DenseFuse: A Fusion Approach to Infrared and Visible Images

In this paper, we present a novel deep learning architecture for infrared and visible images fusion problems. In contrast to conventional convolutional networks, our encoding network is combined with convolutional layers, a fusion layer, and dense block in which the output of each layer is connected...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 28; číslo 5; s. 2614 - 2623
Hlavní autori: Li, Hui, Wu, Xiao-Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present a novel deep learning architecture for infrared and visible images fusion problems. In contrast to conventional convolutional networks, our encoding network is combined with convolutional layers, a fusion layer, and dense block in which the output of each layer is connected to every other layer. We attempt to use this architecture to get more useful features from source images in the encoding process, and two fusion layers (fusion strategies) are designed to fuse these features. Finally, the fused image is reconstructed by a decoder. Compared with existing fusion methods, the proposed fusion method achieves the state-of-the-art performance in objective and subjective assessment.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2018.2887342