Interpretable Multi-modal Image Registration Network Based on Disentangled Convolutional Sparse Coding

Multi-modal image registration aims to spatially align two images from different modalities to make their feature points match with each other. Captured by different sensors, the images from different modalities often contain many distinct features, which makes it challenging to find their accurate...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 32; s. 1
Hlavní autori: Deng, Xin, Liu, Enpeng, Li, Shengxi, Duan, Yiping, Xu, Mai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multi-modal image registration aims to spatially align two images from different modalities to make their feature points match with each other. Captured by different sensors, the images from different modalities often contain many distinct features, which makes it challenging to find their accurate correspondences. With the success of deep learning, many deep networks have been proposed to align multi-modal images, however, they are mostly lack of interpretability. In this paper, we first model the multi-modal image registration problem as a disentangled convolutional sparse coding (DCSC) model. In this model, the multi-modal features that are responsible for alignment (RA features) are well separated from the features that are not responsible for alignment (nRA features). By only allowing the RA features to participate in the deformation field prediction, we can eliminate the interference of the nRA features to improve the registration accuracy and efficiency. The optimization process of the DCSC model to separate the RA and nRA features is then turned into a deep network, namely Interpretable Multi-modal Image Registration Network (InMIR-Net). To ensure the accurate separation of RA and nRA features, we further design an accompanying guidance network (AG-Net) to supervise the extraction of RA features in InMIR-Net. The advantage of InMIR-Net is that it provides a universal framework to tackle both rigid and non-rigid multi-modal image registration tasks. Extensive experimental results verify the effectiveness of our method on both rigid and non-rigid registrations on various multi-modal image datasets, including RGB/depth images, RGB/near-infrared (NIR) images, RGB/multi-spectral images, T1/T2 weighted magnetic resonance (MR) images and computed tomography (CT)/MR images. The codes are available at https://github.com/lep990816/Interpretable-Multi-modal-Image-Registration.
AbstractList Multi-modal image registration aims to spatially align two images from different modalities to make their feature points match with each other. Captured by different sensors, the images from different modalities often contain many distinct features, which makes it challenging to find their accurate correspondences. With the success of deep learning, many deep networks have been proposed to align multi-modal images, however, they are mostly lack of interpretability. In this paper, we first model the multi-modal image registration problem as a disentangled convolutional sparse coding (DCSC) model. In this model, the multi-modal features that are responsible for alignment (RA features) are well separated from the features that are not responsible for alignment (nRA features). By only allowing the RA features to participate in the deformation field prediction, we can eliminate the interference of the nRA features to improve the registration accuracy and efficiency. The optimization process of the DCSC model to separate the RA and nRA features is then turned into a deep network, namely Interpretable Multi-modal Image Registration Network (InMIR-Net). To ensure the accurate separation of RA and nRA features, we further design an accompanying guidance network (AG-Net) to supervise the extraction of RA features in InMIR-Net. The advantage of InMIR-Net is that it provides a universal framework to tackle both rigid and non-rigid multi-modal image registration tasks. Extensive experimental results verify the effectiveness of our method on both rigid and non-rigid registrations on various multi-modal image datasets, including RGB/depth images, RGB/near-infrared (NIR) images, RGB/multi-spectral images, T1/T2 weighted magnetic resonance (MR) images and computed tomography (CT)/MR images. The codes are available at https://github.com/lep990816/Interpretable-Multi-modal-Image-Registration .
Multi-modal image registration aims to spatially align two images from different modalities to make their feature points match with each other. Captured by different sensors, the images from different modalities often contain many distinct features, which makes it challenging to find their accurate correspondences. With the success of deep learning, many deep networks have been proposed to align multi-modal images, however, they are mostly lack of interpretability. In this paper, we first model the multi-modal image registration problem as a disentangled convolutional sparse coding (DCSC) model. In this model, the multi-modal features that are responsible for alignment (RA features) are well separated from the features that are not responsible for alignment (nRA features). By only allowing the RA features to participate in the deformation field prediction, we can eliminate the interference of the nRA features to improve the registration accuracy and efficiency. The optimization process of the DCSC model to separate the RA and nRA features is then turned into a deep network, namely Interpretable Multi-modal Image Registration Network (InMIR-Net). To ensure the accurate separation of RA and nRA features, we further design an accompanying guidance network (AG-Net) to supervise the extraction of RA features in InMIR-Net. The advantage of InMIR-Net is that it provides a universal framework to tackle both rigid and non-rigid multi-modal image registration tasks. Extensive experimental results verify the effectiveness of our method on both rigid and non-rigid registrations on various multi-modal image datasets, including RGB/depth images, RGB/near-infrared (NIR) images, RGB/multi-spectral images, T1/T2 weighted magnetic resonance (MR) images and computed tomography (CT)/MR images. The codes are available at https://github.com/lep990816/Interpretable-Multi-modal-Image-Registration.Multi-modal image registration aims to spatially align two images from different modalities to make their feature points match with each other. Captured by different sensors, the images from different modalities often contain many distinct features, which makes it challenging to find their accurate correspondences. With the success of deep learning, many deep networks have been proposed to align multi-modal images, however, they are mostly lack of interpretability. In this paper, we first model the multi-modal image registration problem as a disentangled convolutional sparse coding (DCSC) model. In this model, the multi-modal features that are responsible for alignment (RA features) are well separated from the features that are not responsible for alignment (nRA features). By only allowing the RA features to participate in the deformation field prediction, we can eliminate the interference of the nRA features to improve the registration accuracy and efficiency. The optimization process of the DCSC model to separate the RA and nRA features is then turned into a deep network, namely Interpretable Multi-modal Image Registration Network (InMIR-Net). To ensure the accurate separation of RA and nRA features, we further design an accompanying guidance network (AG-Net) to supervise the extraction of RA features in InMIR-Net. The advantage of InMIR-Net is that it provides a universal framework to tackle both rigid and non-rigid multi-modal image registration tasks. Extensive experimental results verify the effectiveness of our method on both rigid and non-rigid registrations on various multi-modal image datasets, including RGB/depth images, RGB/near-infrared (NIR) images, RGB/multi-spectral images, T1/T2 weighted magnetic resonance (MR) images and computed tomography (CT)/MR images. The codes are available at https://github.com/lep990816/Interpretable-Multi-modal-Image-Registration.
Author Duan, Yiping
Xu, Mai
Liu, Enpeng
Li, Shengxi
Deng, Xin
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-4708-6572
  surname: Deng
  fullname: Deng, Xin
  organization: School of Cyber Science and Technology, Beihang University, Beijing, China
– sequence: 2
  givenname: Enpeng
  surname: Liu
  fullname: Liu, Enpeng
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Shengxi
  surname: Li
  fullname: Li, Shengxi
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Yiping
  orcidid: 0000-0001-9638-7112
  surname: Duan
  fullname: Duan, Yiping
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Mai
  orcidid: 0000-0002-0277-3301
  surname: Xu
  fullname: Xu, Mai
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022244$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuPFCEURokZ4zx078KYStzMptoL3KK6ltqO2sn4iI7rCl116TBS0AKl8d9L260xs3AF3JwD5PvO2YkPnhh7zGHBOXTPb9YfFwKEXEiBAALvsTPeIa8BUJyUPTRt3XLsTtl5SrcAHBuuHrBT2YIQAvGMmbXPFHeRst44qt7NLtt6CqN21XrSW6o-0damHHW2wVfvKf8I8Wv1UicaqzJ4ZRP5rP3WlfMq-O_BzXuy6J93OiYqw9H67UN232iX6NFxvWBfXl_drN7W1x_erFcvrutB4jLXouWKk1JSaNMC6qZR3LTKSKVRqtGYznR8qbQw0AwGJUhuug0gVyA22JC8YJeHe3cxfJsp5X6yaSDntKcwp160Xclj2aEq6LM76G2YY_n5nmpRStEgFOrpkZo3E439LtpJx5_9nwQLAAdgiCGlSOYvwqHfl9SXkvp9Sf2xpKKoO8pg8--AS87W_U98chAtEf3zDkhskMtf3iyc1Q
CODEN IIPRE4
CitedBy_id crossref_primary_10_1088_1361_6501_acfd4d
crossref_primary_10_1007_s11760_025_04174_9
crossref_primary_10_1007_s10044_025_01438_5
crossref_primary_10_32604_cmc_2024_049640
crossref_primary_10_1016_j_patcog_2024_111102
crossref_primary_10_1088_1402_4896_ad0099
crossref_primary_10_3390_s24165447
crossref_primary_10_1016_j_cmpb_2023_107745
crossref_primary_10_1109_TBME_2025_3529870
crossref_primary_10_23919_cje_2023_00_419
crossref_primary_10_1007_s10586_023_04102_x
crossref_primary_10_1016_j_patcog_2024_110615
crossref_primary_10_1016_j_displa_2024_102775
crossref_primary_10_1109_TGRS_2024_3367986
crossref_primary_10_1109_TMM_2024_3521720
crossref_primary_10_7717_peerj_cs_1596
crossref_primary_10_1109_TIP_2024_3472491
crossref_primary_10_1109_TPAMI_2024_3366234
crossref_primary_10_1016_j_engappai_2024_108150
crossref_primary_10_1109_TCSVT_2024_3369757
crossref_primary_10_1016_j_heliyon_2024_e34402
crossref_primary_10_3390_brainsci13071045
crossref_primary_10_1016_j_jag_2024_104186
crossref_primary_10_1109_TCSVT_2023_3298811
crossref_primary_10_1109_TGRS_2025_3556000
crossref_primary_10_1016_j_isci_2023_107736
crossref_primary_10_3390_rs16122141
crossref_primary_10_1016_j_eswa_2023_122934
crossref_primary_10_3390_bioengineering10080979
crossref_primary_10_1109_TIV_2024_3393015
crossref_primary_10_1108_DLP_01_2024_0018
crossref_primary_10_1016_j_compbiomed_2023_107293
crossref_primary_10_1088_1402_4896_acedd3
crossref_primary_10_1016_j_future_2023_07_004
crossref_primary_10_1007_s11276_023_03566_4
crossref_primary_10_3390_brainsci13091320
crossref_primary_10_1007_s11431_023_2650_x
crossref_primary_10_1016_j_artmed_2023_102737
crossref_primary_10_1016_j_jmsy_2024_04_024
crossref_primary_10_3390_app13063396
crossref_primary_10_1007_s11760_023_02761_2
crossref_primary_10_1109_JSTARS_2025_3527175
crossref_primary_10_1109_ACCESS_2023_3313174
crossref_primary_10_1016_j_neucom_2025_129810
crossref_primary_10_1080_15397734_2023_2229913
crossref_primary_10_3390_e25071062
crossref_primary_10_3390_rs17050749
crossref_primary_10_3390_sym15071418
crossref_primary_10_1007_s00500_023_08852_z
crossref_primary_10_1016_j_bspc_2023_105492
crossref_primary_10_3390_bioengineering11070701
crossref_primary_10_1109_TGRS_2025_3576290
crossref_primary_10_1142_S0218001425570058
crossref_primary_10_1109_TGRS_2025_3587800
crossref_primary_10_3390_biomimetics8030268
crossref_primary_10_1016_j_jksuci_2024_102090
crossref_primary_10_1016_j_jag_2023_103574
crossref_primary_10_1038_s41598_023_40169_7
crossref_primary_10_1109_TIP_2025_3556602
crossref_primary_10_1002_ima_70024
crossref_primary_10_1007_s11042_023_16517_0
crossref_primary_10_3390_app15052508
crossref_primary_10_1007_s11042_024_18902_9
crossref_primary_10_3390_bioengineering10080957
crossref_primary_10_1007_s11042_023_17991_2
crossref_primary_10_1016_j_ins_2024_121009
Cites_doi 10.1109/TCSVT.2019.2923901
10.1007/978-3-319-66182-7_35
10.1109/ICCV48922.2021.01462
10.1007/978-3-030-59716-0_22
10.1109/LRA.2018.2809549
10.1109/TCI.2020.2965304
10.1007/978-3-319-10593-2_21
10.1109/CVPR.2011.5995637
10.1145/358669.358692
10.1109/CVPR46437.2021.01569
10.2307/1932409.JSTOR1932409
10.1007/978-3-030-01231-1_22
10.1006/nimg.2000.0582
10.1016/j.media.2007.06.004
10.1007/978-3-030-32245-8_43
10.1007/978-3-030-20351-1_19
10.1109/TMI.2019.2897538
10.1109/TIP.2021.3058764
10.1109/TMI.2018.2878316
10.1016/j.media.2021.102036
10.1017/cbo9780511811685
10.1145/2185520.2185550
10.1007/978-3-030-58452-8_38
10.1007/978-3-319-24574-4_28
10.3390/s20154203
10.1007/BFb0056301
10.1016/j.neuroimage.2010.09.025
10.1109/CVPR42600.2020.01342
10.1016/j.neuroimage.2008.10.040
10.1023/b:visi.0000029664.99615.94
10.1109/CVPR42600.2020.00767
10.1007/978-3-319-66182-7_31
10.1007/978-3-642-40763-5_80
10.1109/CVPR42600.2020.00908
10.1109/ICCV.2013.194
10.1016/S1361-8415(01)80004-9
10.1016/j.media.2018.11.010
10.1007/978-3-319-66182-7_27
10.1109/CVPR.2019.01044
10.5244/C.30.7
10.1109/ICASSP.2018.8462313
10.1016/j.media.2012.05.008
10.1007/978-3-319-46726-9_2
10.48550/ARXIV.1807.06521
10.1007/978-3-319-67558-9_24
10.1109/ICCV.2011.6126544
10.1109/ISBI.2018.8363845
10.1080/03610927708827533
10.1109/TMI.2002.803111
10.1007/978-3-319-66182-7_40
10.1007/11744023_32
10.1109/ICIP.2010.5651219
10.1136/jnnp.74.3.288
10.1109/42.796284
10.1007/978-3-030-01252-6_9
10.1109/SSIAI.2016.7459174
10.1109/TIP.2010.2046811
10.21236/ada299525
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2023.3240024
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 37022244
10_1109_TIP_2023_3240024
10034541
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62001016, 62231002, 62250001
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-27161e6632af704a5561f76f36a436dff9f9186a2f05cf43031f9b041602b45e3
IEDL.DBID RIE
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000934988000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 08:33:04 EDT 2025
Mon Jun 30 10:22:45 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Tue Nov 18 22:17:18 EST 2025
Sat Nov 29 03:34:41 EST 2025
Wed Aug 27 02:18:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-27161e6632af704a5561f76f36a436dff9f9186a2f05cf43031f9b041602b45e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0277-3301
0000-0002-4708-6572
0000-0001-9638-7112
PMID 37022244
PQID 2774332540
PQPubID 85429
PageCount 1
ParticipantIDs proquest_journals_2774332540
proquest_miscellaneous_2797148946
ieee_primary_10034541
pubmed_primary_37022244
crossref_primary_10_1109_TIP_2023_3240024
crossref_citationtrail_10_1109_TIP_2023_3240024
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
Pielawski (ref45) 2020
ref54
Summers (ref6) 2003; 74
ref17
ref16
ref19
ref18
Simonyan (ref57) 2014
ref50
ref46
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Jaderberg (ref43); 28
Wang (ref51) 2019
Kim (ref10) 2018
ref24
(ref62) 2003
ref23
ref67
ref26
DeTone (ref29) 2016
ref25
ref20
ref64
ref22
ref66
ref21
ref65
ref28
ref27
Luo (ref48) 2000; 5
ref60
Klein (ref63) 2008
ref61
References_xml – ident: ref4
  doi: 10.1109/TCSVT.2019.2923901
– ident: ref37
  doi: 10.1007/978-3-319-66182-7_35
– ident: ref47
  doi: 10.1109/ICCV48922.2021.01462
– ident: ref52
  doi: 10.1007/978-3-030-59716-0_22
– ident: ref44
  doi: 10.1109/LRA.2018.2809549
– ident: ref7
  doi: 10.1109/TCI.2020.2965304
– year: 2018
  ident: ref10
  article-title: Recurrent transformer networks for semantic correspondence
  publication-title: arXiv:1810.12155
– ident: ref12
  doi: 10.1007/978-3-319-10593-2_21
– ident: ref61
  doi: 10.1109/CVPR.2011.5995637
– year: 2016
  ident: ref29
  article-title: Deep image homography estimation
  publication-title: arXiv:1606.03798
– ident: ref26
  doi: 10.1145/358669.358692
– ident: ref46
  doi: 10.1109/CVPR46437.2021.01569
– ident: ref64
  doi: 10.2307/1932409.JSTOR1932409
– year: 2019
  ident: ref51
  article-title: FIRE: Unsupervised bi-directional inter-modality registration using deep networks
  publication-title: arXiv:1907.05062
– ident: ref9
  doi: 10.1007/978-3-030-01231-1_22
– ident: ref34
  doi: 10.1006/nimg.2000.0582
– ident: ref66
  doi: 10.1016/j.media.2007.06.004
– ident: ref19
  doi: 10.1007/978-3-030-32245-8_43
– ident: ref20
  doi: 10.1007/978-3-030-20351-1_19
– ident: ref41
  doi: 10.1109/TMI.2019.2897538
– ident: ref3
  doi: 10.1109/TIP.2021.3058764
– ident: ref40
  doi: 10.1109/TMI.2018.2878316
– ident: ref42
  doi: 10.1016/j.media.2021.102036
– year: 2020
  ident: ref45
  article-title: CoMIR: Contrastive multimodal image representation for registration
  publication-title: arXiv:2006.06325
– ident: ref56
  doi: 10.1017/cbo9780511811685
– ident: ref11
  doi: 10.1145/2185520.2185550
– ident: ref30
  doi: 10.1007/978-3-030-58452-8_38
– ident: ref58
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref2
  doi: 10.3390/s20154203
– ident: ref14
  doi: 10.1007/BFb0056301
– ident: ref65
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: ref22
  doi: 10.1109/CVPR42600.2020.01342
– ident: ref35
  doi: 10.1016/j.neuroimage.2008.10.040
– year: 2014
  ident: ref57
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref23
  doi: 10.1023/b:visi.0000029664.99615.94
– ident: ref31
  doi: 10.1109/CVPR42600.2020.00767
– ident: ref36
  doi: 10.1007/978-3-319-66182-7_31
– volume: 28
  start-page: 2017
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Spatial transformer networks
– ident: ref50
  doi: 10.1007/978-3-642-40763-5_80
– ident: ref1
  doi: 10.1109/CVPR42600.2020.00908
– ident: ref5
  doi: 10.1109/ICCV.2013.194
– ident: ref13
  doi: 10.1016/S1361-8415(01)80004-9
– ident: ref18
  doi: 10.1016/j.media.2018.11.010
– ident: ref39
  doi: 10.1007/978-3-319-66182-7_27
– volume-title: Optimisation Methods for Medical Image Registration
  year: 2008
  ident: ref63
– ident: ref28
  doi: 10.1109/CVPR.2019.01044
– ident: ref59
  doi: 10.5244/C.30.7
– ident: ref53
  doi: 10.1109/ICASSP.2018.8462313
– ident: ref16
  doi: 10.1016/j.media.2012.05.008
– ident: ref17
  doi: 10.1007/978-3-319-46726-9_2
– ident: ref55
  doi: 10.48550/ARXIV.1807.06521
– volume: 5
  start-page: 551
  issue: 7
  year: 2000
  ident: ref48
  article-title: Multi-modality medical image registration based on maximization of mutual information
  publication-title: J. Image Graph.
– ident: ref67
  doi: 10.1007/978-3-319-67558-9_24
– ident: ref25
  doi: 10.1109/ICCV.2011.6126544
– ident: ref21
  doi: 10.1109/ISBI.2018.8363845
– ident: ref27
  doi: 10.1080/03610927708827533
– ident: ref32
  doi: 10.1109/TMI.2002.803111
– ident: ref38
  doi: 10.1007/978-3-319-66182-7_40
– ident: ref24
  doi: 10.1007/11744023_32
– ident: ref15
  doi: 10.1109/ICIP.2010.5651219
– volume: 74
  start-page: 288
  issue: 3
  year: 2003
  ident: ref6
  article-title: Harvard whole brain atlas: https://www.med.harvard.edu/ AANLIB/home.html
  publication-title: J. Neurol., Neurosurg. Psychiatry
  doi: 10.1136/jnnp.74.3.288
– ident: ref33
  doi: 10.1109/42.796284
– ident: ref8
  doi: 10.1007/978-3-030-01252-6_9
– ident: ref54
  doi: 10.1109/SSIAI.2016.7459174
– ident: ref60
  doi: 10.1109/TIP.2010.2046811
– volume-title: Retrospective Image Registration Evaluation
  year: 2003
  ident: ref62
– ident: ref49
  doi: 10.21236/ada299525
SSID ssj0014516
Score 2.6301844
Snippet Multi-modal image registration aims to spatially align two images from different modalities to make their feature points match with each other. Captured by...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Alignment
Computed tomography
Convolutional codes
convolutional sparse coding
Feature extraction
Generative adversarial networks
Image coding
Image registration
Infrared imagery
interpretable network
Magnetic resonance imaging
Measurement
Medical imaging
multi-modal image registration
Optimization
Registration
Strain
Task analysis
Title Interpretable Multi-modal Image Registration Network Based on Disentangled Convolutional Sparse Coding
URI https://ieeexplore.ieee.org/document/10034541
https://www.ncbi.nlm.nih.gov/pubmed/37022244
https://www.proquest.com/docview/2774332540
https://www.proquest.com/docview/2797148946
Volume 32
WOSCitedRecordID wos000934988000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdg4gEeGIwxOsZUJF54yC2Xpk3yCIOJSeg0wUD3VjWNM026tdPubn__nDRXxsOQeGvTfEm265_j2Ab4QMYagVZhmPYamTTOMVtVlvHSl5VXVpqYvvj3dzWb6fncnKVg9RgLg4jx8hlOwmP05bu-XYejMpJwXsgyhKk_VkoNwVqjyyBUnI2uzVIxRbh_45Pk5uj89GwSyoRPQvY5LuRfOigWVXkYX0Y9c7L9nzt8Ac8ToMw_DRzwEh5htwPbCVzmSXSXO_DsXubBV-D_XDa0C8xjGC676h3NdHpFv5j8B16MKXXz2XBXPP9MKs_l1PDlMsYsdRcLej_uu9vEwDT85zWZykiNQSnuwq-Tr-fH31gqucDaQuoVE2Q-TZFQiGi84rIJxTO9qnxRNbKonPfGm6muGuF52XpJ-m_qjeWE6riwssTiNWx1fYdvINdWaaexQW6NVEZYgjoStbAEEp1zPoOjDRHqNuUjD2UxFnW0S7ipiWx1IFudyJbBx3HE9ZCL4x99dwN17vUbCJPBwYbQdZLWZS0IAxcFmco8g_fjZ5Kz4DxpOuzXoY8hrtJGVhnsDQwyTl6oYDZLuf_Aom_hadjbcHJzAFurmzW-gyft7epyeXNIzDzXh5GZ7wALvO66
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8hQGJ7gI2xLYNtQdrLHlxcx4ntR8aGqFYqtHUTb1Ec2wipJIi2_P07O25gD0zaW-L4S7q73O98vjuAT2isIWhlikgnLeHKGKKLQhOau7xwQnMV0hf_HovJRF5eqosYrB5iYay14fKZHfjH4Ms3bb30R2Uo4TTjuQ9T38g5Z8MuXKt3Gvias8G5mQsiEPmvvJJUHU1HFwNfKHzg889Rxv_SQqGsytMIM2ia053_3OML2I6QMj3ueOAlrNlmF3YivEyj8M534fmj3IOvwD1cN9Qzm4ZAXHLTGpxpdIM_mfSHveqT6qaT7rZ4-gWVnkmx4et1iFpqrmb4ftI295GFcfjPWzSWLTZ6tbgHv06_TU_OSCy6QOqMywVhaEANLeIQVjlBeeXLZzpRuKyoeFYY55RTQ1lUzNG8dhw14NApTRHXUaZ5brPXsN60jX0LqdRCGmkrS7XiQjGNYIdbyTTCRGOMS-BoRYSyjhnJfWGMWRksE6pKJFvpyVZGsiXwuR9x22Xj-EffPU-dR_06wiRwsCJ0GeV1XjJEwVmGxjJN4LD_jJLm3SdVY9ul76OQq6TiRQJvOgbpJ8-EN5w5f_fEoh9h62x6Pi7Ho8n3fXjm99md4xzA-uJuad_DZn2_uJ7ffQgs_Qf6HPEZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Multi-modal+Image+Registration+Network+Based+on+Disentangled+Convolutional+Sparse+Coding&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Deng%2C+Xin&rft.au=Liu%2C+Enpeng&rft.au=Li%2C+Shengxi&rft.au=Duan%2C+Yiping&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1057-7149&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIP.2023.3240024&rft.externalDocID=10034541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon