An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings
•Seasonal closed sorption storage system demonstrated successfully in realistic- scale for the first time.•Significant improvement of energy density due to the novel charge boost technique.•Energy density of 178kWh/m3 could be proven experimentally under real condition.•A solar fraction of 83% was a...
Uloženo v:
| Vydáno v: | Solar energy Ročník 155; s. 388 - 397 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.10.2017
|
| Témata: | |
| ISSN: | 0038-092X, 1471-1257 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Seasonal closed sorption storage system demonstrated successfully in realistic- scale for the first time.•Significant improvement of energy density due to the novel charge boost technique.•Energy density of 178kWh/m3 could be proven experimentally under real condition.•A solar fraction of 83% was achieved during automatic operation.
The mismatch between the abundant available solar energy in summer and the heat demand in winter can be overcome by compact seasonal thermal energy storages, which are characterized by low thermal losses and avanvanvan high energy density. A promising technology to meet these special requirements is through closed sorption storage. Within this paper a demonstration system for domestic hot water and space heating for a single family house was designed and demonstrated. The working pair binderfree zeolite 13X and water vapor was chosen for this purpose. Since the novel charge boost mode was applied, an energy density of 178kWh/m3 has been achieved, which is almost 3 times higher compared to the conventional sensible water storage energy density. The demonstration system was tested successfully during the heating period 2015/16 in full automatic operation. A solar fraction of 83.5% for covering the space heating and domestic hot water demand was reached during this period. |
|---|---|
| AbstractList | •Seasonal closed sorption storage system demonstrated successfully in realistic- scale for the first time.•Significant improvement of energy density due to the novel charge boost technique.•Energy density of 178kWh/m3 could be proven experimentally under real condition.•A solar fraction of 83% was achieved during automatic operation.
The mismatch between the abundant available solar energy in summer and the heat demand in winter can be overcome by compact seasonal thermal energy storages, which are characterized by low thermal losses and avanvanvan high energy density. A promising technology to meet these special requirements is through closed sorption storage. Within this paper a demonstration system for domestic hot water and space heating for a single family house was designed and demonstrated. The working pair binderfree zeolite 13X and water vapor was chosen for this purpose. Since the novel charge boost mode was applied, an energy density of 178kWh/m3 has been achieved, which is almost 3 times higher compared to the conventional sensible water storage energy density. The demonstration system was tested successfully during the heating period 2015/16 in full automatic operation. A solar fraction of 83.5% for covering the space heating and domestic hot water demand was reached during this period. |
| Author | Engel, G. Herzog, T. Wagner, W. Dang, B. van Helden, W. Köll, R. Jänchen, J. Kerskes, H. Badenhop, T. |
| Author_xml | – sequence: 1 givenname: R. surname: Köll fullname: Köll, R. email: r.koell@aee.at organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria – sequence: 2 givenname: W. surname: van Helden fullname: van Helden, W. organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria – sequence: 3 givenname: G. surname: Engel fullname: Engel, G. organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria – sequence: 4 givenname: W. surname: Wagner fullname: Wagner, W. organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria – sequence: 5 givenname: B. surname: Dang fullname: Dang, B. organization: AEE Institute for Sustainable Technologies, Feldgasse 19, 8200 Gleisdorf, Austria – sequence: 6 givenname: J. surname: Jänchen fullname: Jänchen, J. organization: Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany – sequence: 7 givenname: H. surname: Kerskes fullname: Kerskes, H. organization: ITW University Stuttgart, Pfaffenwaldring 6, 70550 Stuttgart, Germany – sequence: 8 givenname: T. surname: Badenhop fullname: Badenhop, T. organization: Vaillant GmbH, Berghauser Str. 40, 42859 Remscheid, Germany – sequence: 9 givenname: T. surname: Herzog fullname: Herzog, T. organization: Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany |
| BookMark | eNqFkE9rAjEQxUOxULX9CIV8gd0mJrvr0kMp0n8g9OKhtzCbnUhkTSRJpX77Ru2pF08Db96b4f0mZOS8Q0LuOSs54_XDpox-QIehnDHelKwumRRXZMxlwws-q5oRGTMm5gVrZ183ZBLjhmUjnzdjYp8dxZ8dBrtFl2Cg1u0xJruGZL2j3lCgAWGwWdNF1DAgjQjRu-zNbyFQ6KMPu5M9Jh9gnR2HmHBLjQ-0-7ZDb9063pJrA0PEu785JavXl9XivVh-vn0snpeFFnKeCm6k7ERX1VXbi8bUoCvgnEmOwmS50wx6RGC9aXVXGQFSiroVup13su2EmJLH81kdfIwBjdI2ncqkAHZQnKkjNLVRf9DUEZpitcrQcrr6l95lMhAOF3NP5xzmZnubt1FbdBp7G1An1Xt74cIvYmaQNw |
| CitedBy_id | crossref_primary_10_1016_j_est_2022_105103 crossref_primary_10_1016_j_est_2022_106158 crossref_primary_10_1016_j_rser_2019_05_006 crossref_primary_10_1002_er_4449 crossref_primary_10_1016_j_apenergy_2022_118633 crossref_primary_10_3390_nanomanufacturing3030023 crossref_primary_10_1016_j_renene_2021_09_115 crossref_primary_10_3390_en15155604 crossref_primary_10_1016_j_energy_2022_125382 crossref_primary_10_1002_nadc_20224126002 crossref_primary_10_1016_j_ces_2024_120853 crossref_primary_10_1016_j_ensm_2025_104340 crossref_primary_10_3390_cryst11111276 crossref_primary_10_1016_j_enconman_2019_01_071 crossref_primary_10_1016_j_solener_2020_11_055 crossref_primary_10_1016_j_solener_2021_05_025 crossref_primary_10_1007_s10934_022_01277_3 crossref_primary_10_1016_j_energy_2021_122068 crossref_primary_10_1016_j_egypro_2018_11_060 crossref_primary_10_1016_j_energy_2019_116890 crossref_primary_10_1016_j_apenergy_2021_117455 crossref_primary_10_1016_j_applthermaleng_2023_120248 crossref_primary_10_1016_j_enbuild_2020_110535 crossref_primary_10_1016_j_solener_2019_08_034 crossref_primary_10_1016_j_solener_2018_06_102 crossref_primary_10_1016_j_scs_2018_01_052 crossref_primary_10_1016_j_solener_2023_112044 crossref_primary_10_1016_j_applthermaleng_2018_10_019 crossref_primary_10_1002_er_5361 crossref_primary_10_1016_j_renene_2024_120889 crossref_primary_10_1016_j_est_2024_111194 crossref_primary_10_1016_j_est_2023_107154 crossref_primary_10_1016_j_apenergy_2022_119299 crossref_primary_10_3390_en17081976 crossref_primary_10_1016_j_energy_2018_10_132 crossref_primary_10_1016_j_enbuild_2021_111035 crossref_primary_10_1016_j_enconman_2023_117421 crossref_primary_10_1016_j_est_2022_105242 crossref_primary_10_1016_j_enconman_2025_120072 crossref_primary_10_1016_j_ces_2024_120599 crossref_primary_10_1016_j_est_2024_113589 crossref_primary_10_1038_s41598_023_50672_6 crossref_primary_10_1016_j_enbuild_2024_114421 crossref_primary_10_1016_j_apenergy_2019_03_125 crossref_primary_10_1016_j_rser_2023_113418 crossref_primary_10_1016_j_renene_2024_121668 crossref_primary_10_1016_j_applthermaleng_2023_121223 crossref_primary_10_1016_j_enbuild_2018_12_019 crossref_primary_10_3390_en15165944 crossref_primary_10_1016_j_apenergy_2022_118533 crossref_primary_10_1016_j_rser_2022_112197 crossref_primary_10_1016_j_applthermaleng_2019_114647 crossref_primary_10_1016_j_rser_2025_116133 crossref_primary_10_1016_j_solmat_2019_01_001 crossref_primary_10_3390_en14133754 crossref_primary_10_1016_j_apenergy_2024_122953 crossref_primary_10_1016_j_est_2025_117609 crossref_primary_10_1016_j_jcis_2025_137605 crossref_primary_10_1016_j_apenergy_2023_120755 crossref_primary_10_1016_j_est_2021_103615 crossref_primary_10_1016_j_est_2020_101699 |
| Cites_doi | 10.1016/S0140-7007(97)00042-X 10.1016/j.ijheatmasstransfer.2013.12.061 10.1016/j.solener.2013.06.006 10.1016/j.est.2017.06.001 10.1016/j.apenergy.2017.01.041 10.1016/S0140-7007(01)00004-4 10.1016/j.rser.2010.11.018 10.1016/j.rser.2012.10.025 10.1016/j.ijrefrig.2003.10.004 10.1016/j.pecs.2013.05.004 10.1016/j.egypro.2015.11.479 10.1016/j.micromeso.2006.06.008 10.1016/j.solener.2003.07.036 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.solener.2017.06.043 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1471-1257 |
| EndPage | 397 |
| ExternalDocumentID | 10_1016_j_solener_2017_06_043 S0038092X17305509 |
| GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c348t-1f44b3b5659d37f6ac5a11041e3f3b5bc0adeea0df9cb5f3a443693c98b49b33 |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419538500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-092X |
| IngestDate | Tue Nov 18 22:27:09 EST 2025 Sat Nov 29 07:29:07 EST 2025 Fri Feb 23 02:28:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Charge boost Closed adsorption process Zeolite Thermal storage |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-1f44b3b5659d37f6ac5a11041e3f3b5bc0adeea0df9cb5f3a443693c98b49b33 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_solener_2017_06_043 crossref_primary_10_1016_j_solener_2017_06_043 elsevier_sciencedirect_doi_10_1016_j_solener_2017_06_043 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Solar energy |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Aristov, Tokarev, Freni, Glaznev, Restuccia (b0015) 2006; 96 Tatsidjodoung, Le Pierrs, Luo (b0120) 2013; 18 Jenni, J., 2010. Das Solarhaus – mit hohem solarem Deckungsgrad fr Warmwasser und Heizung, Switzerland. Hauer, A., 2002. Beurteilung fester Adsorbentien in offenen Sorptionssystemen für energetische Anwendungen. Dissertation, Berlin. Köll, R., Wagner, W., van Helden, W., Engel, G., Pertschy, R., Dang, B.N., Kerskes, H., Asenbeck, S., Jänchen, J., Badenhop, T., 2016. Demonstration eines saisonalen Sorptionsspeichersystems im realen Maßstab. OTTI Fachforum – Thermische Energiespeicher, Neumarkt i. d. Opf. Mette, Kerskes, Drück, Müller-Steinhagen (b0105) 2014; 71 Engel, Asenbeck, Köll, Kerskes, Wagner, van Helden (b0050) 2017 Akahira, Alam, Hamamoto, Akisawa, Kashiwagi (b0010) 2004; 27 Cuypers, R., van Vliet, L., Bodis, P., Starosielec, B., Bujalski, M., de Beijer, H., Vos, M., Fldner, G., Wapler, Je., de Gracia, A., Cabeza, L., Hoegaerts, Ch., 2016. Successful field test demonstration of seasonal solar thermochemical storage. Gleisdorf SOLAR 2016, Gleisdorf. Engel, G., Wagner, W., van Helden, W., Jähnig, D., Dang, B., Köll, R., Pertschy, R., Kerskes, H., Asenbeck, S., Jänchen, J., Salg, F., Badenhop, T., 2015. Hardware-in-the-loop-approach for a real-scale sorption storage system. Innostorage, Lyon. Wang (b0135) 2001; 24 Ariful kabira, Amanul Alamb, Sarkera, Roufc, Sahad (b0005) 2015; 79 Mette, B., Asenbeck, S., Kerskes, H., Drck, H., 2013. Effizienzsteigerung thermochemischer Energiespeicher fr solare Anwendungen durch Reduzierung der Regenerationstemperatur, 23. Symposium Thermische Solarenergie, Bad Staffelstein. Yu, Wang, Wang (b0145) 2013; 39 Jänchen, Ackermann, Stach, Brsicke (b0070) 2004; 76 Köll, R., 2015. Development of a seasonal solar heat sorption storage system for domestic hot water and space heating. Master Thesis, Gleisdorf. Pons, Poyelle (b0110) 1999; 22 van Helden, W., Badenhop, T., 2016. Key performance indicators for seasonal solar thermal storage systems, at OTTI – Thermische Solarenergie, Bad Staffelstein. Jänchen, J., Herzog, T., Gantenbein, P., Daguenet-Frick, X., Kong, W., Furbo, S., 2015. Material(s) ageing stability. Deliverable 2.4 for COMTES Project. Courbon, D’Ans, Permyakova, Skrylnyk, Steunou, Degrez, Frre (b0025) 2017; 190 Xu, Wang, Li (b0140) 2013; 103 Dincer, Rosen (b0035) 2011 Soerensen, P.A., 2015. Large scale solar thermal plants with long term storages: marstal, braedstrupdstrup and dronninglund, denmark. In: Solar District Heating Conference. Cabeza, Castell, Barreneche, de Gracia, Fernndez (b0020) 2011; 15 Engel, Wagner, van Helden, Dang, Jähnig, Köll, Pertschy, Kerskes, Asenbeck, Jänchen, Salg, Badenhop (b0045) 2016 Hauer, A. 2015. Material Evaluation under Reference Conditions – TCM. Task4229 Meeting, Vienna. Zanife, Meunier, Chalfen (b0150) 1991 10.1016/j.solener.2017.06.043_b0115 Dincer (10.1016/j.solener.2017.06.043_b0035) 2011 Tatsidjodoung (10.1016/j.solener.2017.06.043_b0120) 2013; 18 Ariful kabira (10.1016/j.solener.2017.06.043_b0005) 2015; 79 10.1016/j.solener.2017.06.043_b0090 Akahira (10.1016/j.solener.2017.06.043_b0010) 2004; 27 Yu (10.1016/j.solener.2017.06.043_b0145) 2013; 39 10.1016/j.solener.2017.06.043_b0095 10.1016/j.solener.2017.06.043_b0030 10.1016/j.solener.2017.06.043_b0055 Xu (10.1016/j.solener.2017.06.043_b0140) 2013; 103 10.1016/j.solener.2017.06.043_b0125 Aristov (10.1016/j.solener.2017.06.043_b0015) 2006; 96 Courbon (10.1016/j.solener.2017.06.043_b0025) 2017; 190 Engel (10.1016/j.solener.2017.06.043_b0045) 2016 Engel (10.1016/j.solener.2017.06.043_b0050) 2017 Mette (10.1016/j.solener.2017.06.043_b0105) 2014; 71 Jänchen (10.1016/j.solener.2017.06.043_b0070) 2004; 76 Zanife (10.1016/j.solener.2017.06.043_b0150) 1991 Pons (10.1016/j.solener.2017.06.043_b0110) 1999; 22 10.1016/j.solener.2017.06.043_b0060 10.1016/j.solener.2017.06.043_b0080 Wang (10.1016/j.solener.2017.06.043_b0135) 2001; 24 Cabeza (10.1016/j.solener.2017.06.043_b0020) 2011; 15 10.1016/j.solener.2017.06.043_b0040 10.1016/j.solener.2017.06.043_b0085 10.1016/j.solener.2017.06.043_b0100 |
| References_xml | – reference: Jenni, J., 2010. Das Solarhaus – mit hohem solarem Deckungsgrad fr Warmwasser und Heizung, Switzerland. – reference: Jänchen, J., Herzog, T., Gantenbein, P., Daguenet-Frick, X., Kong, W., Furbo, S., 2015. Material(s) ageing stability. Deliverable 2.4 for COMTES Project. – volume: 96 start-page: 65 year: 2006 end-page: 71 ident: b0015 article-title: Kinetics of water adsorption on silica Fuji Davison RD publication-title: Micropor. Mesopor. Mater. – year: 2011 ident: b0035 article-title: Thermal Energy Storage – Systems and Applications – reference: Köll, R., 2015. Development of a seasonal solar heat sorption storage system for domestic hot water and space heating. Master Thesis, Gleisdorf. – reference: Köll, R., Wagner, W., van Helden, W., Engel, G., Pertschy, R., Dang, B.N., Kerskes, H., Asenbeck, S., Jänchen, J., Badenhop, T., 2016. Demonstration eines saisonalen Sorptionsspeichersystems im realen Maßstab. OTTI Fachforum – Thermische Energiespeicher, Neumarkt i. d. Opf. – volume: 24 start-page: 602 year: 2001 end-page: 611 ident: b0135 article-title: Performance improvement of adsorption cooling by heat and mass recovery operation publication-title: Int. J. Refrig. – reference: Engel, G., Wagner, W., van Helden, W., Jähnig, D., Dang, B., Köll, R., Pertschy, R., Kerskes, H., Asenbeck, S., Jänchen, J., Salg, F., Badenhop, T., 2015. Hardware-in-the-loop-approach for a real-scale sorption storage system. Innostorage, Lyon. – reference: Hauer, A., 2002. Beurteilung fester Adsorbentien in offenen Sorptionssystemen für energetische Anwendungen. Dissertation, Berlin. – volume: 27 start-page: 225 year: 2004 end-page: 234 ident: b0010 article-title: Mass recovery adsorption refrigeration cycle improving cooling capacity publication-title: Int. J. Refrig. – volume: 39 start-page: 489 year: 2013 end-page: 514 ident: b0145 article-title: Sorption thermal storage for solar energy publication-title: Prog. Energy Combust. Sci. – year: 2016 ident: b0045 article-title: Demonstration eines kompakten saisonalen Wärmespeichersystems publication-title: 26. Symposium Thermische Solarenergie, Bad Staffelstein – volume: 22 start-page: 27 year: 1999 end-page: 37 ident: b0110 article-title: Adsorptive machines with advanced cycles for heat pumping or cooling applications publication-title: Int. J. Refrig. – volume: 71 start-page: 555 year: 2014 end-page: 561 ident: b0105 article-title: Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X publication-title: Int. J. Heat Mass Transfer – volume: 15 start-page: 1675 year: 2011 end-page: 1695 ident: b0020 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew. Sustain. Energy Rev. – year: 1991 ident: b0150 article-title: Adsorptive refrigeration (activated carbonmethanol): mass recovery cycle publication-title: Proceedings of the XVIIIth International Congress on Refrigeration, Montreal – volume: 103 start-page: 610 year: 2013 end-page: 638 ident: b0140 article-title: A report of available technologies for seasonal thermal energy storage publication-title: Sol. Energy – reference: Soerensen, P.A., 2015. Large scale solar thermal plants with long term storages: marstal, braedstrupdstrup and dronninglund, denmark. In: Solar District Heating Conference. – reference: van Helden, W., Badenhop, T., 2016. Key performance indicators for seasonal solar thermal storage systems, at OTTI – Thermische Solarenergie, Bad Staffelstein. – volume: 76 start-page: 339 year: 2004 end-page: 344 ident: b0070 article-title: Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat publication-title: Sol. Energy – year: 2017 ident: b0050 article-title: Simulation of a seasonal, solar-driven sorption storage heating system publication-title: J. Energy Storage – reference: Mette, B., Asenbeck, S., Kerskes, H., Drck, H., 2013. Effizienzsteigerung thermochemischer Energiespeicher fr solare Anwendungen durch Reduzierung der Regenerationstemperatur, 23. Symposium Thermische Solarenergie, Bad Staffelstein. – reference: Hauer, A. 2015. Material Evaluation under Reference Conditions – TCM. Task4229 Meeting, Vienna. – volume: 190 start-page: 1184 year: 2017 end-page: 1194 ident: b0025 article-title: A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability publication-title: Appl. Energy – reference: Cuypers, R., van Vliet, L., Bodis, P., Starosielec, B., Bujalski, M., de Beijer, H., Vos, M., Fldner, G., Wapler, Je., de Gracia, A., Cabeza, L., Hoegaerts, Ch., 2016. Successful field test demonstration of seasonal solar thermochemical storage. Gleisdorf SOLAR 2016, Gleisdorf. – volume: 79 start-page: 67 year: 2015 end-page: 72 ident: b0005 article-title: Effect of mass recovery on the performance of solar adsorption cooling system publication-title: Energy Proc. – volume: 18 start-page: 327 year: 2013 end-page: 349 ident: b0120 article-title: A review of potential materials for thermal energy storage in building applications publication-title: Renew. Sustain. Energy Rev. – year: 1991 ident: 10.1016/j.solener.2017.06.043_b0150 article-title: Adsorptive refrigeration (activated carbonmethanol): mass recovery cycle – volume: 22 start-page: 27 issue: 1 year: 1999 ident: 10.1016/j.solener.2017.06.043_b0110 article-title: Adsorptive machines with advanced cycles for heat pumping or cooling applications publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(97)00042-X – ident: 10.1016/j.solener.2017.06.043_b0125 – volume: 71 start-page: 555 year: 2014 ident: 10.1016/j.solener.2017.06.043_b0105 article-title: Experimental and numerical investigations on the water vapor adsorption isotherms and kinetics of binderless zeolite 13X publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.12.061 – ident: 10.1016/j.solener.2017.06.043_b0060 – volume: 103 start-page: 610 year: 2013 ident: 10.1016/j.solener.2017.06.043_b0140 article-title: A report of available technologies for seasonal thermal energy storage publication-title: Sol. Energy doi: 10.1016/j.solener.2013.06.006 – ident: 10.1016/j.solener.2017.06.043_b0100 – ident: 10.1016/j.solener.2017.06.043_b0085 – year: 2017 ident: 10.1016/j.solener.2017.06.043_b0050 article-title: Simulation of a seasonal, solar-driven sorption storage heating system publication-title: J. Energy Storage doi: 10.1016/j.est.2017.06.001 – volume: 190 start-page: 1184 year: 2017 ident: 10.1016/j.solener.2017.06.043_b0025 article-title: A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.041 – ident: 10.1016/j.solener.2017.06.043_b0055 – ident: 10.1016/j.solener.2017.06.043_b0030 – volume: 24 start-page: 602 issue: 7 year: 2001 ident: 10.1016/j.solener.2017.06.043_b0135 article-title: Performance improvement of adsorption cooling by heat and mass recovery operation publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00004-4 – volume: 15 start-page: 1675 issue: 3 year: 2011 ident: 10.1016/j.solener.2017.06.043_b0020 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.018 – ident: 10.1016/j.solener.2017.06.043_b0095 – volume: 18 start-page: 327 year: 2013 ident: 10.1016/j.solener.2017.06.043_b0120 article-title: A review of potential materials for thermal energy storage in building applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.10.025 – volume: 27 start-page: 225 year: 2004 ident: 10.1016/j.solener.2017.06.043_b0010 article-title: Mass recovery adsorption refrigeration cycle improving cooling capacity publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2003.10.004 – volume: 39 start-page: 489 year: 2013 ident: 10.1016/j.solener.2017.06.043_b0145 article-title: Sorption thermal storage for solar energy publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2013.05.004 – volume: 79 start-page: 67 year: 2015 ident: 10.1016/j.solener.2017.06.043_b0005 article-title: Effect of mass recovery on the performance of solar adsorption cooling system publication-title: Energy Proc. doi: 10.1016/j.egypro.2015.11.479 – ident: 10.1016/j.solener.2017.06.043_b0040 – year: 2011 ident: 10.1016/j.solener.2017.06.043_b0035 – ident: 10.1016/j.solener.2017.06.043_b0115 – ident: 10.1016/j.solener.2017.06.043_b0080 – volume: 96 start-page: 65 issue: 1–3 year: 2006 ident: 10.1016/j.solener.2017.06.043_b0015 article-title: Kinetics of water adsorption on silica Fuji Davison RD publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2006.06.008 – year: 2016 ident: 10.1016/j.solener.2017.06.043_b0045 article-title: Demonstration eines kompakten saisonalen Wärmespeichersystems – volume: 76 start-page: 339 year: 2004 ident: 10.1016/j.solener.2017.06.043_b0070 article-title: Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat publication-title: Sol. Energy doi: 10.1016/j.solener.2003.07.036 – ident: 10.1016/j.solener.2017.06.043_b0090 |
| SSID | ssj0017187 |
| Score | 2.4903703 |
| Snippet | •Seasonal closed sorption storage system demonstrated successfully in realistic- scale for the first time.•Significant improvement of energy density due to the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 388 |
| SubjectTerms | Charge boost Closed adsorption process Thermal storage Zeolite |
| Title | An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings |
| URI | https://dx.doi.org/10.1016/j.solener.2017.06.043 |
| Volume | 155 |
| WOSCitedRecordID | wos000419538500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-1257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017187 issn: 0038-092X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBbG6aE9lPRF0zZFh97MuruW1tIe3eDQlhJKY4hvi6TVFgezDl435Df0V3dG0j7ihr6gl8UMK1toPs-MRjOfCHmDZ0GxKVQkC9jpcDuV7pAwEpOUFVyUduJJXD-JszO5XGafB4PvTS_M9VpUlby5ya7-q6pBBsrG1tm_UHf7pSCAz6B0eILa4flHip_t0favOiYNHxuqEQSKa0fQHNWgIjvCRKHLCNa40R2pot5svSnB2kms6vGEz762M1ykXffj2nM30LpGwtaG4yH8u6k_1_gybsTYMAXOLti7i1Y-x_Jal6ZvRRfqa-jHCa-F9AS4vKbQLeTMmr6ZrkjJ2WGGRRfuInXwQt70gpuMINwSt2xzmvasK_M3AAZHzXxh708-wKcjLsc1FjZY5HxNhONo9XxQe_Ta5zgXnEoikPwMe0EPJrCJiofkYPZhvvzYnkmBF_cMrGHuXT_Y2zt_7O5Ipxe9LA7Jw7DtoDMPl0dkYKvH5EGPjPIJWc0q2gcOvQUcuimponvAoQ1wqAMO7YBDA3CoBw4F4NAWOE_J4nS-OHkfhYs4IsO43EVJyblmGmL_rGCinCqTKggbeWJZCWJtYlVYq-KizIxOS6Y4Z9OMmUxqnmnGnpFhtansc0LLCWzPjYComTFuS6WlMomMU6nSTEtdHBHerFluAkk93pWyzptqxMs8LHWOS51jVSZnR2TcDrvyLC2_GyAbheQh1PQhZA4o-vXQF_8-9CW53_1FXpHhbvvNHpN75nq3qrevA95-ALyWqKM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+investigation+of+a+realistic-scale+seasonal+solar+adsorption+storage+system+for+buildings&rft.jtitle=Solar+energy&rft.au=K%C3%B6ll%2C+R.&rft.au=van+Helden%2C+W.&rft.au=Engel%2C+G.&rft.au=Wagner%2C+W.&rft.date=2017-10-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=155&rft.spage=388&rft.epage=397&rft_id=info:doi/10.1016%2Fj.solener.2017.06.043&rft.externalDocID=S0038092X17305509 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |