DenseFuse: A Fusion Approach to Infrared and Visible Images

In this paper, we present a novel deep learning architecture for infrared and visible images fusion problems. In contrast to conventional convolutional networks, our encoding network is combined with convolutional layers, a fusion layer, and dense block in which the output of each layer is connected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 28; H. 5; S. 2614 - 2623
Hauptverfasser: Li, Hui, Wu, Xiao-Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a novel deep learning architecture for infrared and visible images fusion problems. In contrast to conventional convolutional networks, our encoding network is combined with convolutional layers, a fusion layer, and dense block in which the output of each layer is connected to every other layer. We attempt to use this architecture to get more useful features from source images in the encoding process, and two fusion layers (fusion strategies) are designed to fuse these features. Finally, the fused image is reconstructed by a decoder. Compared with existing fusion methods, the proposed fusion method achieves the state-of-the-art performance in objective and subjective assessment.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2018.2887342