An epidemiological model of virus transmission in salmonid fishes of the Columbia River Basin
[Display omitted] •The SEI model developed here identified the transmission route that exposed sites.•Missing data resulted in biased inference about probabilities of infection.•In the Lower Columbia River, exposure by infectious adult occurred most frequently.•Exposure by juvenile fish within a sit...
Gespeichert in:
| Veröffentlicht in: | Ecological modelling Jg. 377; S. 1 - 15 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
10.06.2018
|
| Schlagworte: | |
| ISSN: | 0304-3800, 1872-7026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•The SEI model developed here identified the transmission route that exposed sites.•Missing data resulted in biased inference about probabilities of infection.•In the Lower Columbia River, exposure by infectious adult occurred most frequently.•Exposure by juvenile fish within a site had the greatest probability of infection.
We have developed a dynamic epidemiological model informed by records of viral presence and genotypes to evaluate potential transmission routes maintaining a viral pathogen in economically and culturally important anadromous fish populations. In the Columbia River Basin, infectious hematopoietic necrosis virus (IHNV) causes severe disease, predominantly in juvenile steelhead trout (Oncorhynchus mykiss) and less frequently in Chinook salmon (O. tshawytscha). Mortality events following IHNV infection can be devastating for individual hatchery programs. Despite reports of high local mortality and extensive surveillance efforts, there are questions about how viral transmission is maintained. Modeling this system offers important insights into disease transmission in natural aquatic systems, as well as about the data requirements for generating accurate estimates about transmission routes and infection probabilities. We simulated six scenarios in which testing rates and the relative importance of different transmission routes varied. The simulations demonstrated that the model accurately identified routes of transmission and inferred infection probabilities accurately when there was testing of all cohort-sites. When testing records were incomplete, the model accurately inferred which transmission routes exposed particular cohort-sites but generated biased infection probabilities given exposure. After validating the model and generating guidelines for result interpretation, we applied the model to data from 14 annual cohorts (2000–2013) at 24 focal sites in a sub-region of the Columbia River Basin, the lower Columbia River (LCR), to quantify the relative importance of potential transmission routes in this focal sub-region. We demonstrate that exposure to IHNV via the return migration of adult fish is an important route for maintaining IHNV in the LCR sub-region, and the probability of infection following this exposure was relatively high at 0.16. Although only 1% of cohort-sites experienced self-exposure by infected juvenile fish, this transmission route had the greatest probability of infection (0.22). Increased testing and/or determining whether transmission can occur from cohort-sites without testing records (e.g., determining there was no testing record because there were no fish at the cohort-site) are expected to improve inference about infection probabilities. Increased use of secure water supplies and continued use of biosecurity protocols may reduce IHNV transmission from adult fish and juvenile fish within the site, respectively, to juvenile salmonids at hatcheries. Models and conclusions from this study are potentially relevant to understanding the relative importance of transmission routes for other important aquatic pathogens in salmonids, including the agents of bacterial kidney disease and coldwater disease, and the basic approach may be useful for other pathogens and hosts in other geographic regions. |
|---|---|
| AbstractList | We have developed a dynamic epidemiological model informed by records of viral presence and genotypes to evaluate potential transmission routes maintaining a viral pathogen in economically and culturally important anadromous fish populations. In the Columbia River Basin, infectious hematopoietic necrosis virus (IHNV) causes severe disease, predominantly in juvenile steelhead trout (Oncorhynchus mykiss) and less frequently in Chinook salmon (O. tshawytscha). Mortality events following IHNV infection can be devastating for individual hatchery programs. Despite reports of high local mortality and extensive surveillance efforts, there are questions about how viral transmission is maintained. Modeling this system offers important insights into disease transmission in natural aquatic systems, as well as about the data requirements for generating accurate estimates about transmission routes and infection probabilities. We simulated six scenarios in which testing rates and the relative importance of different transmission routes varied. The simulations demonstrated that the model accurately identified routes of transmission and inferred infection probabilities accurately when there was testing of all cohort-sites. When testing records were incomplete, the model accurately inferred which transmission routes exposed particular cohort-sites but generated biased infection probabilities given exposure. After validating the model and generating guidelines for result interpretation, we applied the model to data from 14 annual cohorts (2000–2013) at 24 focal sites in a sub-region of the Columbia River Basin, the lower Columbia River (LCR), to quantify the relative importance of potential transmission routes in this focal sub-region. We demonstrate that exposure to IHNV via the return migration of adult fish is an important route for maintaining IHNV in the LCR sub-region, and the probability of infection following this exposure was relatively high at 0.16. Although only 1% of cohort-sites experienced self-exposure by infected juvenile fish, this transmission route had the greatest probability of infection (0.22). Increased testing and/or determining whether transmission can occur from cohort-sites without testing records (e.g., determining there was no testing record because there were no fish at the cohort-site) are expected to improve inference about infection probabilities. Increased use of secure water supplies and continued use of biosecurity protocols may reduce IHNV transmission from adult fish and juvenile fish within the site, respectively, to juvenile salmonids at hatcheries. Models and conclusions from this study are potentially relevant to understanding the relative importance of transmission routes for other important aquatic pathogens in salmonids, including the agents of bacterial kidney disease and coldwater disease, and the basic approach may be useful for other pathogens and hosts in other geographic regions. [Display omitted] •The SEI model developed here identified the transmission route that exposed sites.•Missing data resulted in biased inference about probabilities of infection.•In the Lower Columbia River, exposure by infectious adult occurred most frequently.•Exposure by juvenile fish within a site had the greatest probability of infection. We have developed a dynamic epidemiological model informed by records of viral presence and genotypes to evaluate potential transmission routes maintaining a viral pathogen in economically and culturally important anadromous fish populations. In the Columbia River Basin, infectious hematopoietic necrosis virus (IHNV) causes severe disease, predominantly in juvenile steelhead trout (Oncorhynchus mykiss) and less frequently in Chinook salmon (O. tshawytscha). Mortality events following IHNV infection can be devastating for individual hatchery programs. Despite reports of high local mortality and extensive surveillance efforts, there are questions about how viral transmission is maintained. Modeling this system offers important insights into disease transmission in natural aquatic systems, as well as about the data requirements for generating accurate estimates about transmission routes and infection probabilities. We simulated six scenarios in which testing rates and the relative importance of different transmission routes varied. The simulations demonstrated that the model accurately identified routes of transmission and inferred infection probabilities accurately when there was testing of all cohort-sites. When testing records were incomplete, the model accurately inferred which transmission routes exposed particular cohort-sites but generated biased infection probabilities given exposure. After validating the model and generating guidelines for result interpretation, we applied the model to data from 14 annual cohorts (2000–2013) at 24 focal sites in a sub-region of the Columbia River Basin, the lower Columbia River (LCR), to quantify the relative importance of potential transmission routes in this focal sub-region. We demonstrate that exposure to IHNV via the return migration of adult fish is an important route for maintaining IHNV in the LCR sub-region, and the probability of infection following this exposure was relatively high at 0.16. Although only 1% of cohort-sites experienced self-exposure by infected juvenile fish, this transmission route had the greatest probability of infection (0.22). Increased testing and/or determining whether transmission can occur from cohort-sites without testing records (e.g., determining there was no testing record because there were no fish at the cohort-site) are expected to improve inference about infection probabilities. Increased use of secure water supplies and continued use of biosecurity protocols may reduce IHNV transmission from adult fish and juvenile fish within the site, respectively, to juvenile salmonids at hatcheries. Models and conclusions from this study are potentially relevant to understanding the relative importance of transmission routes for other important aquatic pathogens in salmonids, including the agents of bacterial kidney disease and coldwater disease, and the basic approach may be useful for other pathogens and hosts in other geographic regions. |
| Author | Breyta, Rachel LaDeau, Shannon L. Brito, Ilana Ferguson, Paige F.B. Kurath, Gael |
| Author_xml | – sequence: 1 givenname: Paige F.B. surname: Ferguson fullname: Ferguson, Paige F.B. email: pfferguson@ua.edu organization: Department of Biological Sciences, University of Alabama, Box 870344, Tuscaloosa, AL 35487, United States – sequence: 2 givenname: Rachel surname: Breyta fullname: Breyta, Rachel organization: Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, United States – sequence: 3 givenname: Ilana surname: Brito fullname: Brito, Ilana organization: Meinig School of Biomedical Engineering, Cornell University, 289 Kimball Hall, Ithaca, NY 14853, United States – sequence: 4 givenname: Gael surname: Kurath fullname: Kurath, Gael organization: U.S. Geological Survey Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, United States – sequence: 5 givenname: Shannon L. surname: LaDeau fullname: LaDeau, Shannon L. organization: Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, United States |
| BookMark | eNqNkD1vFDEQhi2USFxCfgMuaXaZtfezoDhOfEmRkFDayPLaYzInr33Yeyfx7_HlEAUNVNO8zzszzw27CjEgY68bqBto-rf7Gk30S7ToawHNWIOsAcQLtmnGQVQDiP6KbUBCW8kR4CW7yXkPAI0YxYY9bgPHA1lcKPr4nYz2_LmLR8dPlI6Zr0mHvFDOFAOnwLMu2wJZ7ig_YT4H1yfku-iPy0yaf6MTJv5eZwqv2LXTPuPd73nLHj5-eNh9ru6_fvqy295XRrbjWjW9G-zUOpyN1Xbu3dROYy-dbRAsCOEGqZ0BiXLq2rkXWP50Dmajce46K2_Zm0vtIcUfR8yrKuca9F4HjMesBHRyHKe27Up0uERNijkndOqQaNHpp2pAnX2qvfrjU519KpCq-Czku79IQ6tei5QiiPx_8NsLj0XEiTCpbAiDQUsJzapspH92_AL2uZuN |
| CitedBy_id | crossref_primary_10_1111_eva_12931 crossref_primary_10_3390_ani12162120 crossref_primary_10_3390_pathogens10060673 crossref_primary_10_1016_j_jenvman_2023_117415 crossref_primary_10_1111_raq_70007 |
| Cites_doi | 10.1099/vir.0.18771-0 10.1016/j.ecolmodel.2006.06.010 10.1139/f82-152 10.5751/ES-07996-200427 10.1038/280361a0 10.1890/09-1409.1 10.1016/0959-8030(91)90024-E 10.1002/ecy.1634 10.1111/j.1365-2761.1985.tb00962.x 10.1080/10618600.1998.10474787 10.3354/dao02182 10.1577/1548-8667(1998)010<0121:FAPOIH>2.0.CO;2 10.1002/sim.3680 10.1111/j.1365-2761.1983.tb00083.x 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2 10.1890/09-0052.1 10.18637/jss.v012.i03 10.1577/1548-8667(200006)012<0085:MEREOA>2.0.CO;2 10.1111/j.1365-2656.2010.01742.x 10.1098/rsif.2010.0737 10.1016/j.tree.2008.08.008 10.1186/s13567-016-0341-1 10.1111/j.1365-2761.1983.tb00066.x 10.1016/j.prevetmed.2015.06.005 10.1577/H07-003.1 10.1016/j.meegid.2016.09.022 10.1016/j.fishres.2008.05.009 10.3354/dao071267 10.1016/j.prevetmed.2009.09.010 10.1093/trstmh/tru026 10.3354/dao055187 10.1098/rsif.2015.0676 10.1111/j.1365-2664.2010.01926.x 10.1016/j.aquaculture.2015.07.014 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.ecolmodel.2018.03.002 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Environmental Sciences |
| EISSN | 1872-7026 |
| EndPage | 15 |
| ExternalDocumentID | 10_1016_j_ecolmodel_2018_03_002 S0304380018300784 |
| GeographicLocations | Columbia River |
| GeographicLocations_xml | – name: Columbia River |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFYP ABGRD ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- 29G 53G 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- SEN SEW VH1 WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c348t-16f7d94febcdadb6f949863fd1e0d022f73afc03e3954b62e201ff0bcaeb55d3 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3800 |
| IngestDate | Sun Sep 28 03:11:45 EDT 2025 Sat Nov 29 07:18:35 EST 2025 Tue Nov 18 20:44:32 EST 2025 Fri Feb 23 02:24:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Steelhead trout IHNV Salmon Viral genotype Transmission SEI model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-16f7d94febcdadb6f949863fd1e0d022f73afc03e3954b62e201ff0bcaeb55d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2053889445 |
| PQPubID | 24069 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2053889445 crossref_primary_10_1016_j_ecolmodel_2018_03_002 crossref_citationtrail_10_1016_j_ecolmodel_2018_03_002 elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2018_03_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-10 |
| PublicationDateYYYYMMDD | 2018-06-10 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationTitle | Ecological modelling |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Mulcahy, Bauersfeld (bib0165) 1983; 6 Nishizawa, Kinoshita, Kim, Higashi, Yoshimizu (bib0180) 2006; 71 Ferguson, Conroy, Chamblee, Hepinstall-Cymerman (bib0095) 2015; 20 Tompkins, Dunn, Smith, Telfe (bib0205) 2011; 80 Aldrin, Storvik, Frigessi, Viljugrein, Jansen (bib0015) 2010; 93 Anderson, May (bib0030) 1992 Breyta, Brito, Ferguson, Kurath, Naish, Purcell, Wargo, LaDeau (bib0070) 2017 Heisey, Osnas, Cross, Joly, Langenberg, Miller (bib0110) 2010; 80 Mulcahy, Burke, Pascho, Jenes (bib0155) 1982; 39 Mulcahy, Pascho, Jenes (bib0160) 1983; 6 Mulcahy, Pascho (bib0170) 1985; 8 R Core Team (bib0185) 2013 Smith, Perkins, Reiner, Barker, Niu, Chaves, Ellis, George, Le Menach, Pulliam, Bisanzio, Buckee, Chiyaka, Cummings, Garcia, Gatton, Gething, Hartley, Johnston, Klein, Michael, Lloyd, Pigott, Reisen, Ruktanonchai, Singh, Stoller, Tatem, Kitron, Godfray, Cohen, Hay, Scott (bib0190) 2014; 108 Irwin, Wilberg, Bence, Jones (bib0115) 2008; 94 Link, Barker (bib0140) 2010 Dixon, Paley, Alegria-Moran, Oidtmann (bib0085) 2016; 47 Winton (bib0210) 1991; 1 Bootland, Leong (bib0055) 2011 Breyta, Samson, Blair, Black, Kurath (bib0065) 2016; 450 Lunn, Spiegelhalter, Thomas, Best (bib0145) 2009; 28 Aldrin, Lyngstad, Kristoffersen, Storvik, Borgan, Jansen (bib0010) 2011; 8 Breyta, Brito, Kurath, LaDeau (bib0075) 2017; 98 Taylor, Norman, Way, Peeler (bib0200) 2011; 48 Aldrin, Huseby, Jansen (bib0005) 2015; 121 Anderson, May (bib0025) 1979; 280 LaPatra (bib0135) 1998; 10 Wolf (bib0215) 1988 Archie, Luikart, Ezenwa (bib0035) 2009; 24 LaDeau, Glass, Hobbs, Latimer, Ostfeld (bib0130) 2011; 21 Gelman, Shirley (bib0105) 2011 Enzmann, Castric, Bovo, Thiery, Fichtner, Schutze, Wahli (bib0090) 2010; 89 Breyta, Black, Kaufman, Kurath (bib0060) 2016; 45 Sturtz, Ligges, Gelman (bib0195) 2005; 12 Murray (bib0175) 2006; 199 Morris, Zelner, Fauquier, Rowles, Rosel, Gulland, Grenfell (bib0150) 2015; 12 Anderson, Engelking, Emmenegger, Kurath (bib0020) 2000; 12 Bjornstad, Finkenstadt, Grenfell (bib0045) 2002; 72 Kurath (bib0120) 2012 Bendorf, Kelley, Yun, Kurath, Andree, Herick (bib0040) 2007; 19 Bootland, Leong (bib0050) 1999 Garver, Troyer, Kurath (bib0100) 2003; 55 Kurath, Garver, Troyer, Emmenegger, Einer-Jensen, Anderson (bib0125) 2003; 84 Brooks, Gelman (bib0080) 1998; 7 Bootland (10.1016/j.ecolmodel.2018.03.002_bib0055) 2011 Heisey (10.1016/j.ecolmodel.2018.03.002_bib0110) 2010; 80 Mulcahy (10.1016/j.ecolmodel.2018.03.002_bib0155) 1982; 39 Aldrin (10.1016/j.ecolmodel.2018.03.002_bib0015) 2010; 93 Bendorf (10.1016/j.ecolmodel.2018.03.002_bib0040) 2007; 19 Mulcahy (10.1016/j.ecolmodel.2018.03.002_bib0165) 1983; 6 Sturtz (10.1016/j.ecolmodel.2018.03.002_bib0195) 2005; 12 Nishizawa (10.1016/j.ecolmodel.2018.03.002_bib0180) 2006; 71 Link (10.1016/j.ecolmodel.2018.03.002_bib0140) 2010 Irwin (10.1016/j.ecolmodel.2018.03.002_bib0115) 2008; 94 Ferguson (10.1016/j.ecolmodel.2018.03.002_bib0095) 2015; 20 Dixon (10.1016/j.ecolmodel.2018.03.002_bib0085) 2016; 47 Breyta (10.1016/j.ecolmodel.2018.03.002_bib0060) 2016; 45 Lunn (10.1016/j.ecolmodel.2018.03.002_bib0145) 2009; 28 Anderson (10.1016/j.ecolmodel.2018.03.002_bib0020) 2000; 12 LaDeau (10.1016/j.ecolmodel.2018.03.002_bib0130) 2011; 21 Mulcahy (10.1016/j.ecolmodel.2018.03.002_bib0170) 1985; 8 Kurath (10.1016/j.ecolmodel.2018.03.002_bib0125) 2003; 84 Garver (10.1016/j.ecolmodel.2018.03.002_bib0100) 2003; 55 Bootland (10.1016/j.ecolmodel.2018.03.002_bib0050) 1999 R Core Team (10.1016/j.ecolmodel.2018.03.002_bib0185) 2013 Aldrin (10.1016/j.ecolmodel.2018.03.002_bib0005) 2015; 121 Archie (10.1016/j.ecolmodel.2018.03.002_bib0035) 2009; 24 Kurath (10.1016/j.ecolmodel.2018.03.002_bib0120) 2012 Smith (10.1016/j.ecolmodel.2018.03.002_bib0190) 2014; 108 Breyta (10.1016/j.ecolmodel.2018.03.002_bib0070) 2017 Breyta (10.1016/j.ecolmodel.2018.03.002_bib0065) 2016; 450 Murray (10.1016/j.ecolmodel.2018.03.002_bib0175) 2006; 199 Gelman (10.1016/j.ecolmodel.2018.03.002_bib0105) 2011 LaPatra (10.1016/j.ecolmodel.2018.03.002_bib0135) 1998; 10 Breyta (10.1016/j.ecolmodel.2018.03.002_bib0075) 2017; 98 Anderson (10.1016/j.ecolmodel.2018.03.002_bib0025) 1979; 280 Wolf (10.1016/j.ecolmodel.2018.03.002_bib0215) 1988 Enzmann (10.1016/j.ecolmodel.2018.03.002_bib0090) 2010; 89 Tompkins (10.1016/j.ecolmodel.2018.03.002_bib0205) 2011; 80 Morris (10.1016/j.ecolmodel.2018.03.002_bib0150) 2015; 12 Winton (10.1016/j.ecolmodel.2018.03.002_bib0210) 1991; 1 Taylor (10.1016/j.ecolmodel.2018.03.002_bib0200) 2011; 48 Anderson (10.1016/j.ecolmodel.2018.03.002_bib0030) 1992 Bjornstad (10.1016/j.ecolmodel.2018.03.002_bib0045) 2002; 72 Brooks (10.1016/j.ecolmodel.2018.03.002_bib0080) 1998; 7 Aldrin (10.1016/j.ecolmodel.2018.03.002_bib0010) 2011; 8 Mulcahy (10.1016/j.ecolmodel.2018.03.002_bib0160) 1983; 6 |
| References_xml | – year: 2012 ident: bib0120 article-title: Molecular epidemiology and evolution of Novirhabdoviruses publication-title: Rhabdoviruses: Molecular Taxonomy, Evolution, Genomics, Ecology, Cytopathology, and Control – volume: 93 start-page: 51 year: 2010 end-page: 61 ident: bib0015 article-title: A stochastic model for the assessment of the transmission pathways of heart and skeleton muscle inflammation, pancreas disease and infectious salmon anaemia in marine fish farms in Norway publication-title: Prev. Vet. Med. – volume: 450 start-page: 213 year: 2016 end-page: 224 ident: bib0065 article-title: Successful mitigation of viral disease based on a delayed exposure rearing strategy at a large-scale steelhead trout conservation hatchery publication-title: Aquaculture – year: 1988 ident: bib0215 article-title: Fish Viruses and Fish Viral Diseases – volume: 21 start-page: 1443 year: 2011 end-page: 1460 ident: bib0130 article-title: Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting publication-title: Ecol. Appl. – volume: 1 start-page: 83 year: 1991 end-page: 93 ident: bib0210 article-title: Recent advances in detection and control of infectious hematopoietic necrosis virus in aquaculture publication-title: Annu. Rev. Fish Dis. – year: 2010 ident: bib0140 article-title: Bayesian Inference: With Ecological Applications – volume: 28 start-page: 3049 year: 2009 end-page: 3067 ident: bib0145 article-title: The BUGS project: evolution, critique and future directions publication-title: Stat. Med. – year: 2013 ident: bib0185 article-title: R: A Language and Environment for Statistical Computing – volume: 8 start-page: 1346 year: 2011 end-page: 1356 ident: bib0010 article-title: Modelling the spread of infectious salmon anaemia among salmon farms based on seaway distances between farms and genetic relationships between infectious salmon anaemia virus isolates publication-title: J. R. Soc. Interface – volume: 48 start-page: 348 year: 2011 end-page: 355 ident: bib0200 article-title: Modelling the koi herpesvirus (KHV) epidemic highlights the importance of active surveillance within a national control policy publication-title: J. Appl. Ecol. – volume: 94 start-page: 267 year: 2008 end-page: 281 ident: bib0115 article-title: Evaluating alternative harvest policies for yellow perch in southern Lake Michigan publication-title: Fish. Res. – volume: 12 year: 2015 ident: bib0150 article-title: Partially observed epidemics in wildlife hosts: modelling an outbreak of dolphin morbillivirus in the northwestern Atlantic, june 2013–2014 publication-title: J. R. Soc. Interface – volume: 12 start-page: 1 year: 2005 end-page: 16 ident: bib0195 article-title: R2WinBUGS: a package for running WinBUGS from R publication-title: J. Stat. Softw. – volume: 10 start-page: 121 year: 1998 end-page: 131 ident: bib0135 article-title: Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish publication-title: J. Aquat. Anim. Health – volume: 80 start-page: 221 year: 2010 end-page: 240 ident: bib0110 article-title: Linking process to pattern: estimating spatio-temporal dynamics of a wildlife epidemic from cross-sectional data publication-title: Ecol. Monogr. – volume: 45 start-page: 347 year: 2016 end-page: 358 ident: bib0060 article-title: Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids publication-title: Infect. Genet. Evol. – volume: 199 start-page: 64 year: 2006 end-page: 72 ident: bib0175 article-title: A model of the emergence of infectious pancreatic necrosis virus in Scottish salmon farms 1996–2003 publication-title: Ecol. Model. – volume: 98 start-page: 283 year: 2017 ident: bib0075 article-title: Infectious hematopoietic necrosis virus virology and genetic surveillance database 2000–2012 publication-title: Ecology – volume: 89 start-page: 9 year: 2010 end-page: 15 ident: bib0090 article-title: Evolution of infectious hematopoietic necrosis virus (IHNV), a fish rhabdovirus, in Europe over 20 years: implications for control publication-title: Dis. Aquat. Org. – volume: 24 start-page: 21 year: 2009 end-page: 30 ident: bib0035 article-title: Infecting epidemiology with genetics: a new frontier in disease ecology publication-title: Trends Ecol. Evol. – year: 1999 ident: bib0050 article-title: Infectious hematopoietic necrosis virus publication-title: Fish Diseases and Disorders – volume: 121 start-page: 132 year: 2015 end-page: 141 ident: bib0005 article-title: Space-time modelling of the spread of pancreas disease (PD) within and between Norwegian marine salmonid farms publication-title: Prev. Vet. Med. – volume: 55 start-page: 187 year: 2003 end-page: 203 ident: bib0100 article-title: Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin publication-title: Dis. Aquat. Org. – start-page: 1 year: 2017 end-page: 14 ident: bib0070 article-title: Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage publication-title: Ecol. Evol. – volume: 6 start-page: 189 year: 1983 end-page: 193 ident: bib0165 article-title: Effect of loading density of sockeye salmon, publication-title: J. Fish Dis. – year: 1992 ident: bib0030 article-title: Infectious Diseases of Humans: Dynamics and Control – volume: 80 start-page: 19 year: 2011 end-page: 38 ident: bib0205 article-title: Wildlife diseases: from individuals to ecosystems publication-title: J. Anim. Ecol. – year: 2011 ident: bib0055 article-title: Infectious haematopoietic necrosis virus publication-title: Fish Diseases and Disorders. Volume 3: Viral, Bacterial, and Fungal Infections – volume: 84 start-page: 803 year: 2003 end-page: 814 ident: bib0125 article-title: Phylogeography of infectious haematopoietic necrosis virus in North America publication-title: J. Gen. Virol. – volume: 71 start-page: 267 year: 2006 end-page: 272 ident: bib0180 article-title: Nucleotide diversity of isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene publication-title: Dis. Aquat. Org. – volume: 72 start-page: 169 year: 2002 end-page: 184 ident: bib0045 article-title: Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model publication-title: Ecol. Monogr. – volume: 280 start-page: 361 year: 1979 end-page: 367 ident: bib0025 article-title: Population biology of infectious-diseases. 1 publication-title: Nature – volume: 19 start-page: 254 year: 2007 end-page: 269 ident: bib0040 article-title: Genetic diversity of infectious hematopoietic necrosis virus from Feather River and Lake Oroville, California, and virulence of selected isolates for Chinook salmon and rainbow trout publication-title: J. Aquat. Anim. Health – volume: 6 start-page: 321 year: 1983 end-page: 330 ident: bib0160 article-title: Detection of infectious hematopoietic necrosis virus in river water and demonstration of waterborne transmission publication-title: J. Fish Dis. – volume: 39 start-page: 1144 year: 1982 end-page: 1149 ident: bib0155 article-title: Pathogenesis of infectious hematopoietic necrosis virus in adult sokeye salmon ( publication-title: Can. J. Fish. Aquat. Sci. – volume: 20 start-page: 27 year: 2015 ident: bib0095 article-title: Using structured decision making with landowners to address private forest management and parcelization: balancing multiple objectives and incorporating uncertainty publication-title: Ecol. Soc. – volume: 108 start-page: 185 year: 2014 end-page: 197 ident: bib0190 article-title: Recasting the theory of mosquito-borne pathogen transmission dynamics and control publication-title: Trans. R. Soc. Trop. Med. Hyg. – volume: 7 start-page: 434 year: 1998 end-page: 455 ident: bib0080 article-title: General methods for monitoring convergence of iterative simulations publication-title: J. Comput. Graph. Stat. – volume: 47 start-page: 63 year: 2016 ident: bib0085 article-title: Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review publication-title: Vet. Res. – year: 2011 ident: bib0105 article-title: Inference from simulations and monitoring convergence publication-title: Handbook of Markov Chain Monte Carlo – volume: 8 start-page: 393 year: 1985 end-page: 396 ident: bib0170 article-title: Vertical transmission of infectious haematopoietic necrosis virus in sockeye salmon, publication-title: J. Fish Dis. – volume: 12 start-page: 85 year: 2000 end-page: 99 ident: bib0020 article-title: Molecular epidemiology reveals emergence of a virulent IHN virus strain in wild salmon and transmission to hatchery fish publication-title: J. Aquat. Anim. Health – volume: 84 start-page: 803 year: 2003 ident: 10.1016/j.ecolmodel.2018.03.002_bib0125 article-title: Phylogeography of infectious haematopoietic necrosis virus in North America publication-title: J. Gen. Virol. doi: 10.1099/vir.0.18771-0 – volume: 199 start-page: 64 year: 2006 ident: 10.1016/j.ecolmodel.2018.03.002_bib0175 article-title: A model of the emergence of infectious pancreatic necrosis virus in Scottish salmon farms 1996–2003 publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2006.06.010 – volume: 39 start-page: 1144 year: 1982 ident: 10.1016/j.ecolmodel.2018.03.002_bib0155 article-title: Pathogenesis of infectious hematopoietic necrosis virus in adult sokeye salmon (Oncorhynchus nerka) publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f82-152 – volume: 20 start-page: 27 issue: 4 year: 2015 ident: 10.1016/j.ecolmodel.2018.03.002_bib0095 article-title: Using structured decision making with landowners to address private forest management and parcelization: balancing multiple objectives and incorporating uncertainty publication-title: Ecol. Soc. doi: 10.5751/ES-07996-200427 – volume: 280 start-page: 361 year: 1979 ident: 10.1016/j.ecolmodel.2018.03.002_bib0025 article-title: Population biology of infectious-diseases. 1 publication-title: Nature doi: 10.1038/280361a0 – volume: 21 start-page: 1443 year: 2011 ident: 10.1016/j.ecolmodel.2018.03.002_bib0130 article-title: Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting publication-title: Ecol. Appl. doi: 10.1890/09-1409.1 – volume: 1 start-page: 83 year: 1991 ident: 10.1016/j.ecolmodel.2018.03.002_bib0210 article-title: Recent advances in detection and control of infectious hematopoietic necrosis virus in aquaculture publication-title: Annu. Rev. Fish Dis. doi: 10.1016/0959-8030(91)90024-E – volume: 98 start-page: 283 issue: 1 year: 2017 ident: 10.1016/j.ecolmodel.2018.03.002_bib0075 article-title: Infectious hematopoietic necrosis virus virology and genetic surveillance database 2000–2012 publication-title: Ecology doi: 10.1002/ecy.1634 – year: 2011 ident: 10.1016/j.ecolmodel.2018.03.002_bib0105 article-title: Inference from simulations and monitoring convergence – volume: 8 start-page: 393 year: 1985 ident: 10.1016/j.ecolmodel.2018.03.002_bib0170 article-title: Vertical transmission of infectious haematopoietic necrosis virus in sockeye salmon, Oncorhynchus nerka (Walbaum): isolation of virus from dead eggs and fry publication-title: J. Fish Dis. doi: 10.1111/j.1365-2761.1985.tb00962.x – volume: 7 start-page: 434 year: 1998 ident: 10.1016/j.ecolmodel.2018.03.002_bib0080 article-title: General methods for monitoring convergence of iterative simulations publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1998.10474787 – volume: 89 start-page: 9 year: 2010 ident: 10.1016/j.ecolmodel.2018.03.002_bib0090 article-title: Evolution of infectious hematopoietic necrosis virus (IHNV), a fish rhabdovirus, in Europe over 20 years: implications for control publication-title: Dis. Aquat. Org. doi: 10.3354/dao02182 – volume: 10 start-page: 121 year: 1998 ident: 10.1016/j.ecolmodel.2018.03.002_bib0135 article-title: Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish publication-title: J. Aquat. Anim. Health doi: 10.1577/1548-8667(1998)010<0121:FAPOIH>2.0.CO;2 – start-page: 1 year: 2017 ident: 10.1016/j.ecolmodel.2018.03.002_bib0070 article-title: Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage publication-title: Ecol. Evol. – volume: 28 start-page: 3049 year: 2009 ident: 10.1016/j.ecolmodel.2018.03.002_bib0145 article-title: The BUGS project: evolution, critique and future directions publication-title: Stat. Med. doi: 10.1002/sim.3680 – volume: 6 start-page: 321 year: 1983 ident: 10.1016/j.ecolmodel.2018.03.002_bib0160 article-title: Detection of infectious hematopoietic necrosis virus in river water and demonstration of waterborne transmission publication-title: J. Fish Dis. doi: 10.1111/j.1365-2761.1983.tb00083.x – volume: 72 start-page: 169 year: 2002 ident: 10.1016/j.ecolmodel.2018.03.002_bib0045 article-title: Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model publication-title: Ecol. Monogr. doi: 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2 – volume: 80 start-page: 221 year: 2010 ident: 10.1016/j.ecolmodel.2018.03.002_bib0110 article-title: Linking process to pattern: estimating spatio-temporal dynamics of a wildlife epidemic from cross-sectional data publication-title: Ecol. Monogr. doi: 10.1890/09-0052.1 – volume: 12 start-page: 1 year: 2005 ident: 10.1016/j.ecolmodel.2018.03.002_bib0195 article-title: R2WinBUGS: a package for running WinBUGS from R publication-title: J. Stat. Softw. doi: 10.18637/jss.v012.i03 – year: 1992 ident: 10.1016/j.ecolmodel.2018.03.002_bib0030 – year: 1988 ident: 10.1016/j.ecolmodel.2018.03.002_bib0215 – year: 2010 ident: 10.1016/j.ecolmodel.2018.03.002_bib0140 – volume: 12 start-page: 85 year: 2000 ident: 10.1016/j.ecolmodel.2018.03.002_bib0020 article-title: Molecular epidemiology reveals emergence of a virulent IHN virus strain in wild salmon and transmission to hatchery fish publication-title: J. Aquat. Anim. Health doi: 10.1577/1548-8667(200006)012<0085:MEREOA>2.0.CO;2 – year: 1999 ident: 10.1016/j.ecolmodel.2018.03.002_bib0050 article-title: Infectious hematopoietic necrosis virus – volume: 80 start-page: 19 year: 2011 ident: 10.1016/j.ecolmodel.2018.03.002_bib0205 article-title: Wildlife diseases: from individuals to ecosystems publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2010.01742.x – volume: 8 start-page: 1346 year: 2011 ident: 10.1016/j.ecolmodel.2018.03.002_bib0010 article-title: Modelling the spread of infectious salmon anaemia among salmon farms based on seaway distances between farms and genetic relationships between infectious salmon anaemia virus isolates publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2010.0737 – volume: 24 start-page: 21 year: 2009 ident: 10.1016/j.ecolmodel.2018.03.002_bib0035 article-title: Infecting epidemiology with genetics: a new frontier in disease ecology publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2008.08.008 – volume: 47 start-page: 63 year: 2016 ident: 10.1016/j.ecolmodel.2018.03.002_bib0085 article-title: Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review publication-title: Vet. Res. doi: 10.1186/s13567-016-0341-1 – volume: 6 start-page: 189 year: 1983 ident: 10.1016/j.ecolmodel.2018.03.002_bib0165 article-title: Effect of loading density of sockeye salmon, Oncorhynchus nerka (Walbaum), eggs in incubation boxes on mortality caused by infectious haematopoietic necrosis publication-title: J. Fish Dis. doi: 10.1111/j.1365-2761.1983.tb00066.x – year: 2011 ident: 10.1016/j.ecolmodel.2018.03.002_bib0055 article-title: Infectious haematopoietic necrosis virus – volume: 121 start-page: 132 year: 2015 ident: 10.1016/j.ecolmodel.2018.03.002_bib0005 article-title: Space-time modelling of the spread of pancreas disease (PD) within and between Norwegian marine salmonid farms publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2015.06.005 – volume: 19 start-page: 254 year: 2007 ident: 10.1016/j.ecolmodel.2018.03.002_bib0040 article-title: Genetic diversity of infectious hematopoietic necrosis virus from Feather River and Lake Oroville, California, and virulence of selected isolates for Chinook salmon and rainbow trout publication-title: J. Aquat. Anim. Health doi: 10.1577/H07-003.1 – volume: 45 start-page: 347 year: 2016 ident: 10.1016/j.ecolmodel.2018.03.002_bib0060 article-title: Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2016.09.022 – volume: 94 start-page: 267 year: 2008 ident: 10.1016/j.ecolmodel.2018.03.002_bib0115 article-title: Evaluating alternative harvest policies for yellow perch in southern Lake Michigan publication-title: Fish. Res. doi: 10.1016/j.fishres.2008.05.009 – volume: 71 start-page: 267 year: 2006 ident: 10.1016/j.ecolmodel.2018.03.002_bib0180 article-title: Nucleotide diversity of isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene publication-title: Dis. Aquat. Org. doi: 10.3354/dao071267 – volume: 93 start-page: 51 year: 2010 ident: 10.1016/j.ecolmodel.2018.03.002_bib0015 article-title: A stochastic model for the assessment of the transmission pathways of heart and skeleton muscle inflammation, pancreas disease and infectious salmon anaemia in marine fish farms in Norway publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2009.09.010 – volume: 108 start-page: 185 year: 2014 ident: 10.1016/j.ecolmodel.2018.03.002_bib0190 article-title: Recasting the theory of mosquito-borne pathogen transmission dynamics and control publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1093/trstmh/tru026 – volume: 55 start-page: 187 year: 2003 ident: 10.1016/j.ecolmodel.2018.03.002_bib0100 article-title: Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin publication-title: Dis. Aquat. Org. doi: 10.3354/dao055187 – year: 2012 ident: 10.1016/j.ecolmodel.2018.03.002_bib0120 article-title: Molecular epidemiology and evolution of Novirhabdoviruses – year: 2013 ident: 10.1016/j.ecolmodel.2018.03.002_bib0185 – volume: 12 year: 2015 ident: 10.1016/j.ecolmodel.2018.03.002_bib0150 article-title: Partially observed epidemics in wildlife hosts: modelling an outbreak of dolphin morbillivirus in the northwestern Atlantic, june 2013–2014 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.0676 – volume: 48 start-page: 348 year: 2011 ident: 10.1016/j.ecolmodel.2018.03.002_bib0200 article-title: Modelling the koi herpesvirus (KHV) epidemic highlights the importance of active surveillance within a national control policy publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2010.01926.x – volume: 450 start-page: 213 year: 2016 ident: 10.1016/j.ecolmodel.2018.03.002_bib0065 article-title: Successful mitigation of viral disease based on a delayed exposure rearing strategy at a large-scale steelhead trout conservation hatchery publication-title: Aquaculture doi: 10.1016/j.aquaculture.2015.07.014 |
| SSID | ssj0001282 |
| Score | 2.2811353 |
| Snippet | [Display omitted]
•The SEI model developed here identified the transmission route that exposed sites.•Missing data resulted in biased inference about... We have developed a dynamic epidemiological model informed by records of viral presence and genotypes to evaluate potential transmission routes maintaining a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | adults anadromous fish bacterial kidney disease biosecurity Columbia River disease severity fish communities genotype guidelines hatcheries hosts IHNV Infectious hematopoietic necrosis virus juveniles monitoring mortality Oncorhynchus mykiss Oncorhynchus tshawytscha pathogens probability Salmon SEI model Steelhead trout Transmission Viral genotype virus transmission water supply watersheds |
| Title | An epidemiological model of virus transmission in salmonid fishes of the Columbia River Basin |
| URI | https://dx.doi.org/10.1016/j.ecolmodel.2018.03.002 https://www.proquest.com/docview/2053889445 |
| Volume | 377 |
| WOSCitedRecordID | wos000432499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001282 issn: 0304-3800 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBah3WAvY-tW1t3QYG_GwbYcX_qWlnTrBqWMPORlGNmSiotRSpyE9kfsP_foZqfZRtaHvZhESI6k74vOkXQuCH0OhUozlQR-CQDDBiWmfklZ7lcRo0kYsihlgU42kV5cZLNZfjkY_HK-MOsmlTK7vc1v_ivUUAZgK9fZR8DdvRQK4DOADk-AHZ7_BPxYerxP-6ox0OlulFq4rherVqWFkC3g21o7x5Y20LuaeUIZyLfObOBULVxlTb0fynbDO6GtjdLtDvKrhz_QOClojqevVtaZ65LWV9w7G54M-70_v7Naq4on3fTltc7q5J03VHby4vsKWKpPf744A397TBFmypzKGqxa9yx1BZMFwebSS2wKF7N4hhtS2Ph4_ra-m6OG6yFszRs9NGWcl5kwtVEv0tw1_pak6-wPnWnbddG9qFAvKgJS6NCk-1E6ymGR3B-fT2bfOtEOwtxeS5mxPDAY_GOf_qbubAl-rc1MX6DndhuCx4Y-L9GAywP01CB6d4AOJ73_I1SzAqB9hX6OJd5iF9a9wXOBNbvwJrtwLbFjFzbsUhWBXdixC2t2Yc2u12h6NpmefvVthg6_InG29MNEpCyPBS8rRpVDZx7nWUIEC3nAQDsUKaGiCggn-Sguk4jDzAgRlBXl5WjEyCHak3PJ3yAMNQgNK8LjeBRTEZXwjWcxYVlEI5KSI5S4eSwqG71eJVFpih1YHqGga3hjArjsbnLsgCqsHmr0ywJouLvxJwdtAXOtrt-o5PNVC5VAuchyGODbx_fpHXrW_6veo73lYsU_oCfVelm3i4-Wp_cOxr4H |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+epidemiological+model+of+virus+transmission+in+salmonid+fishes+of+the+Columbia+River+Basin&rft.jtitle=Ecological+modelling&rft.au=Ferguson%2C+Paige+F.B.&rft.au=Breyta%2C+Rachel&rft.au=Brito%2C+Ilana&rft.au=Kurath%2C+Gael&rft.date=2018-06-10&rft.issn=0304-3800&rft.volume=377&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.ecolmodel.2018.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolmodel_2018_03_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |