenhouse gases emission from agricultural soil: a review
  publication-title: J. Agric. Food Res.h
– volume: 206
  start-page: 71
  year: 2015
  end-page: 83
  ident: bib0032
  article-title: Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model
  publication-title: Agric. Ecosyst. Environ.
– volume: 120
  start-page: 375
  year: 2011
  end-page: 386
  ident: bib0001
  article-title: Uncertainties in downscaled relative humidity for a semi-arid region in India
  publication-title: J. Earth Syst. Sci.
– year: 2019
  ident: bib0024
  article-title: Essays On Decision Making Under Ambiguity
– volume: 21
  year: 2007
  ident: bib0034
  article-title: A global inventory of N
  publication-title: Global Biogeochem. Cycles
– year: 2019
  ident: bib0017
  article-title: Hydrogeological modeling and water resources management: improving the link between data, prediction, and decision making
  publication-title: Water Resour. Res.
– volume: 31
  start-page: 966
  year: 2011
  end-page: 990
  ident: bib0015
  article-title: Now, let's make it really complex (complicated) A systematic review of the complexities of projects
  publication-title: Int. J. Oper. Product. Manag.
– volume: 255
  start-page: 513
  year: 2003
  end-page: 528
  ident: bib0035
  article-title: A comparison between measured and modeled N
  publication-title: Plant Soil
– volume: 11
  start-page: 128
  year: 2005
  end-page: 144
  ident: bib0020
  article-title: Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia
  publication-title: Glob. Change Biol.
– start-page: 116
  year: 2011
  ident: bib0010
  article-title: Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC
  publication-title: J. Geophys. Res.
– volume: 52
  start-page: 127
  year: 2002
  end-page: 138
  ident: bib0009
  article-title: Known, unknown, and unknowable uncertainties
  publication-title: Theory Decis.
– volume: 359
  start-page: 349
  year: 2017
  end-page: 362
  ident: bib0018
  article-title: Simulating microbial denitrification with EPIC: model description and evaluation
  publication-title: Ecol. Modell.
– reference: Juston, J.M. et al., 2012. Smiling in the rain: seven reasons to be positive about uncertainty in hydrological modelling.
– volume: 159
  start-page: 9
  year: 2010
  end-page: 23
  ident: bib0025
  article-title: Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale
  publication-title: Geoderma
– volume: 136
  start-page: 292
  year: 2010
  end-page: 300
  ident: bib0016
  article-title: DNDC: a process-based model of greenhouse gas fluxes from agricultural soils
  publication-title: Agric. Ecosyst. Environ.
– volume: 180
  start-page: 33
  year: 2011
  end-page: 45
  ident: bib0006
  article-title: How scientific models can explain
  publication-title: Synthese
– volume: 61
  start-page: 1748
  year: 2016
  end-page: 1758
  ident: bib0011
  article-title: The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems
  publication-title: Hydrol. Sci. J.
– volume: 224
  year: 2013
  ident: bib0026
  article-title: Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling
  publication-title: Water Air Soil Pollut.
– volume: 105
  start-page: 4385
  year: 2000
  end-page: 4398
  ident: bib0030
  article-title: A process-oriented model of N
  publication-title: J. Geophys. Res.
– volume: 59
  start-page: 443
  year: 2011
  ident: bib0012
  article-title: Simulating N
  publication-title: Pol. J. Ecol.
– volume: 52
  start-page: 77
  year: 1998
  end-page: 105
  ident: bib0013
  article-title: Comparison of N
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 215
  start-page: 1
  year: 2016
  end-page: 19
  ident: bib0028
  article-title: Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models
  publication-title: Agric. Ecosyst. Environ.
– volume: 32
  start-page: 101
  year: 2000
  end-page: 110
  ident: bib0029
  article-title: Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice
  publication-title: Soil Biol. Biochem.
– volume: 162
  start-page: 223
  year: 2012
  end-page: 233
  ident: bib0033
  article-title: Modelling nitrous oxide emissions from grazed grassland systems
  publication-title: Environ. Pollut.
– volume: 31
  start-page: 91
  year: 2011
  end-page: 96
  ident: bib0023
  article-title: Advance in a terrestrial biogeochemical model—DNDC model
  publication-title: Acta Ecologica Sinica
– volume: 7
  year: 2019
  ident: bib0036
  article-title: How methods for navigating uncertainty connect science and policy at the water-energy-food nexus
  publication-title: Front. Environ. Sci.
– volume: 17
  start-page: 1153
  year: 2011
  end-page: 1166
  ident: bib0005
  article-title: Nitrous oxide fluxes from a grain–legume crop (narrow-leafed lupin) grown in a semiarid climate
  publication-title: Glob. Change Biol.
– volume: 170
  start-page: 409
  year: 2018
  end-page: 420
  ident: bib0002
  article-title: Predicted 21st century climate variability in southeastern US using downscaled CMIP5 and meta-analysis
  publication-title: Catena
– volume: 376
  year: 2018
  ident: bib0007
  article-title: Transmission of climate risks across sectors and borders
  publication-title: Philos. Trans. R. Soc., A
– volume: 19
  start-page: 2497
  year: 2019
  end-page: 2511
  ident: bib0004
  article-title: Reconstructing patterns of coastal risk in space and time along the US Atlantic coast, 1970–2016
  publication-title: Natural Hazard. Earth Syst. Sci.
– volume: 7
  start-page: 2039
  year: 2010
  end-page: 2050
  ident: bib0037
  article-title: Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model
  publication-title: Biogeosciences
– volume: 97
  start-page: 9759
  year: 1992
  end-page: 9776
  ident: bib0022
  article-title: A model of nitrous-oxide evolution from soil driven by rainfall events.1. Model structure and sensitivity
  publication-title: J. Geophys. Res.
– start-page: 1
  year: 2023
  end-page: 15
  ident: bib0003
  article-title: Soil nitrous oxide emission from agroforestry, rowcrop, grassland and forests in North America: a review
  publication-title: Agroforest. Syst.
– volume: 105
  start-page: 4385
  issue: D4
  year: 2000
  ident: 10.1016/j.ecolmodel.2023.110536_bib0030
  article-title: A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JD900948
– volume: 17
  start-page: 1153
  issue: 2
  year: 2011
  ident: 10.1016/j.ecolmodel.2023.110536_bib0005
  article-title: Nitrous oxide fluxes from a grain–legume crop (narrow-leafed lupin) grown in a semiarid climate
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2010.02260.x
– volume: 7
  issue: 37
  year: 2019
  ident: 10.1016/j.ecolmodel.2023.110536_bib0036
  article-title: How methods for navigating uncertainty connect science and policy at the water-energy-food nexus
  publication-title: Front. Environ. Sci.
– volume: 97
  start-page: 9759
  issue: D9
  year: 1992
  ident: 10.1016/j.ecolmodel.2023.110536_bib0022
  article-title: A model of nitrous-oxide evolution from soil driven by rainfall events.1. Model structure and sensitivity
  publication-title: J. Geophys. Res.
  doi: 10.1029/92JD00509
– volume: 162
  start-page: 223
  issue: 0
  year: 2012
  ident: 10.1016/j.ecolmodel.2023.110536_bib0033
  article-title: Modelling nitrous oxide emissions from grazed grassland systems
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.11.027
– year: 2019
  ident: 10.1016/j.ecolmodel.2023.110536_bib0017
  article-title: Hydrogeological modeling and water resources management: improving the link between data, prediction, and decision making
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025227
– volume: 7
  start-page: 2039
  issue: 6
  year: 2010
  ident: 10.1016/j.ecolmodel.2023.110536_bib0037
  article-title: Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model
  publication-title: Biogeosciences
  doi: 10.5194/bg-7-2039-2010
– start-page: 1
  year: 2023
  ident: 10.1016/j.ecolmodel.2023.110536_bib0003
  article-title: Soil nitrous oxide emission from agroforestry, rowcrop, grassland and forests in North America: a review
  publication-title: Agroforest. Syst.
– volume: 359
  start-page: 349
  year: 2017
  ident: 10.1016/j.ecolmodel.2023.110536_bib0018
  article-title: Simulating microbial denitrification with EPIC: model description and evaluation
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2017.06.007
– volume: 206
  start-page: 71
  year: 2015
  ident: 10.1016/j.ecolmodel.2023.110536_bib0032
  article-title: Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.03.014
– start-page: 116
  year: 2011
  ident: 10.1016/j.ecolmodel.2023.110536_bib0010
  article-title: Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC
  publication-title: J. Geophys. Res.
– volume: 59
  start-page: 443
  issue: 3
  year: 2011
  ident: 10.1016/j.ecolmodel.2023.110536_bib0012
  article-title: Simulating N2O emission from Kobresia humilis Serg. alpine meadow on Tibetan plateau with the DNDC model
  publication-title: Pol. J. Ecol.
– volume: 31
  start-page: 966
  issue: 9
  year: 2011
  ident: 10.1016/j.ecolmodel.2023.110536_bib0015
  article-title: Now, let's make it really complex (complicated) A systematic review of the complexities of projects
  publication-title: Int. J. Oper. Product. Manag.
  doi: 10.1108/01443571111165848
– volume: 22
  issue: 11
  year: 2018
  ident: 10.1016/j.ecolmodel.2023.110536_bib0027
  article-title: Stochastic hydrogeology's biggest hurdles analyzed and its big blind spot
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-5675-2018
– volume: 61
  start-page: 1748
  issue: 9
  year: 2016
  ident: 10.1016/j.ecolmodel.2023.110536_bib0011
  article-title: The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2015.1091460
– volume: 215
  start-page: 1
  year: 2016
  ident: 10.1016/j.ecolmodel.2023.110536_bib0028
  article-title: Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.09.001
– volume: 31
  start-page: 91
  issue: 2
  year: 2011
  ident: 10.1016/j.ecolmodel.2023.110536_bib0023
  article-title: Advance in a terrestrial biogeochemical model—DNDC model
  publication-title: Acta Ecologica Sinica
  doi: 10.1016/j.chnaes.2010.11.006
– volume: 145
  start-page: 1280
  issue: 10
  year: 2016
  ident: 10.1016/j.ecolmodel.2023.110536_bib0031
  article-title: Two dimensions of subjective uncertainty: clues from natural language
  publication-title: J. Exp. Psychol.: General
  doi: 10.1037/xge0000202
– volume: 376
  issue: 2121
  year: 2018
  ident: 10.1016/j.ecolmodel.2023.110536_bib0007
  article-title: Transmission of climate risks across sectors and borders
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2017.0301
– volume: 32
  start-page: 101
  issue: 1
  year: 2000
  ident: 10.1016/j.ecolmodel.2023.110536_bib0029
  article-title: Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00137-6
– volume: 105
  start-page: 4369
  issue: D4
  year: 2000
  ident: 10.1016/j.ecolmodel.2023.110536_bib0021
  article-title: A process-oriented model of N2O and NO emissions from forest soils: 1. Model development
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JD900949
– volume: 159
  start-page: 9
  issue: 1–2
  year: 2010
  ident: 10.1016/j.ecolmodel.2023.110536_bib0025
  article-title: Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.06.009
– volume: 255
  start-page: 513
  issue: 2
  year: 2003
  ident: 10.1016/j.ecolmodel.2023.110536_bib0035
  article-title: A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland
  publication-title: Plant Soil
  doi: 10.1023/A:1026076914167
– volume: 21
  issue: 3
  year: 2007
  ident: 10.1016/j.ecolmodel.2023.110536_bib0034
  article-title: A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/2006GB002909
– volume: 120
  start-page: 375
  issue: 3
  year: 2011
  ident: 10.1016/j.ecolmodel.2023.110536_bib0001
  article-title: Uncertainties in downscaled relative humidity for a semi-arid region in India
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-011-0079-0
– year: 2023
  ident: 10.1016/j.ecolmodel.2023.110536_bib0008
  article-title: Greenhouse gases emission from agricultural soil: a review
  publication-title: J. Agric. Food Res.h
– year: 2019
  ident: 10.1016/j.ecolmodel.2023.110536_bib0024
– volume: 224
  issue: 9
  year: 2013
  ident: 10.1016/j.ecolmodel.2023.110536_bib0026
  article-title: Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-013-1677-z
– volume: 11
  start-page: 128
  issue: 1
  year: 2005
  ident: 10.1016/j.ecolmodel.2023.110536_bib0020
  article-title: Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2004.00873.x
– volume: 136
  start-page: 292
  issue: 3–4
  year: 2010
  ident: 10.1016/j.ecolmodel.2023.110536_bib0016
  article-title: DNDC: a process-based model of greenhouse gas fluxes from agricultural soils
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.06.014
– volume: 52
  start-page: 77
  issue: 2–3
  year: 1998
  ident: 10.1016/j.ecolmodel.2023.110536_bib0013
  article-title: Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1009780109748
– volume: 52
  start-page: 127
  issue: 2
  year: 2002
  ident: 10.1016/j.ecolmodel.2023.110536_bib0009
  article-title: Known, unknown, and unknowable uncertainties
  publication-title: Theory Decis.
  doi: 10.1023/A:1015544715608
– volume: 170
  start-page: 409
  year: 2018
  ident: 10.1016/j.ecolmodel.2023.110536_bib0002
  article-title: Predicted 21st century climate variability in southeastern US using downscaled CMIP5 and meta-analysis
  publication-title: Catena
  doi: 10.1016/j.catena.2018.06.005
– volume: 180
  start-page: 33
  issue: 1
  year: 2011
  ident: 10.1016/j.ecolmodel.2023.110536_bib0006
  article-title: How scientific models can explain
  publication-title: Synthese
  doi: 10.1007/s11229-009-9565-1
– volume: 6
  start-page: 128
  issue: 2
  year: 2006
  ident: 10.1016/j.ecolmodel.2023.110536_bib0014
  article-title: Coupled or uncoupled remodelling, is that the question?
  publication-title: J. Musculoskeletal Neuronal Interact.
– volume: 19
  start-page: 2497
  year: 2019
  ident: 10.1016/j.ecolmodel.2023.110536_bib0004
  article-title: Reconstructing patterns of coastal risk in space and time along the US Atlantic coast, 1970–2016
  publication-title: Natural Hazard. Earth Syst. Sci.
  doi: 10.5194/nhess-19-2497-2019
– ident: 10.1016/j.ecolmodel.2023.110536_bib0019
  doi: 10.1002/hyp.9625
SSID ssj0001282
Score 2.4307718
Snippet •The uncertainty arises from the differences in time scales between modeled and measured variables are not explicitly addressed in literature.•A conceptual...
The uncertainty that arises from the differences in time scales between modeled and measured variables during sensitivity analysis, calibration, and validation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110536
SubjectTerms Denitrification–Decomposition (DNDC) model
Kansas
Known-unknowns framework
Model uncertainty
nitrous oxide
Theoretical framework to represent uncertainty
Three sensitivity analysis approaches
uncertainty
Uncertainty during model calibration and validation
Title Conceptual framework addressing timescale mismatch uncertainty: Nitrous-oxide (N2O) modeled and measured, Kansas, USA
URI https://dx.doi.org/10.1016/j.ecolmodel.2023.110536
https://www.proquest.com/docview/3153648003
Volume 486
WOSCitedRecordID wos001100445200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001282
  issn: 0304-3800
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhIvCAbTNi4yEg-gLFEau4mzt2oqAoQKEhv0LXIcZ3Tq0qlNqvI_-MEcX3LpAJU98BJVVu24_r76HB-fC0KviGApy0LiZpSE6oAi3TTvczenvpRUZRjTXpVfP0bjMZtM4s-93s86FmY1i4qCrdfx9X-FGtoAbBU6ewu4m0GhAT4D6PAE2OH5T8CfmkBEFRaS155XDuwv2uFVxUapoA9ARjoAMeir4rsDss14BpQ6_9N4Wi7m1dKdr6eZVkHHwSdlPTBVc3RuV-fK2BaNpVSVHNd8OP8y3DD1i2Zr1X1ntZzUDOPFxdx47l9UEojitSYJeIMuNuwM-arK-LS5FrI16q2TgPPN61otAtLxALHRWupGhvl-dyemrLuXgmIyMMlRftvmjcXh0oMT-kzP31Pv8Noem4m1bwi8xg2x9nC7TJqBEjVQYga6g3aDaBDDXrk7fD-afGgkPMh0eztlfsOG3-Af5_Q3reeG_NdKzdlD9MCeRvDQsOgR6sliD90zsP3YQ_ujNgwSvmblwPIxqlqS4YZkuCUZbkiGa5LhDslO8AbF8Gsg2Bts6YUBfFzT6xgbch1joNYTdP52dHb6zrUFPFxBKCvdIMqJL3LCOE0jCcuV0UEQZZxlUkaqiqDgPotBQsQRSWWaCtBtaR7yOBBRH84VZB_tFPNCHiAcQpMgqQglHKHDlHOAwOdkkMN5XYS0f4jCeoETYbPbqyIrs2QLyIfIbzpemwQv27uc1AgmVk81-mcC_Nze-WWNeQIIqOs5XkhY8YSA8hFSoBM5uv2cnqL77d_sGdopF5V8ju6KVTldLl5YAv8C2E3Egw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conceptual+framework+addressing+timescale+mismatch+uncertainty%3A+Nitrous-oxide+%28N2O%29+modeled+and+measured%2C+Kansas%2C+USA&rft.jtitle=Ecological+modelling&rft.au=Arango%2C+Miguel+A.&rft.au=Anandhi%2C+Aavudai&rft.au=Rice%2C+Charles+W.&rft.date=2023-12-01&rft.issn=0304-3800&rft.volume=486&rft.spage=110536&rft_id=info:doi/10.1016%2Fj.ecolmodel.2023.110536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolmodel_2023_110536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon