Conceptual framework addressing timescale mismatch uncertainty: Nitrous-oxide (N2O) modeled and measured, Kansas, USA
•The uncertainty arises from the differences in time scales between modeled and measured variables are not explicitly addressed in literature.•A conceptual framework was developed to represent this known-unknown uncertainty for a combinations of integration methods, management practices, sensitivity...
Uložené v:
| Vydané v: | Ecological modelling Ročník 486; s. 110536 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2023
|
| Predmet: | |
| ISSN: | 0304-3800, 1872-7026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •The uncertainty arises from the differences in time scales between modeled and measured variables are not explicitly addressed in literature.•A conceptual framework was developed to represent this known-unknown uncertainty for a combinations of integration methods, management practices, sensitivity analysis methods, calibration, and validation performance measures.•The framework is demonstrated by applying it to Denitrification–Decomposition model modeled/measured N2O when the timescales are not equal.•Although the model is used as an example, the techniques described can be applied to many modeling problems across locations at multiple time scales.
The uncertainty that arises from the differences in time scales between modeled and measured variables during sensitivity analysis, calibration, and validation in process-based models are often not addressed in the literature. A conceptual framework was developed to represent the uncertainty arising due to this mismatch in timescales. Modeling N2O fluxes from agricultural lands in Manhattan, Kansas using Denitrification–Decomposition (DNDC) model, and with measurements available at biweekly time scale is chosen in the demonstration. A conceptual framework was developed to represent the known-unknown uncertainty using integration methods, management practices, sensitivity analysis methods, calibration and validation performance measures. The known-known and known-unknown uncertainty were represented for combinations of three integration methods (mean, median and cumulative sum), four management practice combinations (till-urea, no-till-urea, till-compost, no-till-compost), three sensitivity analysis methods (two graphical approaches and an index based method), and two calibration and validation performance measures (ME, R2). In the framework, the unknown uncertainty was represented but not quantified. The various assumptions and some of the implications were also discussed. The framework followed in this exercise and insights gained can be applicable to other process-based models. |
|---|---|
| AbstractList | The uncertainty that arises from the differences in time scales between modeled and measured variables during sensitivity analysis, calibration, and validation in process-based models are often not addressed in the literature. A conceptual framework was developed to represent the uncertainty arising due to this mismatch in timescales. Modeling N2O fluxes from agricultural lands in Manhattan, Kansas using Denitrification–Decomposition (DNDC) model, and with measurements available at biweekly time scale is chosen in the demonstration. A conceptual framework was developed to represent the known-unknown uncertainty using integration methods, management practices, sensitivity analysis methods, calibration and validation performance measures. The known-known and known-unknown uncertainty were represented for combinations of three integration methods (mean, median and cumulative sum), four management practice combinations (till-urea, no-till-urea, till-compost, no-till-compost), three sensitivity analysis methods (two graphical approaches and an index based method), and two calibration and validation performance measures (ME, R2). In the framework, the unknown uncertainty was represented but not quantified. The various assumptions and some of the implications were also discussed. The framework followed in this exercise and insights gained can be applicable to other process-based models. •The uncertainty arises from the differences in time scales between modeled and measured variables are not explicitly addressed in literature.•A conceptual framework was developed to represent this known-unknown uncertainty for a combinations of integration methods, management practices, sensitivity analysis methods, calibration, and validation performance measures.•The framework is demonstrated by applying it to Denitrification–Decomposition model modeled/measured N2O when the timescales are not equal.•Although the model is used as an example, the techniques described can be applied to many modeling problems across locations at multiple time scales. The uncertainty that arises from the differences in time scales between modeled and measured variables during sensitivity analysis, calibration, and validation in process-based models are often not addressed in the literature. A conceptual framework was developed to represent the uncertainty arising due to this mismatch in timescales. Modeling N2O fluxes from agricultural lands in Manhattan, Kansas using Denitrification–Decomposition (DNDC) model, and with measurements available at biweekly time scale is chosen in the demonstration. A conceptual framework was developed to represent the known-unknown uncertainty using integration methods, management practices, sensitivity analysis methods, calibration and validation performance measures. The known-known and known-unknown uncertainty were represented for combinations of three integration methods (mean, median and cumulative sum), four management practice combinations (till-urea, no-till-urea, till-compost, no-till-compost), three sensitivity analysis methods (two graphical approaches and an index based method), and two calibration and validation performance measures (ME, R2). In the framework, the unknown uncertainty was represented but not quantified. The various assumptions and some of the implications were also discussed. The framework followed in this exercise and insights gained can be applicable to other process-based models. |
| ArticleNumber | 110536 |
| Author | Arango, Miguel A. Rice, Charles W. Anandhi, Aavudai |
| Author_xml | – sequence: 1 givenname: Miguel A. surname: Arango fullname: Arango, Miguel A. organization: Colombian Corporation for Agricultural Research, AGROSAVIA, Villavicencio, Meta, Colombia – sequence: 2 givenname: Aavudai orcidid: 0000-0002-5323-1983 surname: Anandhi fullname: Anandhi, Aavudai email: anandhi@famu.edu organization: Biological Systems Engineering, Florida A&M University, FL, 32307, USA – sequence: 3 givenname: Charles W. surname: Rice fullname: Rice, Charles W. organization: Department of Agronomy, Kansas State University, KS, 66502, USA |
| BookMark | eNqNkEFvEzEQhS1UJNKU34CPReqGsb1Zb5A4RBEtiKo9QM_WxJ4Fh1072F5K_303BHHgUk5zme_pve-UnYQYiLFXAhYCRPNmtyAb-yE66hcSpFoIAUvVPGMz0WpZaZDNCZuBgrpSLcALdprzDgCEbOWMjZsYLO3LiD3vEg50H9N3js4lytmHr7z4gbLFnvjg84DFfuPjRKSCPpSHt_zGlxTHXMVf3hE_v5G3r_nvMuQ4BscHwjwmchf8E4aM-YLffV6fsecd9ple_rlzdnf5_svmQ3V9e_Vxs76urKrbUkndKbCdarHeapomuHoptcPWEWkApSxCu9IrtdJqS9utXS7rumtwJa0WSjZqzs6PufsUf4yUi5lGWOp7DDSVNkpMpur2EDVn746vNsWcE3XG-oLFx1AS-t4IMAfdZmf-6jYH3eaoe-L1P_w--QHTw3-Q6yNJk4mfnpLJ1tPk2PlEthgX_ZMZj1XlohY |
| CitedBy_id | crossref_primary_10_1016_j_agsy_2024_104213 crossref_primary_10_3390_agriculture14050679 |
| Cites_doi | 10.1029/1999JD900948 10.1111/j.1365-2486.2010.02260.x 10.1029/92JD00509 10.1016/j.envpol.2011.11.027 10.1029/2019WR025227 10.5194/bg-7-2039-2010 10.1016/j.ecolmodel.2017.06.007 10.1016/j.agee.2015.03.014 10.1108/01443571111165848 10.5194/hess-22-5675-2018 10.1080/02626667.2015.1091460 10.1016/j.agee.2015.09.001 10.1016/j.chnaes.2010.11.006 10.1037/xge0000202 10.1098/rsta.2017.0301 10.1016/S0038-0717(99)00137-6 10.1029/1999JD900949 10.1016/j.geoderma.2010.06.009 10.1023/A:1026076914167 10.1029/2006GB002909 10.1007/s12040-011-0079-0 10.1007/s11270-013-1677-z 10.1111/j.1365-2486.2004.00873.x 10.1016/j.agee.2009.06.014 10.1023/A:1009780109748 10.1023/A:1015544715608 10.1016/j.catena.2018.06.005 10.1007/s11229-009-9565-1 10.5194/nhess-19-2497-2019 10.1002/hyp.9625 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.ecolmodel.2023.110536 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Environmental Sciences |
| EISSN | 1872-7026 |
| ExternalDocumentID | 10_1016_j_ecolmodel_2023_110536 S0304380023002661 |
| GeographicLocations | Kansas |
| GeographicLocations_xml | – name: Kansas |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEN SES SEW SPCBC SSA SSJ SSZ T5K VH1 WH7 WUQ Y6R ZY4 ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c348t-27f30cf38a4b7e030d4527da8dee70033ca089793973bebbc5544f6a92c713263 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100445200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3800 |
| IngestDate | Thu Oct 02 21:40:22 EDT 2025 Tue Nov 18 21:32:33 EST 2025 Sat Nov 29 07:21:09 EST 2025 Sat Mar 02 16:00:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Known-unknowns framework Uncertainty during model calibration and validation Denitrification–Decomposition (DNDC) model Theoretical framework to represent uncertainty Model uncertainty Three sensitivity analysis approaches |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-27f30cf38a4b7e030d4527da8dee70033ca089793973bebbc5544f6a92c713263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5323-1983 |
| PQID | 3153648003 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153648003 crossref_citationtrail_10_1016_j_ecolmodel_2023_110536 crossref_primary_10_1016_j_ecolmodel_2023_110536 elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2023_110536 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Ecological modelling |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chataut, Bhatta, Joshi, Subedi, Kafle (bib0008) 2023 Armstrong, Lazarus (bib0004) 2019; 19 Li, Frolking, Frolking (bib0022) 1992; 97 Rafique, Fienen, Parkin, Anex (bib0026) 2013; 224 Chow, Sarin (bib0009) 2002; 52 Li, Aber, Stange, Butterbach-Bahl, Papen (bib0021) 2000; 105 Li, Qiu, Wang, Yang (bib0023) 2011; 31 Ansari, Udawatta, Anderson (bib0003) 2023 Anandhi, Bentley (bib0002) 2018; 170 Gasser (bib0014) 2006; 6 Ülkümen, Fox, Malle (bib0031) 2016; 145 Yung, Louder, Gallagher, Jones, Wyborn (bib0036) 2019; 7 Di Baldassarre, Brandimarte, Beven (bib0011) 2016; 61 Harken, Chang, Dietrich, Kalbacher, Rubin (bib0017) 2019 Werner, Butterbach-Bahl, Haas, Hickler, Kiese (bib0034) 2007; 21 Wang (bib0033) 2012; 162 Izaurralde (bib0018) 2017; 359 Challinor (bib0007) 2018; 376 Stange (bib0030) 2000; 105 Geraldi, Maylor, Williams (bib0015) 2011; 31 Rubin (bib0027) 2018; 22 Simek, Cooper, Picek, Santruckova (bib0029) 2000; 32 Du, Cui, Cao, Zhao, Yang (bib0012) 2011; 59 Kiese, Li, Hilbert, Papen, Butterbach-Bahl (bib0020) 2005; 11 Bokulich (bib0006) 2011; 180 Uzoma (bib0032) 2015; 206 Juston, J.M. et al., 2012. Smiling in the rain: seven reasons to be positive about uncertainty in hydrological modelling. Li (bib0024) 2019 Zhang, Qi, Li, Li, Li (bib0037) 2010; 7 Nol, Heuvelink, Veldkamp, De Vries, Kros (bib0025) 2010; 159 Giltrap, Li, Saggar (bib0016) 2010; 136 Anandhi (bib0001) 2011; 120 Xu, Wang, Zheng, Ji, Wang (bib0035) 2003; 255 Frolking (bib0013) 1998; 52 Deng (bib0010) 2011 Barton, Butterbach-Bahl, Kiese, Murphy (bib0005) 2011; 17 Sándor (bib0028) 2016; 215 Anandhi (10.1016/j.ecolmodel.2023.110536_bib0001) 2011; 120 Armstrong (10.1016/j.ecolmodel.2023.110536_bib0004) 2019; 19 Li (10.1016/j.ecolmodel.2023.110536_bib0022) 1992; 97 Zhang (10.1016/j.ecolmodel.2023.110536_bib0037) 2010; 7 Bokulich (10.1016/j.ecolmodel.2023.110536_bib0006) 2011; 180 Wang (10.1016/j.ecolmodel.2023.110536_bib0033) 2012; 162 Li (10.1016/j.ecolmodel.2023.110536_bib0024) 2019 Frolking (10.1016/j.ecolmodel.2023.110536_bib0013) 1998; 52 Ansari (10.1016/j.ecolmodel.2023.110536_bib0003) 2023 Yung (10.1016/j.ecolmodel.2023.110536_bib0036) 2019; 7 Gasser (10.1016/j.ecolmodel.2023.110536_bib0014) 2006; 6 Rubin (10.1016/j.ecolmodel.2023.110536_bib0027) 2018; 22 Anandhi (10.1016/j.ecolmodel.2023.110536_bib0002) 2018; 170 Barton (10.1016/j.ecolmodel.2023.110536_bib0005) 2011; 17 Deng (10.1016/j.ecolmodel.2023.110536_bib0010) 2011 Di Baldassarre (10.1016/j.ecolmodel.2023.110536_bib0011) 2016; 61 Li (10.1016/j.ecolmodel.2023.110536_bib0023) 2011; 31 Xu (10.1016/j.ecolmodel.2023.110536_bib0035) 2003; 255 Rafique (10.1016/j.ecolmodel.2023.110536_bib0026) 2013; 224 Sándor (10.1016/j.ecolmodel.2023.110536_bib0028) 2016; 215 Chataut (10.1016/j.ecolmodel.2023.110536_bib0008) 2023 Stange (10.1016/j.ecolmodel.2023.110536_bib0030) 2000; 105 Uzoma (10.1016/j.ecolmodel.2023.110536_bib0032) 2015; 206 Geraldi (10.1016/j.ecolmodel.2023.110536_bib0015) 2011; 31 Izaurralde (10.1016/j.ecolmodel.2023.110536_bib0018) 2017; 359 Ülkümen (10.1016/j.ecolmodel.2023.110536_bib0031) 2016; 145 Kiese (10.1016/j.ecolmodel.2023.110536_bib0020) 2005; 11 Challinor (10.1016/j.ecolmodel.2023.110536_bib0007) 2018; 376 Chow (10.1016/j.ecolmodel.2023.110536_bib0009) 2002; 52 Harken (10.1016/j.ecolmodel.2023.110536_bib0017) 2019 Giltrap (10.1016/j.ecolmodel.2023.110536_bib0016) 2010; 136 Du (10.1016/j.ecolmodel.2023.110536_bib0012) 2011; 59 10.1016/j.ecolmodel.2023.110536_bib0019 Werner (10.1016/j.ecolmodel.2023.110536_bib0034) 2007; 21 Li (10.1016/j.ecolmodel.2023.110536_bib0021) 2000; 105 Nol (10.1016/j.ecolmodel.2023.110536_bib0025) 2010; 159 Simek (10.1016/j.ecolmodel.2023.110536_bib0029) 2000; 32 |
| References_xml | – volume: 145 start-page: 1280 year: 2016 ident: bib0031 article-title: Two dimensions of subjective uncertainty: clues from natural language publication-title: J. Exp. Psychol.: General – volume: 105 start-page: 4369 year: 2000 end-page: 4384 ident: bib0021 article-title: A process-oriented model of N publication-title: J. Geophys. Res. – volume: 22 year: 2018 ident: bib0027 article-title: Stochastic hydrogeology's biggest hurdles analyzed and its big blind spot publication-title: Hydrol. Earth Syst. Sci. – volume: 6 start-page: 128 year: 2006 ident: bib0014 article-title: Coupled or uncoupled remodelling, is that the question? publication-title: J. Musculoskeletal Neuronal Interact. – year: 2023 ident: bib0008 article-title: Greenhouse gases emission from agricultural soil: a review publication-title: J. Agric. Food Res.h – volume: 206 start-page: 71 year: 2015 end-page: 83 ident: bib0032 article-title: Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model publication-title: Agric. Ecosyst. Environ. – volume: 120 start-page: 375 year: 2011 end-page: 386 ident: bib0001 article-title: Uncertainties in downscaled relative humidity for a semi-arid region in India publication-title: J. Earth Syst. Sci. – year: 2019 ident: bib0024 article-title: Essays On Decision Making Under Ambiguity – volume: 21 year: 2007 ident: bib0034 article-title: A global inventory of N publication-title: Global Biogeochem. Cycles – year: 2019 ident: bib0017 article-title: Hydrogeological modeling and water resources management: improving the link between data, prediction, and decision making publication-title: Water Resour. Res. – volume: 31 start-page: 966 year: 2011 end-page: 990 ident: bib0015 article-title: Now, let's make it really complex (complicated) A systematic review of the complexities of projects publication-title: Int. J. Oper. Product. Manag. – volume: 255 start-page: 513 year: 2003 end-page: 528 ident: bib0035 article-title: A comparison between measured and modeled N publication-title: Plant Soil – volume: 11 start-page: 128 year: 2005 end-page: 144 ident: bib0020 article-title: Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia publication-title: Glob. Change Biol. – start-page: 116 year: 2011 ident: bib0010 article-title: Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC publication-title: J. Geophys. Res. – volume: 52 start-page: 127 year: 2002 end-page: 138 ident: bib0009 article-title: Known, unknown, and unknowable uncertainties publication-title: Theory Decis. – volume: 359 start-page: 349 year: 2017 end-page: 362 ident: bib0018 article-title: Simulating microbial denitrification with EPIC: model description and evaluation publication-title: Ecol. Modell. – reference: Juston, J.M. et al., 2012. Smiling in the rain: seven reasons to be positive about uncertainty in hydrological modelling. – volume: 159 start-page: 9 year: 2010 end-page: 23 ident: bib0025 article-title: Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale publication-title: Geoderma – volume: 136 start-page: 292 year: 2010 end-page: 300 ident: bib0016 article-title: DNDC: a process-based model of greenhouse gas fluxes from agricultural soils publication-title: Agric. Ecosyst. Environ. – volume: 180 start-page: 33 year: 2011 end-page: 45 ident: bib0006 article-title: How scientific models can explain publication-title: Synthese – volume: 61 start-page: 1748 year: 2016 end-page: 1758 ident: bib0011 article-title: The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems publication-title: Hydrol. Sci. J. – volume: 224 year: 2013 ident: bib0026 article-title: Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling publication-title: Water Air Soil Pollut. – volume: 105 start-page: 4385 year: 2000 end-page: 4398 ident: bib0030 article-title: A process-oriented model of N publication-title: J. Geophys. Res. – volume: 59 start-page: 443 year: 2011 ident: bib0012 article-title: Simulating N publication-title: Pol. J. Ecol. – volume: 52 start-page: 77 year: 1998 end-page: 105 ident: bib0013 article-title: Comparison of N publication-title: Nutr. Cycl. Agroecosyst. – volume: 215 start-page: 1 year: 2016 end-page: 19 ident: bib0028 article-title: Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models publication-title: Agric. Ecosyst. Environ. – volume: 32 start-page: 101 year: 2000 end-page: 110 ident: bib0029 article-title: Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice publication-title: Soil Biol. Biochem. – volume: 162 start-page: 223 year: 2012 end-page: 233 ident: bib0033 article-title: Modelling nitrous oxide emissions from grazed grassland systems publication-title: Environ. Pollut. – volume: 31 start-page: 91 year: 2011 end-page: 96 ident: bib0023 article-title: Advance in a terrestrial biogeochemical model—DNDC model publication-title: Acta Ecologica Sinica – volume: 7 year: 2019 ident: bib0036 article-title: How methods for navigating uncertainty connect science and policy at the water-energy-food nexus publication-title: Front. Environ. Sci. – volume: 17 start-page: 1153 year: 2011 end-page: 1166 ident: bib0005 article-title: Nitrous oxide fluxes from a grain–legume crop (narrow-leafed lupin) grown in a semiarid climate publication-title: Glob. Change Biol. – volume: 170 start-page: 409 year: 2018 end-page: 420 ident: bib0002 article-title: Predicted 21st century climate variability in southeastern US using downscaled CMIP5 and meta-analysis publication-title: Catena – volume: 376 year: 2018 ident: bib0007 article-title: Transmission of climate risks across sectors and borders publication-title: Philos. Trans. R. Soc., A – volume: 19 start-page: 2497 year: 2019 end-page: 2511 ident: bib0004 article-title: Reconstructing patterns of coastal risk in space and time along the US Atlantic coast, 1970–2016 publication-title: Natural Hazard. Earth Syst. Sci. – volume: 7 start-page: 2039 year: 2010 end-page: 2050 ident: bib0037 article-title: Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model publication-title: Biogeosciences – volume: 97 start-page: 9759 year: 1992 end-page: 9776 ident: bib0022 article-title: A model of nitrous-oxide evolution from soil driven by rainfall events.1. Model structure and sensitivity publication-title: J. Geophys. Res. – start-page: 1 year: 2023 end-page: 15 ident: bib0003 article-title: Soil nitrous oxide emission from agroforestry, rowcrop, grassland and forests in North America: a review publication-title: Agroforest. Syst. – volume: 105 start-page: 4385 issue: D4 year: 2000 ident: 10.1016/j.ecolmodel.2023.110536_bib0030 article-title: A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation publication-title: J. Geophys. Res. doi: 10.1029/1999JD900948 – volume: 17 start-page: 1153 issue: 2 year: 2011 ident: 10.1016/j.ecolmodel.2023.110536_bib0005 article-title: Nitrous oxide fluxes from a grain–legume crop (narrow-leafed lupin) grown in a semiarid climate publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2010.02260.x – volume: 7 issue: 37 year: 2019 ident: 10.1016/j.ecolmodel.2023.110536_bib0036 article-title: How methods for navigating uncertainty connect science and policy at the water-energy-food nexus publication-title: Front. Environ. Sci. – volume: 97 start-page: 9759 issue: D9 year: 1992 ident: 10.1016/j.ecolmodel.2023.110536_bib0022 article-title: A model of nitrous-oxide evolution from soil driven by rainfall events.1. Model structure and sensitivity publication-title: J. Geophys. Res. doi: 10.1029/92JD00509 – volume: 162 start-page: 223 issue: 0 year: 2012 ident: 10.1016/j.ecolmodel.2023.110536_bib0033 article-title: Modelling nitrous oxide emissions from grazed grassland systems publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.11.027 – year: 2019 ident: 10.1016/j.ecolmodel.2023.110536_bib0017 article-title: Hydrogeological modeling and water resources management: improving the link between data, prediction, and decision making publication-title: Water Resour. Res. doi: 10.1029/2019WR025227 – volume: 7 start-page: 2039 issue: 6 year: 2010 ident: 10.1016/j.ecolmodel.2023.110536_bib0037 article-title: Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model publication-title: Biogeosciences doi: 10.5194/bg-7-2039-2010 – start-page: 1 year: 2023 ident: 10.1016/j.ecolmodel.2023.110536_bib0003 article-title: Soil nitrous oxide emission from agroforestry, rowcrop, grassland and forests in North America: a review publication-title: Agroforest. Syst. – volume: 359 start-page: 349 year: 2017 ident: 10.1016/j.ecolmodel.2023.110536_bib0018 article-title: Simulating microbial denitrification with EPIC: model description and evaluation publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2017.06.007 – volume: 206 start-page: 71 year: 2015 ident: 10.1016/j.ecolmodel.2023.110536_bib0032 article-title: Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.03.014 – start-page: 116 year: 2011 ident: 10.1016/j.ecolmodel.2023.110536_bib0010 article-title: Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC publication-title: J. Geophys. Res. – volume: 59 start-page: 443 issue: 3 year: 2011 ident: 10.1016/j.ecolmodel.2023.110536_bib0012 article-title: Simulating N2O emission from Kobresia humilis Serg. alpine meadow on Tibetan plateau with the DNDC model publication-title: Pol. J. Ecol. – volume: 31 start-page: 966 issue: 9 year: 2011 ident: 10.1016/j.ecolmodel.2023.110536_bib0015 article-title: Now, let's make it really complex (complicated) A systematic review of the complexities of projects publication-title: Int. J. Oper. Product. Manag. doi: 10.1108/01443571111165848 – volume: 22 issue: 11 year: 2018 ident: 10.1016/j.ecolmodel.2023.110536_bib0027 article-title: Stochastic hydrogeology's biggest hurdles analyzed and its big blind spot publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-5675-2018 – volume: 61 start-page: 1748 issue: 9 year: 2016 ident: 10.1016/j.ecolmodel.2023.110536_bib0011 article-title: The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2015.1091460 – volume: 215 start-page: 1 year: 2016 ident: 10.1016/j.ecolmodel.2023.110536_bib0028 article-title: Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.09.001 – volume: 31 start-page: 91 issue: 2 year: 2011 ident: 10.1016/j.ecolmodel.2023.110536_bib0023 article-title: Advance in a terrestrial biogeochemical model—DNDC model publication-title: Acta Ecologica Sinica doi: 10.1016/j.chnaes.2010.11.006 – volume: 145 start-page: 1280 issue: 10 year: 2016 ident: 10.1016/j.ecolmodel.2023.110536_bib0031 article-title: Two dimensions of subjective uncertainty: clues from natural language publication-title: J. Exp. Psychol.: General doi: 10.1037/xge0000202 – volume: 376 issue: 2121 year: 2018 ident: 10.1016/j.ecolmodel.2023.110536_bib0007 article-title: Transmission of climate risks across sectors and borders publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2017.0301 – volume: 32 start-page: 101 issue: 1 year: 2000 ident: 10.1016/j.ecolmodel.2023.110536_bib0029 article-title: Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00137-6 – volume: 105 start-page: 4369 issue: D4 year: 2000 ident: 10.1016/j.ecolmodel.2023.110536_bib0021 article-title: A process-oriented model of N2O and NO emissions from forest soils: 1. Model development publication-title: J. Geophys. Res. doi: 10.1029/1999JD900949 – volume: 159 start-page: 9 issue: 1–2 year: 2010 ident: 10.1016/j.ecolmodel.2023.110536_bib0025 article-title: Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale publication-title: Geoderma doi: 10.1016/j.geoderma.2010.06.009 – volume: 255 start-page: 513 issue: 2 year: 2003 ident: 10.1016/j.ecolmodel.2023.110536_bib0035 article-title: A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland publication-title: Plant Soil doi: 10.1023/A:1026076914167 – volume: 21 issue: 3 year: 2007 ident: 10.1016/j.ecolmodel.2023.110536_bib0034 article-title: A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model publication-title: Global Biogeochem. Cycles doi: 10.1029/2006GB002909 – volume: 120 start-page: 375 issue: 3 year: 2011 ident: 10.1016/j.ecolmodel.2023.110536_bib0001 article-title: Uncertainties in downscaled relative humidity for a semi-arid region in India publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-011-0079-0 – year: 2023 ident: 10.1016/j.ecolmodel.2023.110536_bib0008 article-title: Greenhouse gases emission from agricultural soil: a review publication-title: J. Agric. Food Res.h – year: 2019 ident: 10.1016/j.ecolmodel.2023.110536_bib0024 – volume: 224 issue: 9 year: 2013 ident: 10.1016/j.ecolmodel.2023.110536_bib0026 article-title: Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-013-1677-z – volume: 11 start-page: 128 issue: 1 year: 2005 ident: 10.1016/j.ecolmodel.2023.110536_bib0020 article-title: Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2004.00873.x – volume: 136 start-page: 292 issue: 3–4 year: 2010 ident: 10.1016/j.ecolmodel.2023.110536_bib0016 article-title: DNDC: a process-based model of greenhouse gas fluxes from agricultural soils publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.06.014 – volume: 52 start-page: 77 issue: 2–3 year: 1998 ident: 10.1016/j.ecolmodel.2023.110536_bib0013 article-title: Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1009780109748 – volume: 52 start-page: 127 issue: 2 year: 2002 ident: 10.1016/j.ecolmodel.2023.110536_bib0009 article-title: Known, unknown, and unknowable uncertainties publication-title: Theory Decis. doi: 10.1023/A:1015544715608 – volume: 170 start-page: 409 year: 2018 ident: 10.1016/j.ecolmodel.2023.110536_bib0002 article-title: Predicted 21st century climate variability in southeastern US using downscaled CMIP5 and meta-analysis publication-title: Catena doi: 10.1016/j.catena.2018.06.005 – volume: 180 start-page: 33 issue: 1 year: 2011 ident: 10.1016/j.ecolmodel.2023.110536_bib0006 article-title: How scientific models can explain publication-title: Synthese doi: 10.1007/s11229-009-9565-1 – volume: 6 start-page: 128 issue: 2 year: 2006 ident: 10.1016/j.ecolmodel.2023.110536_bib0014 article-title: Coupled or uncoupled remodelling, is that the question? publication-title: J. Musculoskeletal Neuronal Interact. – volume: 19 start-page: 2497 year: 2019 ident: 10.1016/j.ecolmodel.2023.110536_bib0004 article-title: Reconstructing patterns of coastal risk in space and time along the US Atlantic coast, 1970–2016 publication-title: Natural Hazard. Earth Syst. Sci. doi: 10.5194/nhess-19-2497-2019 – ident: 10.1016/j.ecolmodel.2023.110536_bib0019 doi: 10.1002/hyp.9625 |
| SSID | ssj0001282 |
| Score | 2.4307718 |
| Snippet | •The uncertainty arises from the differences in time scales between modeled and measured variables are not explicitly addressed in literature.•A conceptual... The uncertainty that arises from the differences in time scales between modeled and measured variables during sensitivity analysis, calibration, and validation... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110536 |
| SubjectTerms | Denitrification–Decomposition (DNDC) model Kansas Known-unknowns framework Model uncertainty nitrous oxide Theoretical framework to represent uncertainty Three sensitivity analysis approaches uncertainty Uncertainty during model calibration and validation |
| Title | Conceptual framework addressing timescale mismatch uncertainty: Nitrous-oxide (N2O) modeled and measured, Kansas, USA |
| URI | https://dx.doi.org/10.1016/j.ecolmodel.2023.110536 https://www.proquest.com/docview/3153648003 |
| Volume | 486 |
| WOSCitedRecordID | wos001100445200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001282 issn: 0304-3800 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhIvCAbTNi4yEg-gLFEau4mzt2oqAoQKEhv0LXIcZ3Tq0qlNqvI_-MEcX3LpAJU98BJVVu24_r76HB-fC0KviGApy0LiZpSE6oAi3TTvczenvpRUZRjTXpVfP0bjMZtM4s-93s86FmY1i4qCrdfx9X-FGtoAbBU6ewu4m0GhAT4D6PAE2OH5T8CfmkBEFRaS155XDuwv2uFVxUapoA9ARjoAMeir4rsDss14BpQ6_9N4Wi7m1dKdr6eZVkHHwSdlPTBVc3RuV-fK2BaNpVSVHNd8OP8y3DD1i2Zr1X1ntZzUDOPFxdx47l9UEojitSYJeIMuNuwM-arK-LS5FrI16q2TgPPN61otAtLxALHRWupGhvl-dyemrLuXgmIyMMlRftvmjcXh0oMT-kzP31Pv8Noem4m1bwi8xg2x9nC7TJqBEjVQYga6g3aDaBDDXrk7fD-afGgkPMh0eztlfsOG3-Af5_Q3reeG_NdKzdlD9MCeRvDQsOgR6sliD90zsP3YQ_ujNgwSvmblwPIxqlqS4YZkuCUZbkiGa5LhDslO8AbF8Gsg2Bts6YUBfFzT6xgbch1joNYTdP52dHb6zrUFPFxBKCvdIMqJL3LCOE0jCcuV0UEQZZxlUkaqiqDgPotBQsQRSWWaCtBtaR7yOBBRH84VZB_tFPNCHiAcQpMgqQglHKHDlHOAwOdkkMN5XYS0f4jCeoETYbPbqyIrs2QLyIfIbzpemwQv27uc1AgmVk81-mcC_Nze-WWNeQIIqOs5XkhY8YSA8hFSoBM5uv2cnqL77d_sGdopF5V8ju6KVTldLl5YAv8C2E3Egw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conceptual+framework+addressing+timescale+mismatch+uncertainty%3A+Nitrous-oxide+%28N2O%29+modeled+and+measured%2C+Kansas%2C+USA&rft.jtitle=Ecological+modelling&rft.au=Arango%2C+Miguel+A.&rft.au=Anandhi%2C+Aavudai&rft.au=Rice%2C+Charles+W.&rft.date=2023-12-01&rft.issn=0304-3800&rft.volume=486&rft.spage=110536&rft_id=info:doi/10.1016%2Fj.ecolmodel.2023.110536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolmodel_2023_110536 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |