An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings

•Seasonal closed sorption storage system demonstrated successfully in realistic- scale for the first time.•Significant improvement of energy density due to the novel charge boost technique.•Energy density of 178kWh/m3 could be proven experimentally under real condition.•A solar fraction of 83% was a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Solar energy Ročník 155; s. 388 - 397
Hlavní autoři: Köll, R., van Helden, W., Engel, G., Wagner, W., Dang, B., Jänchen, J., Kerskes, H., Badenhop, T., Herzog, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2017
Témata:
ISSN:0038-092X, 1471-1257
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Seasonal closed sorption storage system demonstrated successfully in realistic- scale for the first time.•Significant improvement of energy density due to the novel charge boost technique.•Energy density of 178kWh/m3 could be proven experimentally under real condition.•A solar fraction of 83% was achieved during automatic operation. The mismatch between the abundant available solar energy in summer and the heat demand in winter can be overcome by compact seasonal thermal energy storages, which are characterized by low thermal losses and avanvanvan high energy density. A promising technology to meet these special requirements is through closed sorption storage. Within this paper a demonstration system for domestic hot water and space heating for a single family house was designed and demonstrated. The working pair binderfree zeolite 13X and water vapor was chosen for this purpose. Since the novel charge boost mode was applied, an energy density of 178kWh/m3 has been achieved, which is almost 3 times higher compared to the conventional sensible water storage energy density. The demonstration system was tested successfully during the heating period 2015/16 in full automatic operation. A solar fraction of 83.5% for covering the space heating and domestic hot water demand was reached during this period.
AbstractList •Seasonal closed sorption storage system demonstrated successfully in realistic- scale for the first time.•Significant improvement of energy density due to the novel charge boost technique.•Energy density of 178kWh/m3 could be proven experimentally under real condition.•A solar fraction of 83% was achieved during automatic operation. The mismatch between the abundant available solar energy in summer and the heat demand in winter can be overcome by compact seasonal thermal energy storages, which are characterized by low thermal losses and avanvanvan high energy density. A promising technology to meet these special requirements is through closed sorption storage. Within this paper a demonstration system for domestic hot water and space heating for a single family house was designed and demonstrated. The working pair binderfree zeolite 13X and water vapor was chosen for this purpose. Since the novel charge boost mode was applied, an energy density of 178kWh/m3 has been achieved, which is almost 3 times higher compared to the conventional sensible water storage energy density. The demonstration system was tested successfully during the heating period 2015/16 in full automatic operation. A solar fraction of 83.5% for covering the space heating and domestic hot water demand was reached during this period.
Author Engel, G.
Herzog, T.
Wagner, W.
Dang, B.
van Helden, W.
Köll, R.
Jänchen, J.
Kerskes, H.
Badenhop, T.
Author_xml – sequence: 1
  givenname: R.
  surname: Köll
  fullname: Köll, R.
  email: r.koell@aee.at
  organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria
– sequence: 2
  givenname: W.
  surname: van Helden
  fullname: van Helden, W.
  organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria
– sequence: 3
  givenname: G.
  surname: Engel
  fullname: Engel, G.
  organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria
– sequence: 4
  givenname: W.
  surname: Wagner
  fullname: Wagner, W.
  organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria
– sequence: 5
  givenname: B.
  surname: Dang
  fullname: Dang, B.
  organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria
– sequence: 6
  givenname: J.
  surname: Jänchen
  fullname: Jänchen, J.
  organization: Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
– sequence: 7
  givenname: H.
  surname: Kerskes
  fullname: Kerskes, H.
  organization: ITW University Stuttgart, Pfaffenwaldring 6, 70550 Stuttgart, Germany
– sequence: 8
  givenname: T.
  surname: Badenhop
  fullname: Badenhop, T.
  organization: Vaillant GmbH, Berghauser Str. 40, 42859 Remscheid, Germany
– sequence: 9
  givenname: T.
  surname: Herzog
  fullname: Herzog, T.
  organization: Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
BookMark eNqFkE9rAjEQxUOxULX9CIV8gd0mJrvr0kMp0n8g9OKhtzCbnUhkTSRJpX77Ru2pF08Db96b4f0mZOS8Q0LuOSs54_XDpox-QIehnDHelKwumRRXZMxlwws-q5oRGTMm5gVrZ183ZBLjhmUjnzdjYp8dxZ8dBrtFl2Cg1u0xJruGZL2j3lCgAWGwWdNF1DAgjQjRu-zNbyFQ6KMPu5M9Jh9gnR2HmHBLjQ-0-7ZDb9063pJrA0PEu785JavXl9XivVh-vn0snpeFFnKeCm6k7ERX1VXbi8bUoCvgnEmOwmS50wx6RGC9aXVXGQFSiroVup13su2EmJLH81kdfIwBjdI2ncqkAHZQnKkjNLVRf9DUEZpitcrQcrr6l95lMhAOF3NP5xzmZnubt1FbdBp7G1An1Xt74cIvYmaQNw
CitedBy_id crossref_primary_10_1016_j_est_2022_105103
crossref_primary_10_1016_j_est_2022_106158
crossref_primary_10_1016_j_rser_2019_05_006
crossref_primary_10_1002_er_4449
crossref_primary_10_1016_j_apenergy_2022_118633
crossref_primary_10_3390_nanomanufacturing3030023
crossref_primary_10_1016_j_renene_2021_09_115
crossref_primary_10_3390_en15155604
crossref_primary_10_1016_j_energy_2022_125382
crossref_primary_10_1002_nadc_20224126002
crossref_primary_10_1016_j_ces_2024_120853
crossref_primary_10_1016_j_ensm_2025_104340
crossref_primary_10_3390_cryst11111276
crossref_primary_10_1016_j_enconman_2019_01_071
crossref_primary_10_1016_j_solener_2020_11_055
crossref_primary_10_1016_j_solener_2021_05_025
crossref_primary_10_1007_s10934_022_01277_3
crossref_primary_10_1016_j_energy_2021_122068
crossref_primary_10_1016_j_egypro_2018_11_060
crossref_primary_10_1016_j_energy_2019_116890
crossref_primary_10_1016_j_apenergy_2021_117455
crossref_primary_10_1016_j_applthermaleng_2023_120248
crossref_primary_10_1016_j_enbuild_2020_110535
crossref_primary_10_1016_j_solener_2019_08_034
crossref_primary_10_1016_j_solener_2018_06_102
crossref_primary_10_1016_j_scs_2018_01_052
crossref_primary_10_1016_j_solener_2023_112044
crossref_primary_10_1016_j_applthermaleng_2018_10_019
crossref_primary_10_1002_er_5361
crossref_primary_10_1016_j_renene_2024_120889
crossref_primary_10_1016_j_est_2024_111194
crossref_primary_10_1016_j_est_2023_107154
crossref_primary_10_1016_j_apenergy_2022_119299
crossref_primary_10_3390_en17081976
crossref_primary_10_1016_j_energy_2018_10_132
crossref_primary_10_1016_j_enbuild_2021_111035
crossref_primary_10_1016_j_enconman_2023_117421
crossref_primary_10_1016_j_est_2022_105242
crossref_primary_10_1016_j_enconman_2025_120072
crossref_primary_10_1016_j_ces_2024_120599
crossref_primary_10_1016_j_est_2024_113589
crossref_primary_10_1038_s41598_023_50672_6
crossref_primary_10_1016_j_enbuild_2024_114421
crossref_primary_10_1016_j_apenergy_2019_03_125
crossref_primary_10_1016_j_rser_2023_113418
crossref_primary_10_1016_j_renene_2024_121668
crossref_primary_10_1016_j_applthermaleng_2023_121223
crossref_primary_10_1016_j_enbuild_2018_12_019
crossref_primary_10_3390_en15165944
crossref_primary_10_1016_j_apenergy_2022_118533
crossref_primary_10_1016_j_rser_2022_112197
crossref_primary_10_1016_j_applthermaleng_2019_114647
crossref_primary_10_1016_j_rser_2025_116133
crossref_primary_10_1016_j_solmat_2019_01_001
crossref_primary_10_3390_en14133754
crossref_primary_10_1016_j_apenergy_2024_122953
crossref_primary_10_1016_j_est_2025_117609
crossref_primary_10_1016_j_jcis_2025_137605
crossref_primary_10_1016_j_apenergy_2023_120755
crossref_primary_10_1016_j_est_2021_103615
crossref_primary_10_1016_j_est_2020_101699
Cites_doi 10.1016/S0140-7007(97)00042-X
10.1016/j.ijheatmasstransfer.2013.12.061
10.1016/j.solener.2013.06.006
10.1016/j.est.2017.06.001
10.1016/j.apenergy.2017.01.041
10.1016/S0140-7007(01)00004-4
10.1016/j.rser.2010.11.018
10.1016/j.rser.2012.10.025
10.1016/j.ijrefrig.2003.10.004
10.1016/j.pecs.2013.05.004
10.1016/j.egypro.2015.11.479
10.1016/j.micromeso.2006.06.008
10.1016/j.solener.2003.07.036
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.solener.2017.06.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 397
ExternalDocumentID 10_1016_j_solener_2017_06_043
S0038092X17305509
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c348t-1f44b3b5659d37f6ac5a11041e3f3b5bc0adeea0df9cb5f3a443693c98b49b33
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419538500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Tue Nov 18 22:27:09 EST 2025
Sat Nov 29 07:29:07 EST 2025
Fri Feb 23 02:28:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Charge boost
Closed adsorption process
Zeolite
Thermal storage
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-1f44b3b5659d37f6ac5a11041e3f3b5bc0adeea0df9cb5f3a443693c98b49b33
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_solener_2017_06_043
crossref_primary_10_1016_j_solener_2017_06_043
elsevier_sciencedirect_doi_10_1016_j_solener_2017_06_043
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Solar energy
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aristov, Tokarev, Freni, Glaznev, Restuccia (b0015) 2006; 96
Tatsidjodoung, Le Pierrs, Luo (b0120) 2013; 18
Jenni, J., 2010. Das Solarhaus – mit hohem solarem Deckungsgrad fr Warmwasser und Heizung, Switzerland.
Hauer, A., 2002. Beurteilung fester Adsorbentien in offenen Sorptionssystemen für energetische Anwendungen. Dissertation, Berlin.
Köll, R., Wagner, W., van Helden, W., Engel, G., Pertschy, R., Dang, B.N., Kerskes, H., Asenbeck, S., Jänchen, J., Badenhop, T., 2016. Demonstration eines saisonalen Sorptionsspeichersystems im realen Maßstab. OTTI Fachforum – Thermische Energiespeicher, Neumarkt i. d. Opf.
Mette, Kerskes, Drück, Müller-Steinhagen (b0105) 2014; 71
Engel, Asenbeck, Köll, Kerskes, Wagner, van Helden (b0050) 2017
Akahira, Alam, Hamamoto, Akisawa, Kashiwagi (b0010) 2004; 27
Cuypers, R., van Vliet, L., Bodis, P., Starosielec, B., Bujalski, M., de Beijer, H., Vos, M., Fldner, G., Wapler, Je., de Gracia, A., Cabeza, L., Hoegaerts, Ch., 2016. Successful field test demonstration of seasonal solar thermochemical storage. Gleisdorf SOLAR 2016, Gleisdorf.
Engel, G., Wagner, W., van Helden, W., Jähnig, D., Dang, B., Köll, R., Pertschy, R., Kerskes, H., Asenbeck, S., Jänchen, J., Salg, F., Badenhop, T., 2015. Hardware-in-the-loop-approach for a real-scale sorption storage system. Innostorage, Lyon.
Wang (b0135) 2001; 24
Ariful kabira, Amanul Alamb, Sarkera, Roufc, Sahad (b0005) 2015; 79
Mette, B., Asenbeck, S., Kerskes, H., Drck, H., 2013. Effizienzsteigerung thermochemischer Energiespeicher fr solare Anwendungen durch Reduzierung der Regenerationstemperatur, 23. Symposium Thermische Solarenergie, Bad Staffelstein.
Yu, Wang, Wang (b0145) 2013; 39
Jänchen, Ackermann, Stach, Brsicke (b0070) 2004; 76
Köll, R., 2015. Development of a seasonal solar heat sorption storage system for domestic hot water and space heating. Master Thesis, Gleisdorf.
Pons, Poyelle (b0110) 1999; 22
van Helden, W., Badenhop, T., 2016. Key performance indicators for seasonal solar thermal storage systems, at OTTI – Thermische Solarenergie, Bad Staffelstein.
Jänchen, J., Herzog, T., Gantenbein, P., Daguenet-Frick, X., Kong, W., Furbo, S., 2015. Material(s) ageing stability. Deliverable 2.4 for COMTES Project.
Courbon, D’Ans, Permyakova, Skrylnyk, Steunou, Degrez, Frre (b0025) 2017; 190
Xu, Wang, Li (b0140) 2013; 103
Dincer, Rosen (b0035) 2011
Soerensen, P.A., 2015. Large scale solar thermal plants with long term storages: marstal, braedstrupdstrup and dronninglund, denmark. In: Solar District Heating Conference.
Cabeza, Castell, Barreneche, de Gracia, Fernndez (b0020) 2011; 15
Engel, Wagner, van Helden, Dang, Jähnig, Köll, Pertschy, Kerskes, Asenbeck, Jänchen, Salg, Badenhop (b0045) 2016
Hauer, A. 2015. Material Evaluation under Reference Conditions – TCM. Task4229 Meeting, Vienna.
Zanife, Meunier, Chalfen (b0150) 1991
10.1016/j.solener.2017.06.043_b0115
Dincer (10.1016/j.solener.2017.06.043_b0035) 2011
Tatsidjodoung (10.1016/j.solener.2017.06.043_b0120) 2013; 18
Ariful kabira (10.1016/j.solener.2017.06.043_b0005) 2015; 79
10.1016/j.solener.2017.06.043_b0090
Akahira (10.1016/j.solener.2017.06.043_b0010) 2004; 27
Yu (10.1016/j.solener.2017.06.043_b0145) 2013; 39
10.1016/j.solener.2017.06.043_b0095
10.1016/j.solener.2017.06.043_b0030
10.1016/j.solener.2017.06.043_b0055
Xu (10.1016/j.solener.2017.06.043_b0140) 2013; 103
10.1016/j.solener.2017.06.043_b0125
Aristov (10.1016/j.solener.2017.06.043_b0015) 2006; 96
Courbon (10.1016/j.solener.2017.06.043_b0025) 2017; 190
Engel (10.1016/j.solener.2017.06.043_b0045) 2016
Engel (10.1016/j.solener.2017.06.043_b0050) 2017
Mette (10.1016/j.solener.2017.06.043_b0105) 2014; 71
Jänchen (10.1016/j.solener.2017.06.043_b0070) 2004; 76
Zanife (10.1016/j.solener.2017.06.043_b0150) 1991
Pons (10.1016/j.solener.2017.06.043_b0110) 1999; 22
10.1016/j.solener.2017.06.043_b0060
10.1016/j.solener.2017.06.043_b0080
Wang (10.1016/j.solener.2017.06.043_b0135) 2001; 24
Cabeza (10.1016/j.solener.2017.06.043_b0020) 2011; 15
10.1016/j.solener.2017.06.043_b0040
10.1016/j.solener.2017.06.043_b0085
10.1016/j.solener.2017.06.043_b0100
References_xml – reference: Jenni, J., 2010. Das Solarhaus – mit hohem solarem Deckungsgrad fr Warmwasser und Heizung, Switzerland.
– reference: Jänchen, J., Herzog, T., Gantenbein, P., Daguenet-Frick, X., Kong, W., Furbo, S., 2015. Material(s) ageing stability. Deliverable 2.4 for COMTES Project.
– volume: 96
  start-page: 65
  year: 2006
  end-page: 71
  ident: b0015
  article-title: Kinetics of water adsorption on silica Fuji Davison RD
  publication-title: Micropor. Mesopor. Mater.
– year: 2011
  ident: b0035
  article-title: Thermal Energy Storage – Systems and Applications
– reference: Köll, R., 2015. Development of a seasonal solar heat sorption storage system for domestic hot water and space heating. Master Thesis, Gleisdorf.
– reference: Köll, R., Wagner, W., van Helden, W., Engel, G., Pertschy, R., Dang, B.N., Kerskes, H., Asenbeck, S., Jänchen, J., Badenhop, T., 2016. Demonstration eines saisonalen Sorptionsspeichersystems im realen Maßstab. OTTI Fachforum – Thermische Energiespeicher, Neumarkt i. d. Opf.
– volume: 24
  start-page: 602
  year: 2001
  end-page: 611
  ident: b0135
  article-title: Performance improvement of adsorption cooling by heat and mass recovery operation
  publication-title: Int. J. Refrig.
– reference: Engel, G., Wagner, W., van Helden, W., Jähnig, D., Dang, B., Köll, R., Pertschy, R., Kerskes, H., Asenbeck, S., Jänchen, J., Salg, F., Badenhop, T., 2015. Hardware-in-the-loop-approach for a real-scale sorption storage system. Innostorage, Lyon.
– reference: Hauer, A., 2002. Beurteilung fester Adsorbentien in offenen Sorptionssystemen für energetische Anwendungen. Dissertation, Berlin.
– volume: 27
  start-page: 225
  year: 2004
  end-page: 234
  ident: b0010
  article-title: Mass recovery adsorption refrigeration cycle improving cooling capacity
  publication-title: Int. J. Refrig.
– volume: 39
  start-page: 489
  year: 2013
  end-page: 514
  ident: b0145
  article-title: Sorption thermal storage for solar energy
  publication-title: Prog. Energy Combust. Sci.
– year: 2016
  ident: b0045
  article-title: Demonstration eines kompakten saisonalen Wärmespeichersystems
  publication-title: 26. Symposium Thermische Solarenergie, Bad Staffelstein
– volume: 22
  start-page: 27
  year: 1999
  end-page: 37
  ident: b0110
  article-title: Adsorptive machines with advanced cycles for heat pumping or cooling applications
  publication-title: Int. J. Refrig.
– volume: 71
  start-page: 555
  year: 2014
  end-page: 561
  ident: b0105
  article-title: Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X
  publication-title: Int. J. Heat Mass Transfer
– volume: 15
  start-page: 1675
  year: 2011
  end-page: 1695
  ident: b0020
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew. Sustain. Energy Rev.
– year: 1991
  ident: b0150
  article-title: Adsorptive refrigeration (activated carbonmethanol): mass recovery cycle
  publication-title: Proceedings of the XVIIIth International Congress on Refrigeration, Montreal
– volume: 103
  start-page: 610
  year: 2013
  end-page: 638
  ident: b0140
  article-title: A report of available technologies for seasonal thermal energy storage
  publication-title: Sol. Energy
– reference: Soerensen, P.A., 2015. Large scale solar thermal plants with long term storages: marstal, braedstrupdstrup and dronninglund, denmark. In: Solar District Heating Conference.
– reference: van Helden, W., Badenhop, T., 2016. Key performance indicators for seasonal solar thermal storage systems, at OTTI – Thermische Solarenergie, Bad Staffelstein.
– volume: 76
  start-page: 339
  year: 2004
  end-page: 344
  ident: b0070
  article-title: Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat
  publication-title: Sol. Energy
– year: 2017
  ident: b0050
  article-title: Simulation of a seasonal, solar-driven sorption storage heating system
  publication-title: J. Energy Storage
– reference: Mette, B., Asenbeck, S., Kerskes, H., Drck, H., 2013. Effizienzsteigerung thermochemischer Energiespeicher fr solare Anwendungen durch Reduzierung der Regenerationstemperatur, 23. Symposium Thermische Solarenergie, Bad Staffelstein.
– reference: Hauer, A. 2015. Material Evaluation under Reference Conditions – TCM. Task4229 Meeting, Vienna.
– volume: 190
  start-page: 1184
  year: 2017
  end-page: 1194
  ident: b0025
  article-title: A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability
  publication-title: Appl. Energy
– reference: Cuypers, R., van Vliet, L., Bodis, P., Starosielec, B., Bujalski, M., de Beijer, H., Vos, M., Fldner, G., Wapler, Je., de Gracia, A., Cabeza, L., Hoegaerts, Ch., 2016. Successful field test demonstration of seasonal solar thermochemical storage. Gleisdorf SOLAR 2016, Gleisdorf.
– volume: 79
  start-page: 67
  year: 2015
  end-page: 72
  ident: b0005
  article-title: Effect of mass recovery on the performance of solar adsorption cooling system
  publication-title: Energy Proc.
– volume: 18
  start-page: 327
  year: 2013
  end-page: 349
  ident: b0120
  article-title: A review of potential materials for thermal energy storage in building applications
  publication-title: Renew. Sustain. Energy Rev.
– year: 1991
  ident: 10.1016/j.solener.2017.06.043_b0150
  article-title: Adsorptive refrigeration (activated carbonmethanol): mass recovery cycle
– volume: 22
  start-page: 27
  issue: 1
  year: 1999
  ident: 10.1016/j.solener.2017.06.043_b0110
  article-title: Adsorptive machines with advanced cycles for heat pumping or cooling applications
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(97)00042-X
– ident: 10.1016/j.solener.2017.06.043_b0125
– volume: 71
  start-page: 555
  year: 2014
  ident: 10.1016/j.solener.2017.06.043_b0105
  article-title: Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.12.061
– ident: 10.1016/j.solener.2017.06.043_b0060
– volume: 103
  start-page: 610
  year: 2013
  ident: 10.1016/j.solener.2017.06.043_b0140
  article-title: A report of available technologies for seasonal thermal energy storage
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.06.006
– ident: 10.1016/j.solener.2017.06.043_b0100
– ident: 10.1016/j.solener.2017.06.043_b0085
– year: 2017
  ident: 10.1016/j.solener.2017.06.043_b0050
  article-title: Simulation of a seasonal, solar-driven sorption storage heating system
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2017.06.001
– volume: 190
  start-page: 1184
  year: 2017
  ident: 10.1016/j.solener.2017.06.043_b0025
  article-title: A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.041
– ident: 10.1016/j.solener.2017.06.043_b0055
– ident: 10.1016/j.solener.2017.06.043_b0030
– volume: 24
  start-page: 602
  issue: 7
  year: 2001
  ident: 10.1016/j.solener.2017.06.043_b0135
  article-title: Performance improvement of adsorption cooling by heat and mass recovery operation
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(01)00004-4
– volume: 15
  start-page: 1675
  issue: 3
  year: 2011
  ident: 10.1016/j.solener.2017.06.043_b0020
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.018
– ident: 10.1016/j.solener.2017.06.043_b0095
– volume: 18
  start-page: 327
  year: 2013
  ident: 10.1016/j.solener.2017.06.043_b0120
  article-title: A review of potential materials for thermal energy storage in building applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.10.025
– volume: 27
  start-page: 225
  year: 2004
  ident: 10.1016/j.solener.2017.06.043_b0010
  article-title: Mass recovery adsorption refrigeration cycle improving cooling capacity
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2003.10.004
– volume: 39
  start-page: 489
  year: 2013
  ident: 10.1016/j.solener.2017.06.043_b0145
  article-title: Sorption thermal storage for solar energy
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2013.05.004
– volume: 79
  start-page: 67
  year: 2015
  ident: 10.1016/j.solener.2017.06.043_b0005
  article-title: Effect of mass recovery on the performance of solar adsorption cooling system
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2015.11.479
– ident: 10.1016/j.solener.2017.06.043_b0040
– year: 2011
  ident: 10.1016/j.solener.2017.06.043_b0035
– ident: 10.1016/j.solener.2017.06.043_b0115
– ident: 10.1016/j.solener.2017.06.043_b0080
– volume: 96
  start-page: 65
  issue: 1–3
  year: 2006
  ident: 10.1016/j.solener.2017.06.043_b0015
  article-title: Kinetics of water adsorption on silica Fuji Davison RD
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2006.06.008
– year: 2016
  ident: 10.1016/j.solener.2017.06.043_b0045
  article-title: Demonstration eines kompakten saisonalen Wärmespeichersystems
– volume: 76
  start-page: 339
  year: 2004
  ident: 10.1016/j.solener.2017.06.043_b0070
  article-title: Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2003.07.036
– ident: 10.1016/j.solener.2017.06.043_b0090
SSID ssj0017187
Score 2.4903703
Snippet •Seasonal closed sorption storage system demonstrated successfully in realistic- scale for the first time.•Significant improvement of energy density due to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 388
SubjectTerms Charge boost
Closed adsorption process
Thermal storage
Zeolite
Title An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings
URI https://dx.doi.org/10.1016/j.solener.2017.06.043
Volume 155
WOSCitedRecordID wos000419538500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBbG6aE9lPRF0zZFh97MuruW1tIe3eDQlhJKY4hvi6TVFgezDl435Df0V3dG0j7ihr6gl8UMK1toPs-MRjOfCHmDZ0GxKVQkC9jpcDuV7pAwEpOUFVyUduJJXD-JszO5XGafB4PvTS_M9VpUlby5ya7-q6pBBsrG1tm_UHf7pSCAz6B0eILa4flHip_t0favOiYNHxuqEQSKa0fQHNWgIjvCRKHLCNa40R2pot5svSnB2kms6vGEz762M1ykXffj2nM30LpGwtaG4yH8u6k_1_gybsTYMAXOLti7i1Y-x_Jal6ZvRRfqa-jHCa-F9AS4vKbQLeTMmr6ZrkjJ2WGGRRfuInXwQt70gpuMINwSt2xzmvasK_M3AAZHzXxh708-wKcjLsc1FjZY5HxNhONo9XxQe_Ta5zgXnEoikPwMe0EPJrCJiofkYPZhvvzYnkmBF_cMrGHuXT_Y2zt_7O5Ipxe9LA7Jw7DtoDMPl0dkYKvH5EGPjPIJWc0q2gcOvQUcuimponvAoQ1wqAMO7YBDA3CoBw4F4NAWOE_J4nS-OHkfhYs4IsO43EVJyblmGmL_rGCinCqTKggbeWJZCWJtYlVYq-KizIxOS6Y4Z9OMmUxqnmnGnpFhtansc0LLCWzPjYComTFuS6WlMomMU6nSTEtdHBHerFluAkk93pWyzptqxMs8LHWOS51jVSZnR2TcDrvyLC2_GyAbheQh1PQhZA4o-vXQF_8-9CW53_1FXpHhbvvNHpN75nq3qrevA95-ALyWqKM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+investigation+of+a+realistic-scale+seasonal+solar+adsorption+storage+system+for+buildings&rft.jtitle=Solar+energy&rft.au=K%C3%B6ll%2C+R.&rft.au=van+Helden%2C+W.&rft.au=Engel%2C+G.&rft.au=Wagner%2C+W.&rft.date=2017-10-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=155&rft.spage=388&rft.epage=397&rft_id=info:doi/10.1016%2Fj.solener.2017.06.043&rft.externalDocID=S0038092X17305509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon