Detecting plumes in mobile air quality monitoring time series with density-based spatial clustering of applications with noise
Mobile monitoring is becoming an increasingly popular technique to assess air pollution on fine spatial scales, but methods to determine specific source contributions to measured pollutants are sorely needed. One approach is to isolate plumes from mobile monitoring time series and analyze them separ...
Uloženo v:
| Vydáno v: | Atmospheric measurement techniques Ročník 16; číslo 14; s. 3547 - 3559 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
25.07.2023
Copernicus Publications |
| Témata: | |
| ISSN: | 1867-8548, 1867-1381, 1867-8548 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Mobile monitoring is becoming an increasingly popular
technique to assess air pollution on fine spatial scales, but methods to
determine specific source contributions to measured pollutants are sorely
needed. One approach is to isolate plumes from mobile monitoring time series
and analyze them separately, but methods that are suitable for large mobile
monitoring time series are lacking. Here we discuss a novel method used to
detect and isolate plumes from an extensive mobile monitoring data set. The
new method relies on density-based spatial clustering of applications with
noise (DBSCAN), an unsupervised machine learning technique. The new method
systematically runs DBSCAN on mobile monitoring time series by day and
identifies a subset of points as anomalies for further analysis. When
applied to a mobile monitoring data set collected in Houston, Texas,
analyzed anomalies reveal patterns associated with different types of
vehicle emission profiles. We observe spatial differences in these patterns
and reveal striking disparities by census tract. These results can be used
to inform stakeholders of spatial variations in emission profiles not
obvious using data from stationary monitors alone. |
|---|---|
| AbstractList | Mobile monitoring is becoming an increasingly popular technique to assess air pollution on fine spatial scales, but methods to determine specific source contributions to measured pollutants are sorely needed. One approach is to isolate plumes from mobile monitoring time series and analyze them separately, but methods that are suitable for large mobile monitoring time series are lacking. Here we discuss a novel method used to detect and isolate plumes from an extensive mobile monitoring data set. The new method relies on density-based spatial clustering of applications with noise (DBSCAN), an unsupervised machine learning technique. The new method systematically runs DBSCAN on mobile monitoring time series by day and identifies a subset of points as anomalies for further analysis. When applied to a mobile monitoring data set collected in Houston, Texas, analyzed anomalies reveal patterns associated with different types of vehicle emission profiles. We observe spatial differences in these patterns and reveal striking disparities by census tract. These results can be used to inform stakeholders of spatial variations in emission profiles not obvious using data from stationary monitors alone. Mobile monitoring is becoming an increasingly popular technique to assess air pollution on fine spatial scales, but methods to determine specific source contributions to measured pollutants are sorely needed. One approach is to isolate plumes from mobile monitoring time series and analyze them separately, but methods that are suitable for large mobile monitoring time series are lacking. Here we discuss a novel method used to detect and isolate plumes from an extensive mobile monitoring data set. The new method relies on density-based spatial clustering of applications with noise (DBSCAN), an unsupervised machine learning technique. The new method systematically runs DBSCAN on mobile monitoring time series by day and identifies a subset of points as anomalies for further analysis. When applied to a mobile monitoring data set collected in Houston, Texas, analyzed anomalies reveal patterns associated with different types of vehicle emission profiles. We observe spatial differences in these patterns and reveal striking disparities by census tract. These results can be used to inform stakeholders of spatial variations in emission profiles not obvious using data from stationary monitors alone. |
| Audience | Academic |
| Author | Actkinson, Blake Griffin, Robert J. |
| Author_xml | – sequence: 1 givenname: Blake orcidid: 0000-0002-4180-0990 surname: Actkinson fullname: Actkinson, Blake – sequence: 2 givenname: Robert J. surname: Griffin fullname: Griffin, Robert J. |
| BookMark | eNptkktr3DAUhU1JoUnafZeCrrpwqrflZUhfA4FCHmshS9dTDbbkSDJtNv3t1WRC24GihcTVdw73cs9ZcxJigKZ5S_CFID3_YObSEtkywbuWYspeNKdEya5VgquTf96vmrOcdxhLTjp62vz6CAVs8WGLlmmdISMf0BwHPwEyPqGH1Uy-PNZS8CWmPVf8DChD8hX-4ct35CDkyrSDyeBQXkzxZkJ2WnOBJ0UckVmWydv6E8OzKkSf4XXzcjRThjfP93lz__nT3dXX9vrbl83V5XVrGVeslUpZp8hgOO3o0FlwXNqOghj5SLh03BEYjBV2FJINgoq-HzgGVqd0EoRj583m4Oui2ekl-dmkRx2N10-FmLbapOLtBFoBdsRJS-jAOCFc4R5zRwmonlk-qOr17uC1pPiwQi56F9cUavuaKk5oJwkmf6mtqaY-jLEkY2efrb7shOJYMdlX6uI_VD0OZm_rhse6iGPB-yNBZQr8LFuz5qw3tzfHLD6wNsWcE4x_BidY70Oja2g0kXofGr0PDfsNYua2lA |
| Cites_doi | 10.1016/j.scitotenv.2011.12.002 10.18637/jss.v091.i01 10.32614/RJ-2018-009 10.1021/acsestengg.0c00167 10.5194/amt-2023-50 10.1021/es301936c 10.1016/j.atmosenv.2016.12.037 10.1016/j.apr.2020.10.020 10.5194/amt-14-5809-2021 10.1080/10473289.2011.595981 10.1021/acs.est.8b02977 10.1016/j.atmosenv.2017.04.032 10.5194/acp-18-16325-2018 10.1021/acs.est.0c05572 10.1021/acs.est.0c01864 10.1021/acs.est.9b05523 10.1016/j.jaerosci.2020.105704 10.1021/es402875u 10.5194/amt-5-1443-2012 10.1021/acs.est.8b03395 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.5194/amt-16-3547-2023 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1867-8548 |
| EndPage | 3559 |
| ExternalDocumentID | oai_doaj_org_article_8e0d1d6c12b3411480904d21e893c4b8 A758408369 10_5194_amt_16_3547_2023 |
| GroupedDBID | 23N 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC K6- KQ8 LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC Q2X RKB RNS TR2 TUS 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c3483-688cd81ba4272b7ced46c72e5f4f146d4d1ebac5cf563b52599b40e3064d6e5d3 |
| IEDL.DBID | RKB |
| ISSN | 1867-8548 1867-1381 |
| IngestDate | Tue Oct 14 18:58:33 EDT 2025 Fri Jul 25 22:54:42 EDT 2025 Tue Nov 11 10:37:49 EST 2025 Tue Nov 04 18:42:54 EST 2025 Thu Nov 13 16:43:07 EST 2025 Sat Nov 29 04:52:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3483-688cd81ba4272b7ced46c72e5f4f146d4d1ebac5cf563b52599b40e3064d6e5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4180-0990 |
| OpenAccessLink | https://doaj.org/article/8e0d1d6c12b3411480904d21e893c4b8 |
| PQID | 2841276101 |
| PQPubID | 105742 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8e0d1d6c12b3411480904d21e893c4b8 proquest_journals_2841276101 gale_infotracmisc_A758408369 gale_infotracacademiconefile_A758408369 gale_incontextgauss_ISR_A758408369 crossref_primary_10_5194_amt_16_3547_2023 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-25 |
| PublicationDateYYYYMMDD | 2023-07-25 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric measurement techniques |
| PublicationYear | 2023 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref16 doi: 10.1016/j.scitotenv.2011.12.002 – ident: ref18 doi: 10.18637/jss.v091.i01 – ident: ref37 – ident: ref27 doi: 10.32614/RJ-2018-009 – ident: ref35 doi: 10.1021/acsestengg.0c00167 – ident: ref1 – ident: ref4 doi: 10.5194/amt-2023-50 – ident: ref3 – ident: ref9 doi: 10.1021/es301936c – ident: ref22 doi: 10.1016/j.atmosenv.2016.12.037 – ident: ref7 – ident: ref23 doi: 10.1016/j.apr.2020.10.020 – ident: ref20 – ident: ref5 doi: 10.5194/amt-14-5809-2021 – ident: ref26 doi: 10.1080/10473289.2011.595981 – ident: ref29 doi: 10.1021/acs.est.8b02977 – ident: ref19 – ident: ref32 – ident: ref17 – ident: ref34 – ident: ref15 – ident: ref13 – ident: ref36 – ident: ref2 – ident: ref38 – ident: ref39 doi: 10.1016/j.atmosenv.2017.04.032 – ident: ref6 – ident: ref33 doi: 10.5194/acp-18-16325-2018 – ident: ref30 doi: 10.1021/acs.est.0c05572 – ident: ref11 doi: 10.1021/acs.est.0c01864 – ident: ref25 doi: 10.1021/acs.est.9b05523 – ident: ref28 – ident: ref21 – ident: ref12 doi: 10.1016/j.jaerosci.2020.105704 – ident: ref10 doi: 10.1021/es402875u – ident: ref14 doi: 10.5194/amt-5-1443-2012 – ident: ref8 – ident: ref24 doi: 10.1021/acs.est.8b03395 – ident: ref31 |
| SSID | ssj0064172 |
| Score | 2.3372638 |
| Snippet | Mobile monitoring is becoming an increasingly popular
technique to assess air pollution on fine spatial scales, but methods to
determine specific source... Mobile monitoring is becoming an increasingly popular technique to assess air pollution on fine spatial scales, but methods to determine specific source... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 3547 |
| SubjectTerms | Air monitoring Air pollution Air quality Algorithms Anomalies Censuses Clustering Datasets Density Emission analysis Environmental monitoring Global positioning systems GPS Land use Machine learning Methods Monitoring Nitrogen dioxide Noise monitoring Outdoor air quality Plumes Pollutants Spatial variations Technology application Time series Unsupervised learning Vehicle emissions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Li9YwEA-yePAiPrHurgQRxUPYJs2jPa6rix5cxAfsLeRVKey2S9tP2It_-86k_WS_g3jx2HQCSWYyryS_IeSVjlXjVDDMSO2Z1BDuOC8FS1qUKQltdHC52IQ5O6vPz5svt0p94Z2wBR54WbijOpWRRx248KBwwXkvm1JGwRMY2iB9fuZbmmYbTC06WEueyzYhWhui7PHlgBK8FXnkLmfGNasUQhSUotoxSBm3_2_aOZuc0wfk_uor0uNljA_JndQ_IsVncHOHMWfD6Wt6ctGBz5m_HpPf7xOeCYA1oleodCba9fRy8LDzqetGurygvIYm3MiY0aNYW56iGAIx5mRpxBvt8zVD8xbphBeuYQzhYoOICthjaOntU--lVz90U3pCfpx--H7yka0FFlioZF0xXdchgt_qpDDCm5Ci1MGIpFrZggaNMvLkXVChVbryCiKlxssyYdASdVKxekr2-qFPzwiFCNt75YwKtZTBVK4VxvmonddNbJUqyNvtKturBUfDQvyBHLHAEcu1RY5Y5EhB3iEb_tAhAnZuALmwq1zYf8lFQV4iEy1iXPR4iean20yT_fTtqz2GGEkiKndTkDcrUTvMowtufZMAc0JYrB3Kgx1K2IRh9_dWVuyqBCYLlp8LA_4pf_4_ZrRP7uHqYGJZqAOyN4-bdEjuhl9zN40vsvzfABH_CK4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELagcODCjhooyEIIxMFq7HhJTqgUKjhQVSxSxcXylipSmzySPKRe-O3MJHnAO8CFY5KJZGvG3yy2vyHkmY5F5VQwzEjtmdSQ7jgvBUta5CkJbXRwU7MJc3xcnp5WJ0vBbViOVW4wcQLq2AWske8DjHIBOXfOX62-MewahburSwuNq-QasiRg64YT9XWDxFryqXkTcrYh1x6ftykhZpH77mJkXLNCIVFBLoottzSx9_8NoyfHc3Trf4d8m9xcQk56MNvIHXIltXdJ9gGi5a6fiur0OT08byB0nZ7ukR9vEm4tgFOjK8SugTYtveg8AAh1TU_ni5iX8ArxAAuDFFvUU7RmEMbSLo14MH68ZOglIx3w3DaMIZyvkZgB_-hq-ufm-fxX2zVDuk--HL39fPiOLX0aWChkWTBdliFC-OukMMKbkKLUwYikalkDEEcZefIuqFArXXgFCVflZZ4w94k6qVg8IDtt16ZdQiFR9145o0IpZTCFq4VxPmrndRVrpTLycqMmu5rpOCykMahSCyq1XFtUqUWVZuQ16vGXHBJpTy-6_swu69KWKY886sCFB38OuWFe5TIKniCOC9KXGXmKVmCRKqPFszhnbj0M9v2nj_YAUi2J5N5VRl4sQnU39i645WoDzAnZtbYk97YkYS2H7c8bS7ILlgz2txk9_PfnR-QGzhsrz0LtkZ2xX6fH5Hr4PjZD_2RaGj8BlWEX0g priority: 102 providerName: ProQuest |
| Title | Detecting plumes in mobile air quality monitoring time series with density-based spatial clustering of applications with noise |
| URI | https://www.proquest.com/docview/2841276101 https://doaj.org/article/8e0d1d6c12b3411480904d21e893c4b8 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: RKB dateStart: 20080101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: P5Z dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: PCBAR dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-8548 databaseCode: PIMPY dateStart: 20100501 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kunDjW4zWyyCiuAjNTOaRLNvaYhe9hKtCdTPMKyXQJiW5V-jG3-45SSq9C3Ghm0AmZyDJN3NeM_MdQt6qkJdWep1qoVwqFIQ71gmeRsWzGLnSytux2IReLouzs7K6VeoL94RN9MDTj9srYhZYUJ5xBwoXnPeszETgLIKh9cLhMV8YhjglV1jDbdLBSrCxbBOytSHLHpsWKMFbEXv2cp0yleYSKQoynm8ZpJG3_0_aeTQ5xw__4WUfkQezn0n3py6PyZ3YPiHJKbjIXT9m0uk7enjRgL863j0lPz9GXE8AS0avUGENtGnpZedAa1Db9HQ6fXkNTagEMBtIsS49xSEMwpjPpQF3w6-vUzSNgQ64WRvewV9skI0Be3Q1vb1iPvVqu2aIz8jX46Mvh5_SuThD6nNR5KkqCh_A57WCa-60j0Eor3mUtahB-wYRWHTWS19LlTsJUVbpRBYx4AkqypA_Jztt18YXhEJ07py0WvpCCK9zW3NtXVDWqTLUUibkww1C5mri4DAQuyCaBtA0TBlE0yCaCTlAVH7LIXv22AAwmRkm8zeYEvIGB4BBfowWN-Cc280wmJPPK7MP8ZVARu8yIe9nobpb99bb-TwDfBNSam1J7m5JwgT2249vxpmZFchgwGtgXINvy17-jy96Re7j38GkNJe7ZGfdb-Jrcs__WDdDvyB3D46W1WoxJiTgWsnv0FadnFbfFuO8-gWoex-J |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgkuvBELBSzEQxyiJo7jJAeESkvVVburCorUnoxfqSJ1kyXJgvbCT-I3MpMHsAe49cAxySRKnM-fZ-zxN4Q8FzZMVWRiL-ZCe1xAuKM0Z54TzHeOiVgY1RabiGez5PQ0Pd4gP4a9MJhWOXBiS9S2NDhHvg00GjCIuf3g7eKLh1WjcHV1KKHRweLQrb5ByFa_mezB_33B2P77k90Dr68q4JmQJ6EnksRYcNYUZzHTsXGWCxMzF2U8A9qw3AZOKxOZLBKhjiA8SDX3HXrqVrjIhvDcK2STI9hHZPN4Mj0-G7hf8KAtF4UqcajuF3QLo-Al8W01b7xAeGGE0gg-C9cGwrZewN9GhXao27_5vzXSLXKjd6rpTtcLbpMNV9wh4ynEA2XVLhvQl3T3IgfnvD26S77vOVw8gWGbLpCda5oXdF5qoEiq8op2W01XcAoZD6c-aZPPHcX-CsY4eU0tpv43Kw_9AEtrzEyHdzAXS5SewDvKjP6ZHtDdVZR57e6RT5fSHPfJqCgL94DQmDOtIxVHJuHcxKHKWKy0FUqL1GZRNCavB1jIRSc4IiFQQwhJgJAMhEQISYTQmLxD3PyyQ6nw9kRZncueeWTifBtYYQKmwWOB6NdPfW5Z4MBTNVwnY_IMUSdRDKTAbKNztaxrOfn4Qe5AMMlRvjwdk1e9UVY2lTKq37wB34T6YWuWW2uWwFZm_fKAXNmzZS1_w_bhvy8_JdcOTqZH8mgyO3xErmMb4Dw7i7bIqKmW7jG5ar42eV096TsmJZ8vG-Y_AZSJdlc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj5RAFK6MPcZ4cTe2jloxLvFAGoqigIMxs9ixM05n3OLcytqYkExDC7SmL_4wf53vsah90NscPAIPAsVX33uvlu8R8ljYMFWRib2YC-1xAemO0px5TjDfOSZiYVRbbCKez5OTk_R4i_wY9sLgssqBE1uitqXBMfIJ0GjAIOf2g0nWL4s4Ppi-XH7xsIIUzrQO5TQ6iBy69TdI3-oXswP4108Ym776sP_a6ysMeCbkSeiJJDEWAjfFWcx0bJzlwsTMRRnPgEIst4HTykQmi0SoI0gVUs19h1G7FS6yITz3AtlOhEj8Ednemx69_TT4AcGDtnQUKsah0l_QTZJCxMQnatF4gfDCCGUSfBZuOMW2dsDfPETr9qZX_-cGu0au9ME23e16x3Wy5YobZHwEeUJZtdMJ9CndP8shaG-PbpLvBw4nVcCd0yWydk3zgi5KDdRJVV7RbgvqGk4hE-KQKG3yhaPYj8EYB7WpxS0BzdrD-MDSGleswzuYsxVKUuAdZUb_XDbQ3VWUee1ukY_n0hy3yagoC3eH0JgzrSMVRybh3MShylistBVKi9RmUTQmzweIyGUnRCIhgUM4SYCTDIREOEmE05jsIYZ-2aGEeHuirE5lz0gycb4NrDAB0xDJQFbspz63LHAQwRqukzF5hAiUKBJSIHpO1aqu5ez9O7kLSSZHWfN0TJ71RlnZVMqoflMHfBPqim1Y7mxYAouZzcsDimXPorX8DeG7_778kFwCbMs3s_nhPXIZmwCH31m0Q0ZNtXL3yUXztcnr6kHfRyn5fN4o_wnW-n73 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+plumes+in+mobile+air+quality+monitoring+time+series+with+density-based+spatial+clustering+of+applications+with+noise&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Actkinson%2C+Blake&rft.au=Griffin%2C+Robert+J&rft.date=2023-07-25&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.volume=16&rft.issue=14&rft.spage=3547&rft_id=info:doi/10.5194%2Famt-16-3547-2023&rft.externalDBID=ISR&rft.externalDocID=A758408369 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon |