An epidemiological model of virus transmission in salmonid fishes of the Columbia River Basin

[Display omitted] •The SEI model developed here identified the transmission route that exposed sites.•Missing data resulted in biased inference about probabilities of infection.•In the Lower Columbia River, exposure by infectious adult occurred most frequently.•Exposure by juvenile fish within a sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling Jg. 377; S. 1 - 15
Hauptverfasser: Ferguson, Paige F.B., Breyta, Rachel, Brito, Ilana, Kurath, Gael, LaDeau, Shannon L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 10.06.2018
Schlagworte:
ISSN:0304-3800, 1872-7026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •The SEI model developed here identified the transmission route that exposed sites.•Missing data resulted in biased inference about probabilities of infection.•In the Lower Columbia River, exposure by infectious adult occurred most frequently.•Exposure by juvenile fish within a site had the greatest probability of infection. We have developed a dynamic epidemiological model informed by records of viral presence and genotypes to evaluate potential transmission routes maintaining a viral pathogen in economically and culturally important anadromous fish populations. In the Columbia River Basin, infectious hematopoietic necrosis virus (IHNV) causes severe disease, predominantly in juvenile steelhead trout (Oncorhynchus mykiss) and less frequently in Chinook salmon (O. tshawytscha). Mortality events following IHNV infection can be devastating for individual hatchery programs. Despite reports of high local mortality and extensive surveillance efforts, there are questions about how viral transmission is maintained. Modeling this system offers important insights into disease transmission in natural aquatic systems, as well as about the data requirements for generating accurate estimates about transmission routes and infection probabilities. We simulated six scenarios in which testing rates and the relative importance of different transmission routes varied. The simulations demonstrated that the model accurately identified routes of transmission and inferred infection probabilities accurately when there was testing of all cohort-sites. When testing records were incomplete, the model accurately inferred which transmission routes exposed particular cohort-sites but generated biased infection probabilities given exposure. After validating the model and generating guidelines for result interpretation, we applied the model to data from 14 annual cohorts (2000–2013) at 24 focal sites in a sub-region of the Columbia River Basin, the lower Columbia River (LCR), to quantify the relative importance of potential transmission routes in this focal sub-region. We demonstrate that exposure to IHNV via the return migration of adult fish is an important route for maintaining IHNV in the LCR sub-region, and the probability of infection following this exposure was relatively high at 0.16. Although only 1% of cohort-sites experienced self-exposure by infected juvenile fish, this transmission route had the greatest probability of infection (0.22). Increased testing and/or determining whether transmission can occur from cohort-sites without testing records (e.g., determining there was no testing record because there were no fish at the cohort-site) are expected to improve inference about infection probabilities. Increased use of secure water supplies and continued use of biosecurity protocols may reduce IHNV transmission from adult fish and juvenile fish within the site, respectively, to juvenile salmonids at hatcheries. Models and conclusions from this study are potentially relevant to understanding the relative importance of transmission routes for other important aquatic pathogens in salmonids, including the agents of bacterial kidney disease and coldwater disease, and the basic approach may be useful for other pathogens and hosts in other geographic regions.
AbstractList We have developed a dynamic epidemiological model informed by records of viral presence and genotypes to evaluate potential transmission routes maintaining a viral pathogen in economically and culturally important anadromous fish populations. In the Columbia River Basin, infectious hematopoietic necrosis virus (IHNV) causes severe disease, predominantly in juvenile steelhead trout (Oncorhynchus mykiss) and less frequently in Chinook salmon (O. tshawytscha). Mortality events following IHNV infection can be devastating for individual hatchery programs. Despite reports of high local mortality and extensive surveillance efforts, there are questions about how viral transmission is maintained. Modeling this system offers important insights into disease transmission in natural aquatic systems, as well as about the data requirements for generating accurate estimates about transmission routes and infection probabilities. We simulated six scenarios in which testing rates and the relative importance of different transmission routes varied. The simulations demonstrated that the model accurately identified routes of transmission and inferred infection probabilities accurately when there was testing of all cohort-sites. When testing records were incomplete, the model accurately inferred which transmission routes exposed particular cohort-sites but generated biased infection probabilities given exposure. After validating the model and generating guidelines for result interpretation, we applied the model to data from 14 annual cohorts (2000–2013) at 24 focal sites in a sub-region of the Columbia River Basin, the lower Columbia River (LCR), to quantify the relative importance of potential transmission routes in this focal sub-region. We demonstrate that exposure to IHNV via the return migration of adult fish is an important route for maintaining IHNV in the LCR sub-region, and the probability of infection following this exposure was relatively high at 0.16. Although only 1% of cohort-sites experienced self-exposure by infected juvenile fish, this transmission route had the greatest probability of infection (0.22). Increased testing and/or determining whether transmission can occur from cohort-sites without testing records (e.g., determining there was no testing record because there were no fish at the cohort-site) are expected to improve inference about infection probabilities. Increased use of secure water supplies and continued use of biosecurity protocols may reduce IHNV transmission from adult fish and juvenile fish within the site, respectively, to juvenile salmonids at hatcheries. Models and conclusions from this study are potentially relevant to understanding the relative importance of transmission routes for other important aquatic pathogens in salmonids, including the agents of bacterial kidney disease and coldwater disease, and the basic approach may be useful for other pathogens and hosts in other geographic regions.
[Display omitted] •The SEI model developed here identified the transmission route that exposed sites.•Missing data resulted in biased inference about probabilities of infection.•In the Lower Columbia River, exposure by infectious adult occurred most frequently.•Exposure by juvenile fish within a site had the greatest probability of infection. We have developed a dynamic epidemiological model informed by records of viral presence and genotypes to evaluate potential transmission routes maintaining a viral pathogen in economically and culturally important anadromous fish populations. In the Columbia River Basin, infectious hematopoietic necrosis virus (IHNV) causes severe disease, predominantly in juvenile steelhead trout (Oncorhynchus mykiss) and less frequently in Chinook salmon (O. tshawytscha). Mortality events following IHNV infection can be devastating for individual hatchery programs. Despite reports of high local mortality and extensive surveillance efforts, there are questions about how viral transmission is maintained. Modeling this system offers important insights into disease transmission in natural aquatic systems, as well as about the data requirements for generating accurate estimates about transmission routes and infection probabilities. We simulated six scenarios in which testing rates and the relative importance of different transmission routes varied. The simulations demonstrated that the model accurately identified routes of transmission and inferred infection probabilities accurately when there was testing of all cohort-sites. When testing records were incomplete, the model accurately inferred which transmission routes exposed particular cohort-sites but generated biased infection probabilities given exposure. After validating the model and generating guidelines for result interpretation, we applied the model to data from 14 annual cohorts (2000–2013) at 24 focal sites in a sub-region of the Columbia River Basin, the lower Columbia River (LCR), to quantify the relative importance of potential transmission routes in this focal sub-region. We demonstrate that exposure to IHNV via the return migration of adult fish is an important route for maintaining IHNV in the LCR sub-region, and the probability of infection following this exposure was relatively high at 0.16. Although only 1% of cohort-sites experienced self-exposure by infected juvenile fish, this transmission route had the greatest probability of infection (0.22). Increased testing and/or determining whether transmission can occur from cohort-sites without testing records (e.g., determining there was no testing record because there were no fish at the cohort-site) are expected to improve inference about infection probabilities. Increased use of secure water supplies and continued use of biosecurity protocols may reduce IHNV transmission from adult fish and juvenile fish within the site, respectively, to juvenile salmonids at hatcheries. Models and conclusions from this study are potentially relevant to understanding the relative importance of transmission routes for other important aquatic pathogens in salmonids, including the agents of bacterial kidney disease and coldwater disease, and the basic approach may be useful for other pathogens and hosts in other geographic regions.
Author Breyta, Rachel
LaDeau, Shannon L.
Brito, Ilana
Ferguson, Paige F.B.
Kurath, Gael
Author_xml – sequence: 1
  givenname: Paige F.B.
  surname: Ferguson
  fullname: Ferguson, Paige F.B.
  email: pfferguson@ua.edu
  organization: Department of Biological Sciences, University of Alabama, Box 870344, Tuscaloosa, AL 35487, United States
– sequence: 2
  givenname: Rachel
  surname: Breyta
  fullname: Breyta, Rachel
  organization: Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, United States
– sequence: 3
  givenname: Ilana
  surname: Brito
  fullname: Brito, Ilana
  organization: Meinig School of Biomedical Engineering, Cornell University, 289 Kimball Hall, Ithaca, NY 14853, United States
– sequence: 4
  givenname: Gael
  surname: Kurath
  fullname: Kurath, Gael
  organization: U.S. Geological Survey Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, United States
– sequence: 5
  givenname: Shannon L.
  surname: LaDeau
  fullname: LaDeau, Shannon L.
  organization: Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, United States
BookMark eNqNkD1vFDEQhi2USFxCfgMuaXaZtfezoDhOfEmRkFDayPLaYzInr33Yeyfx7_HlEAUNVNO8zzszzw27CjEgY68bqBto-rf7Gk30S7ToawHNWIOsAcQLtmnGQVQDiP6KbUBCW8kR4CW7yXkPAI0YxYY9bgPHA1lcKPr4nYz2_LmLR8dPlI6Zr0mHvFDOFAOnwLMu2wJZ7ig_YT4H1yfku-iPy0yaf6MTJv5eZwqv2LXTPuPd73nLHj5-eNh9ru6_fvqy295XRrbjWjW9G-zUOpyN1Xbu3dROYy-dbRAsCOEGqZ0BiXLq2rkXWP50Dmajce46K2_Zm0vtIcUfR8yrKuca9F4HjMesBHRyHKe27Up0uERNijkndOqQaNHpp2pAnX2qvfrjU519KpCq-Czku79IQ6tei5QiiPx_8NsLj0XEiTCpbAiDQUsJzapspH92_AL2uZuN
CitedBy_id crossref_primary_10_1111_eva_12931
crossref_primary_10_3390_ani12162120
crossref_primary_10_3390_pathogens10060673
crossref_primary_10_1016_j_jenvman_2023_117415
crossref_primary_10_1111_raq_70007
Cites_doi 10.1099/vir.0.18771-0
10.1016/j.ecolmodel.2006.06.010
10.1139/f82-152
10.5751/ES-07996-200427
10.1038/280361a0
10.1890/09-1409.1
10.1016/0959-8030(91)90024-E
10.1002/ecy.1634
10.1111/j.1365-2761.1985.tb00962.x
10.1080/10618600.1998.10474787
10.3354/dao02182
10.1577/1548-8667(1998)010<0121:FAPOIH>2.0.CO;2
10.1002/sim.3680
10.1111/j.1365-2761.1983.tb00083.x
10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2
10.1890/09-0052.1
10.18637/jss.v012.i03
10.1577/1548-8667(200006)012<0085:MEREOA>2.0.CO;2
10.1111/j.1365-2656.2010.01742.x
10.1098/rsif.2010.0737
10.1016/j.tree.2008.08.008
10.1186/s13567-016-0341-1
10.1111/j.1365-2761.1983.tb00066.x
10.1016/j.prevetmed.2015.06.005
10.1577/H07-003.1
10.1016/j.meegid.2016.09.022
10.1016/j.fishres.2008.05.009
10.3354/dao071267
10.1016/j.prevetmed.2009.09.010
10.1093/trstmh/tru026
10.3354/dao055187
10.1098/rsif.2015.0676
10.1111/j.1365-2664.2010.01926.x
10.1016/j.aquaculture.2015.07.014
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2018.03.002
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1872-7026
EndPage 15
ExternalDocumentID 10_1016_j_ecolmodel_2018_03_002
S0304380018300784
GeographicLocations Columbia River
GeographicLocations_xml – name: Columbia River
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
29G
53G
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
SEN
SEW
VH1
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c348t-16f7d94febcdadb6f949863fd1e0d022f73afc03e3954b62e201ff0bcaeb55d3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3800
IngestDate Sun Sep 28 03:11:45 EDT 2025
Sat Nov 29 07:18:35 EST 2025
Tue Nov 18 20:44:32 EST 2025
Fri Feb 23 02:24:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Steelhead trout
IHNV
Salmon
Viral genotype
Transmission
SEI model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-16f7d94febcdadb6f949863fd1e0d022f73afc03e3954b62e201ff0bcaeb55d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2053889445
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2053889445
crossref_primary_10_1016_j_ecolmodel_2018_03_002
crossref_citationtrail_10_1016_j_ecolmodel_2018_03_002
elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2018_03_002
PublicationCentury 2000
PublicationDate 2018-06-10
PublicationDateYYYYMMDD 2018-06-10
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-10
  day: 10
PublicationDecade 2010
PublicationTitle Ecological modelling
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mulcahy, Bauersfeld (bib0165) 1983; 6
Nishizawa, Kinoshita, Kim, Higashi, Yoshimizu (bib0180) 2006; 71
Ferguson, Conroy, Chamblee, Hepinstall-Cymerman (bib0095) 2015; 20
Tompkins, Dunn, Smith, Telfe (bib0205) 2011; 80
Aldrin, Storvik, Frigessi, Viljugrein, Jansen (bib0015) 2010; 93
Anderson, May (bib0030) 1992
Breyta, Brito, Ferguson, Kurath, Naish, Purcell, Wargo, LaDeau (bib0070) 2017
Heisey, Osnas, Cross, Joly, Langenberg, Miller (bib0110) 2010; 80
Mulcahy, Burke, Pascho, Jenes (bib0155) 1982; 39
Mulcahy, Pascho, Jenes (bib0160) 1983; 6
Mulcahy, Pascho (bib0170) 1985; 8
R Core Team (bib0185) 2013
Smith, Perkins, Reiner, Barker, Niu, Chaves, Ellis, George, Le Menach, Pulliam, Bisanzio, Buckee, Chiyaka, Cummings, Garcia, Gatton, Gething, Hartley, Johnston, Klein, Michael, Lloyd, Pigott, Reisen, Ruktanonchai, Singh, Stoller, Tatem, Kitron, Godfray, Cohen, Hay, Scott (bib0190) 2014; 108
Irwin, Wilberg, Bence, Jones (bib0115) 2008; 94
Link, Barker (bib0140) 2010
Dixon, Paley, Alegria-Moran, Oidtmann (bib0085) 2016; 47
Winton (bib0210) 1991; 1
Bootland, Leong (bib0055) 2011
Breyta, Samson, Blair, Black, Kurath (bib0065) 2016; 450
Lunn, Spiegelhalter, Thomas, Best (bib0145) 2009; 28
Aldrin, Lyngstad, Kristoffersen, Storvik, Borgan, Jansen (bib0010) 2011; 8
Breyta, Brito, Kurath, LaDeau (bib0075) 2017; 98
Taylor, Norman, Way, Peeler (bib0200) 2011; 48
Aldrin, Huseby, Jansen (bib0005) 2015; 121
Anderson, May (bib0025) 1979; 280
LaPatra (bib0135) 1998; 10
Wolf (bib0215) 1988
Archie, Luikart, Ezenwa (bib0035) 2009; 24
LaDeau, Glass, Hobbs, Latimer, Ostfeld (bib0130) 2011; 21
Gelman, Shirley (bib0105) 2011
Enzmann, Castric, Bovo, Thiery, Fichtner, Schutze, Wahli (bib0090) 2010; 89
Breyta, Black, Kaufman, Kurath (bib0060) 2016; 45
Sturtz, Ligges, Gelman (bib0195) 2005; 12
Murray (bib0175) 2006; 199
Morris, Zelner, Fauquier, Rowles, Rosel, Gulland, Grenfell (bib0150) 2015; 12
Anderson, Engelking, Emmenegger, Kurath (bib0020) 2000; 12
Bjornstad, Finkenstadt, Grenfell (bib0045) 2002; 72
Kurath (bib0120) 2012
Bendorf, Kelley, Yun, Kurath, Andree, Herick (bib0040) 2007; 19
Bootland, Leong (bib0050) 1999
Garver, Troyer, Kurath (bib0100) 2003; 55
Kurath, Garver, Troyer, Emmenegger, Einer-Jensen, Anderson (bib0125) 2003; 84
Brooks, Gelman (bib0080) 1998; 7
Bootland (10.1016/j.ecolmodel.2018.03.002_bib0055) 2011
Heisey (10.1016/j.ecolmodel.2018.03.002_bib0110) 2010; 80
Mulcahy (10.1016/j.ecolmodel.2018.03.002_bib0155) 1982; 39
Aldrin (10.1016/j.ecolmodel.2018.03.002_bib0015) 2010; 93
Bendorf (10.1016/j.ecolmodel.2018.03.002_bib0040) 2007; 19
Mulcahy (10.1016/j.ecolmodel.2018.03.002_bib0165) 1983; 6
Sturtz (10.1016/j.ecolmodel.2018.03.002_bib0195) 2005; 12
Nishizawa (10.1016/j.ecolmodel.2018.03.002_bib0180) 2006; 71
Link (10.1016/j.ecolmodel.2018.03.002_bib0140) 2010
Irwin (10.1016/j.ecolmodel.2018.03.002_bib0115) 2008; 94
Ferguson (10.1016/j.ecolmodel.2018.03.002_bib0095) 2015; 20
Dixon (10.1016/j.ecolmodel.2018.03.002_bib0085) 2016; 47
Breyta (10.1016/j.ecolmodel.2018.03.002_bib0060) 2016; 45
Lunn (10.1016/j.ecolmodel.2018.03.002_bib0145) 2009; 28
Anderson (10.1016/j.ecolmodel.2018.03.002_bib0020) 2000; 12
LaDeau (10.1016/j.ecolmodel.2018.03.002_bib0130) 2011; 21
Mulcahy (10.1016/j.ecolmodel.2018.03.002_bib0170) 1985; 8
Kurath (10.1016/j.ecolmodel.2018.03.002_bib0125) 2003; 84
Garver (10.1016/j.ecolmodel.2018.03.002_bib0100) 2003; 55
Bootland (10.1016/j.ecolmodel.2018.03.002_bib0050) 1999
R Core Team (10.1016/j.ecolmodel.2018.03.002_bib0185) 2013
Aldrin (10.1016/j.ecolmodel.2018.03.002_bib0005) 2015; 121
Archie (10.1016/j.ecolmodel.2018.03.002_bib0035) 2009; 24
Kurath (10.1016/j.ecolmodel.2018.03.002_bib0120) 2012
Smith (10.1016/j.ecolmodel.2018.03.002_bib0190) 2014; 108
Breyta (10.1016/j.ecolmodel.2018.03.002_bib0070) 2017
Breyta (10.1016/j.ecolmodel.2018.03.002_bib0065) 2016; 450
Murray (10.1016/j.ecolmodel.2018.03.002_bib0175) 2006; 199
Gelman (10.1016/j.ecolmodel.2018.03.002_bib0105) 2011
LaPatra (10.1016/j.ecolmodel.2018.03.002_bib0135) 1998; 10
Breyta (10.1016/j.ecolmodel.2018.03.002_bib0075) 2017; 98
Anderson (10.1016/j.ecolmodel.2018.03.002_bib0025) 1979; 280
Wolf (10.1016/j.ecolmodel.2018.03.002_bib0215) 1988
Enzmann (10.1016/j.ecolmodel.2018.03.002_bib0090) 2010; 89
Tompkins (10.1016/j.ecolmodel.2018.03.002_bib0205) 2011; 80
Morris (10.1016/j.ecolmodel.2018.03.002_bib0150) 2015; 12
Winton (10.1016/j.ecolmodel.2018.03.002_bib0210) 1991; 1
Taylor (10.1016/j.ecolmodel.2018.03.002_bib0200) 2011; 48
Anderson (10.1016/j.ecolmodel.2018.03.002_bib0030) 1992
Bjornstad (10.1016/j.ecolmodel.2018.03.002_bib0045) 2002; 72
Brooks (10.1016/j.ecolmodel.2018.03.002_bib0080) 1998; 7
Aldrin (10.1016/j.ecolmodel.2018.03.002_bib0010) 2011; 8
Mulcahy (10.1016/j.ecolmodel.2018.03.002_bib0160) 1983; 6
References_xml – year: 2012
  ident: bib0120
  article-title: Molecular epidemiology and evolution of Novirhabdoviruses
  publication-title: Rhabdoviruses: Molecular Taxonomy, Evolution, Genomics, Ecology, Cytopathology, and Control
– volume: 93
  start-page: 51
  year: 2010
  end-page: 61
  ident: bib0015
  article-title: A stochastic model for the assessment of the transmission pathways of heart and skeleton muscle inflammation, pancreas disease and infectious salmon anaemia in marine fish farms in Norway
  publication-title: Prev. Vet. Med.
– volume: 450
  start-page: 213
  year: 2016
  end-page: 224
  ident: bib0065
  article-title: Successful mitigation of viral disease based on a delayed exposure rearing strategy at a large-scale steelhead trout conservation hatchery
  publication-title: Aquaculture
– year: 1988
  ident: bib0215
  article-title: Fish Viruses and Fish Viral Diseases
– volume: 21
  start-page: 1443
  year: 2011
  end-page: 1460
  ident: bib0130
  article-title: Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting
  publication-title: Ecol. Appl.
– volume: 1
  start-page: 83
  year: 1991
  end-page: 93
  ident: bib0210
  article-title: Recent advances in detection and control of infectious hematopoietic necrosis virus in aquaculture
  publication-title: Annu. Rev. Fish Dis.
– year: 2010
  ident: bib0140
  article-title: Bayesian Inference: With Ecological Applications
– volume: 28
  start-page: 3049
  year: 2009
  end-page: 3067
  ident: bib0145
  article-title: The BUGS project: evolution, critique and future directions
  publication-title: Stat. Med.
– year: 2013
  ident: bib0185
  article-title: R: A Language and Environment for Statistical Computing
– volume: 8
  start-page: 1346
  year: 2011
  end-page: 1356
  ident: bib0010
  article-title: Modelling the spread of infectious salmon anaemia among salmon farms based on seaway distances between farms and genetic relationships between infectious salmon anaemia virus isolates
  publication-title: J. R. Soc. Interface
– volume: 48
  start-page: 348
  year: 2011
  end-page: 355
  ident: bib0200
  article-title: Modelling the koi herpesvirus (KHV) epidemic highlights the importance of active surveillance within a national control policy
  publication-title: J. Appl. Ecol.
– volume: 94
  start-page: 267
  year: 2008
  end-page: 281
  ident: bib0115
  article-title: Evaluating alternative harvest policies for yellow perch in southern Lake Michigan
  publication-title: Fish. Res.
– volume: 12
  year: 2015
  ident: bib0150
  article-title: Partially observed epidemics in wildlife hosts: modelling an outbreak of dolphin morbillivirus in the northwestern Atlantic, june 2013–2014
  publication-title: J. R. Soc. Interface
– volume: 12
  start-page: 1
  year: 2005
  end-page: 16
  ident: bib0195
  article-title: R2WinBUGS: a package for running WinBUGS from R
  publication-title: J. Stat. Softw.
– volume: 10
  start-page: 121
  year: 1998
  end-page: 131
  ident: bib0135
  article-title: Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish
  publication-title: J. Aquat. Anim. Health
– volume: 80
  start-page: 221
  year: 2010
  end-page: 240
  ident: bib0110
  article-title: Linking process to pattern: estimating spatio-temporal dynamics of a wildlife epidemic from cross-sectional data
  publication-title: Ecol. Monogr.
– volume: 45
  start-page: 347
  year: 2016
  end-page: 358
  ident: bib0060
  article-title: Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids
  publication-title: Infect. Genet. Evol.
– volume: 199
  start-page: 64
  year: 2006
  end-page: 72
  ident: bib0175
  article-title: A model of the emergence of infectious pancreatic necrosis virus in Scottish salmon farms 1996–2003
  publication-title: Ecol. Model.
– volume: 98
  start-page: 283
  year: 2017
  ident: bib0075
  article-title: Infectious hematopoietic necrosis virus virology and genetic surveillance database 2000–2012
  publication-title: Ecology
– volume: 89
  start-page: 9
  year: 2010
  end-page: 15
  ident: bib0090
  article-title: Evolution of infectious hematopoietic necrosis virus (IHNV), a fish rhabdovirus, in Europe over 20 years: implications for control
  publication-title: Dis. Aquat. Org.
– volume: 24
  start-page: 21
  year: 2009
  end-page: 30
  ident: bib0035
  article-title: Infecting epidemiology with genetics: a new frontier in disease ecology
  publication-title: Trends Ecol. Evol.
– year: 1999
  ident: bib0050
  article-title: Infectious hematopoietic necrosis virus
  publication-title: Fish Diseases and Disorders
– volume: 121
  start-page: 132
  year: 2015
  end-page: 141
  ident: bib0005
  article-title: Space-time modelling of the spread of pancreas disease (PD) within and between Norwegian marine salmonid farms
  publication-title: Prev. Vet. Med.
– volume: 55
  start-page: 187
  year: 2003
  end-page: 203
  ident: bib0100
  article-title: Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin
  publication-title: Dis. Aquat. Org.
– start-page: 1
  year: 2017
  end-page: 14
  ident: bib0070
  article-title: Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage
  publication-title: Ecol. Evol.
– volume: 6
  start-page: 189
  year: 1983
  end-page: 193
  ident: bib0165
  article-title: Effect of loading density of sockeye salmon,
  publication-title: J. Fish Dis.
– year: 1992
  ident: bib0030
  article-title: Infectious Diseases of Humans: Dynamics and Control
– volume: 80
  start-page: 19
  year: 2011
  end-page: 38
  ident: bib0205
  article-title: Wildlife diseases: from individuals to ecosystems
  publication-title: J. Anim. Ecol.
– year: 2011
  ident: bib0055
  article-title: Infectious haematopoietic necrosis virus
  publication-title: Fish Diseases and Disorders. Volume 3: Viral, Bacterial, and Fungal Infections
– volume: 84
  start-page: 803
  year: 2003
  end-page: 814
  ident: bib0125
  article-title: Phylogeography of infectious haematopoietic necrosis virus in North America
  publication-title: J. Gen. Virol.
– volume: 71
  start-page: 267
  year: 2006
  end-page: 272
  ident: bib0180
  article-title: Nucleotide diversity of isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene
  publication-title: Dis. Aquat. Org.
– volume: 72
  start-page: 169
  year: 2002
  end-page: 184
  ident: bib0045
  article-title: Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model
  publication-title: Ecol. Monogr.
– volume: 280
  start-page: 361
  year: 1979
  end-page: 367
  ident: bib0025
  article-title: Population biology of infectious-diseases. 1
  publication-title: Nature
– volume: 19
  start-page: 254
  year: 2007
  end-page: 269
  ident: bib0040
  article-title: Genetic diversity of infectious hematopoietic necrosis virus from Feather River and Lake Oroville, California, and virulence of selected isolates for Chinook salmon and rainbow trout
  publication-title: J. Aquat. Anim. Health
– volume: 6
  start-page: 321
  year: 1983
  end-page: 330
  ident: bib0160
  article-title: Detection of infectious hematopoietic necrosis virus in river water and demonstration of waterborne transmission
  publication-title: J. Fish Dis.
– volume: 39
  start-page: 1144
  year: 1982
  end-page: 1149
  ident: bib0155
  article-title: Pathogenesis of infectious hematopoietic necrosis virus in adult sokeye salmon (
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 20
  start-page: 27
  year: 2015
  ident: bib0095
  article-title: Using structured decision making with landowners to address private forest management and parcelization: balancing multiple objectives and incorporating uncertainty
  publication-title: Ecol. Soc.
– volume: 108
  start-page: 185
  year: 2014
  end-page: 197
  ident: bib0190
  article-title: Recasting the theory of mosquito-borne pathogen transmission dynamics and control
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
– volume: 7
  start-page: 434
  year: 1998
  end-page: 455
  ident: bib0080
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: J. Comput. Graph. Stat.
– volume: 47
  start-page: 63
  year: 2016
  ident: bib0085
  article-title: Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review
  publication-title: Vet. Res.
– year: 2011
  ident: bib0105
  article-title: Inference from simulations and monitoring convergence
  publication-title: Handbook of Markov Chain Monte Carlo
– volume: 8
  start-page: 393
  year: 1985
  end-page: 396
  ident: bib0170
  article-title: Vertical transmission of infectious haematopoietic necrosis virus in sockeye salmon,
  publication-title: J. Fish Dis.
– volume: 12
  start-page: 85
  year: 2000
  end-page: 99
  ident: bib0020
  article-title: Molecular epidemiology reveals emergence of a virulent IHN virus strain in wild salmon and transmission to hatchery fish
  publication-title: J. Aquat. Anim. Health
– volume: 84
  start-page: 803
  year: 2003
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0125
  article-title: Phylogeography of infectious haematopoietic necrosis virus in North America
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.18771-0
– volume: 199
  start-page: 64
  year: 2006
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0175
  article-title: A model of the emergence of infectious pancreatic necrosis virus in Scottish salmon farms 1996–2003
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2006.06.010
– volume: 39
  start-page: 1144
  year: 1982
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0155
  article-title: Pathogenesis of infectious hematopoietic necrosis virus in adult sokeye salmon (Oncorhynchus nerka)
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f82-152
– volume: 20
  start-page: 27
  issue: 4
  year: 2015
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0095
  article-title: Using structured decision making with landowners to address private forest management and parcelization: balancing multiple objectives and incorporating uncertainty
  publication-title: Ecol. Soc.
  doi: 10.5751/ES-07996-200427
– volume: 280
  start-page: 361
  year: 1979
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0025
  article-title: Population biology of infectious-diseases. 1
  publication-title: Nature
  doi: 10.1038/280361a0
– volume: 21
  start-page: 1443
  year: 2011
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0130
  article-title: Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting
  publication-title: Ecol. Appl.
  doi: 10.1890/09-1409.1
– volume: 1
  start-page: 83
  year: 1991
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0210
  article-title: Recent advances in detection and control of infectious hematopoietic necrosis virus in aquaculture
  publication-title: Annu. Rev. Fish Dis.
  doi: 10.1016/0959-8030(91)90024-E
– volume: 98
  start-page: 283
  issue: 1
  year: 2017
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0075
  article-title: Infectious hematopoietic necrosis virus virology and genetic surveillance database 2000–2012
  publication-title: Ecology
  doi: 10.1002/ecy.1634
– year: 2011
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0105
  article-title: Inference from simulations and monitoring convergence
– volume: 8
  start-page: 393
  year: 1985
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0170
  article-title: Vertical transmission of infectious haematopoietic necrosis virus in sockeye salmon, Oncorhynchus nerka (Walbaum): isolation of virus from dead eggs and fry
  publication-title: J. Fish Dis.
  doi: 10.1111/j.1365-2761.1985.tb00962.x
– volume: 7
  start-page: 434
  year: 1998
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0080
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.1998.10474787
– volume: 89
  start-page: 9
  year: 2010
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0090
  article-title: Evolution of infectious hematopoietic necrosis virus (IHNV), a fish rhabdovirus, in Europe over 20 years: implications for control
  publication-title: Dis. Aquat. Org.
  doi: 10.3354/dao02182
– volume: 10
  start-page: 121
  year: 1998
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0135
  article-title: Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish
  publication-title: J. Aquat. Anim. Health
  doi: 10.1577/1548-8667(1998)010<0121:FAPOIH>2.0.CO;2
– start-page: 1
  year: 2017
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0070
  article-title: Transmission routes maintaining a viral pathogen of steelhead trout within a complex multi-host assemblage
  publication-title: Ecol. Evol.
– volume: 28
  start-page: 3049
  year: 2009
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0145
  article-title: The BUGS project: evolution, critique and future directions
  publication-title: Stat. Med.
  doi: 10.1002/sim.3680
– volume: 6
  start-page: 321
  year: 1983
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0160
  article-title: Detection of infectious hematopoietic necrosis virus in river water and demonstration of waterborne transmission
  publication-title: J. Fish Dis.
  doi: 10.1111/j.1365-2761.1983.tb00083.x
– volume: 72
  start-page: 169
  year: 2002
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0045
  article-title: Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model
  publication-title: Ecol. Monogr.
  doi: 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2
– volume: 80
  start-page: 221
  year: 2010
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0110
  article-title: Linking process to pattern: estimating spatio-temporal dynamics of a wildlife epidemic from cross-sectional data
  publication-title: Ecol. Monogr.
  doi: 10.1890/09-0052.1
– volume: 12
  start-page: 1
  year: 2005
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0195
  article-title: R2WinBUGS: a package for running WinBUGS from R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v012.i03
– year: 1992
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0030
– year: 1988
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0215
– year: 2010
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0140
– volume: 12
  start-page: 85
  year: 2000
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0020
  article-title: Molecular epidemiology reveals emergence of a virulent IHN virus strain in wild salmon and transmission to hatchery fish
  publication-title: J. Aquat. Anim. Health
  doi: 10.1577/1548-8667(200006)012<0085:MEREOA>2.0.CO;2
– year: 1999
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0050
  article-title: Infectious hematopoietic necrosis virus
– volume: 80
  start-page: 19
  year: 2011
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0205
  article-title: Wildlife diseases: from individuals to ecosystems
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2010.01742.x
– volume: 8
  start-page: 1346
  year: 2011
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0010
  article-title: Modelling the spread of infectious salmon anaemia among salmon farms based on seaway distances between farms and genetic relationships between infectious salmon anaemia virus isolates
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2010.0737
– volume: 24
  start-page: 21
  year: 2009
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0035
  article-title: Infecting epidemiology with genetics: a new frontier in disease ecology
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2008.08.008
– volume: 47
  start-page: 63
  year: 2016
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0085
  article-title: Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review
  publication-title: Vet. Res.
  doi: 10.1186/s13567-016-0341-1
– volume: 6
  start-page: 189
  year: 1983
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0165
  article-title: Effect of loading density of sockeye salmon, Oncorhynchus nerka (Walbaum), eggs in incubation boxes on mortality caused by infectious haematopoietic necrosis
  publication-title: J. Fish Dis.
  doi: 10.1111/j.1365-2761.1983.tb00066.x
– year: 2011
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0055
  article-title: Infectious haematopoietic necrosis virus
– volume: 121
  start-page: 132
  year: 2015
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0005
  article-title: Space-time modelling of the spread of pancreas disease (PD) within and between Norwegian marine salmonid farms
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2015.06.005
– volume: 19
  start-page: 254
  year: 2007
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0040
  article-title: Genetic diversity of infectious hematopoietic necrosis virus from Feather River and Lake Oroville, California, and virulence of selected isolates for Chinook salmon and rainbow trout
  publication-title: J. Aquat. Anim. Health
  doi: 10.1577/H07-003.1
– volume: 45
  start-page: 347
  year: 2016
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0060
  article-title: Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2016.09.022
– volume: 94
  start-page: 267
  year: 2008
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0115
  article-title: Evaluating alternative harvest policies for yellow perch in southern Lake Michigan
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2008.05.009
– volume: 71
  start-page: 267
  year: 2006
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0180
  article-title: Nucleotide diversity of isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene
  publication-title: Dis. Aquat. Org.
  doi: 10.3354/dao071267
– volume: 93
  start-page: 51
  year: 2010
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0015
  article-title: A stochastic model for the assessment of the transmission pathways of heart and skeleton muscle inflammation, pancreas disease and infectious salmon anaemia in marine fish farms in Norway
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2009.09.010
– volume: 108
  start-page: 185
  year: 2014
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0190
  article-title: Recasting the theory of mosquito-borne pathogen transmission dynamics and control
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
  doi: 10.1093/trstmh/tru026
– volume: 55
  start-page: 187
  year: 2003
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0100
  article-title: Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin
  publication-title: Dis. Aquat. Org.
  doi: 10.3354/dao055187
– year: 2012
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0120
  article-title: Molecular epidemiology and evolution of Novirhabdoviruses
– year: 2013
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0185
– volume: 12
  year: 2015
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0150
  article-title: Partially observed epidemics in wildlife hosts: modelling an outbreak of dolphin morbillivirus in the northwestern Atlantic, june 2013–2014
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.0676
– volume: 48
  start-page: 348
  year: 2011
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0200
  article-title: Modelling the koi herpesvirus (KHV) epidemic highlights the importance of active surveillance within a national control policy
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2010.01926.x
– volume: 450
  start-page: 213
  year: 2016
  ident: 10.1016/j.ecolmodel.2018.03.002_bib0065
  article-title: Successful mitigation of viral disease based on a delayed exposure rearing strategy at a large-scale steelhead trout conservation hatchery
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2015.07.014
SSID ssj0001282
Score 2.2811353
Snippet [Display omitted] •The SEI model developed here identified the transmission route that exposed sites.•Missing data resulted in biased inference about...
We have developed a dynamic epidemiological model informed by records of viral presence and genotypes to evaluate potential transmission routes maintaining a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms adults
anadromous fish
bacterial kidney disease
biosecurity
Columbia River
disease severity
fish communities
genotype
guidelines
hatcheries
hosts
IHNV
Infectious hematopoietic necrosis virus
juveniles
monitoring
mortality
Oncorhynchus mykiss
Oncorhynchus tshawytscha
pathogens
probability
Salmon
SEI model
Steelhead trout
Transmission
Viral genotype
virus transmission
water supply
watersheds
Title An epidemiological model of virus transmission in salmonid fishes of the Columbia River Basin
URI https://dx.doi.org/10.1016/j.ecolmodel.2018.03.002
https://www.proquest.com/docview/2053889445
Volume 377
WOSCitedRecordID wos000432499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001282
  issn: 0304-3800
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBah3WAvY-tW1t3QYG_GwbYcX_qWlnTrBqWMPORlGNmSiotRSpyE9kfsP_foZqfZRtaHvZhESI6k74vOkXQuCH0OhUozlQR-CQDDBiWmfklZ7lcRo0kYsihlgU42kV5cZLNZfjkY_HK-MOsmlTK7vc1v_ivUUAZgK9fZR8DdvRQK4DOADk-AHZ7_BPxYerxP-6ox0OlulFq4rherVqWFkC3g21o7x5Y20LuaeUIZyLfObOBULVxlTb0fynbDO6GtjdLtDvKrhz_QOClojqevVtaZ65LWV9w7G54M-70_v7Naq4on3fTltc7q5J03VHby4vsKWKpPf744A397TBFmypzKGqxa9yx1BZMFwebSS2wKF7N4hhtS2Ph4_ra-m6OG6yFszRs9NGWcl5kwtVEv0tw1_pak6-wPnWnbddG9qFAvKgJS6NCk-1E6ymGR3B-fT2bfOtEOwtxeS5mxPDAY_GOf_qbubAl-rc1MX6DndhuCx4Y-L9GAywP01CB6d4AOJ73_I1SzAqB9hX6OJd5iF9a9wXOBNbvwJrtwLbFjFzbsUhWBXdixC2t2Yc2u12h6NpmefvVthg6_InG29MNEpCyPBS8rRpVDZx7nWUIEC3nAQDsUKaGiCggn-Sguk4jDzAgRlBXl5WjEyCHak3PJ3yAMNQgNK8LjeBRTEZXwjWcxYVlEI5KSI5S4eSwqG71eJVFpih1YHqGga3hjArjsbnLsgCqsHmr0ywJouLvxJwdtAXOtrt-o5PNVC5VAuchyGODbx_fpHXrW_6veo73lYsU_oCfVelm3i4-Wp_cOxr4H
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+epidemiological+model+of+virus+transmission+in+salmonid+fishes+of+the+Columbia+River+Basin&rft.jtitle=Ecological+modelling&rft.au=Ferguson%2C+Paige+F.B.&rft.au=Breyta%2C+Rachel&rft.au=Brito%2C+Ilana&rft.au=Kurath%2C+Gael&rft.date=2018-06-10&rft.issn=0304-3800&rft.volume=377&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.ecolmodel.2018.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolmodel_2018_03_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon