DenseFuse: A Fusion Approach to Infrared and Visible Images

In this paper, we present a novel deep learning architecture for infrared and visible images fusion problems. In contrast to conventional convolutional networks, our encoding network is combined with convolutional layers, a fusion layer, and dense block in which the output of each layer is connected...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 28; no. 5; pp. 2614 - 2623
Main Authors: Li, Hui, Wu, Xiao-Jun
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present a novel deep learning architecture for infrared and visible images fusion problems. In contrast to conventional convolutional networks, our encoding network is combined with convolutional layers, a fusion layer, and dense block in which the output of each layer is connected to every other layer. We attempt to use this architecture to get more useful features from source images in the encoding process, and two fusion layers (fusion strategies) are designed to fuse these features. Finally, the fused image is reconstructed by a decoder. Compared with existing fusion methods, the proposed fusion method achieves the state-of-the-art performance in objective and subjective assessment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2018.2887342