Multiple-Instance Discriminant Analysis for Weakly Supervised Segment Annotation
In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 28; H. 11; S. 5716 - 5728 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2019.2921878 |