Multiple-Instance Discriminant Analysis for Weakly Supervised Segment Annotation
In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 28; číslo 11; s. 5716 - 5728 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method. |
|---|---|
| AbstractList | In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce selection parameter for each image/video with weak labels, and expect it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function, and optimized in an alternate way. The optimization is an iteration between eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. Experimental results validate the effectiveness of our method. In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method. In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method.In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method. |
| Author | Yan Zhou Liantao Wang Qingwu Li |
| Author_xml | – sequence: 1 givenname: Liantao orcidid: 0000-0003-1632-5179 surname: Wang fullname: Wang, Liantao – sequence: 2 givenname: Qingwu surname: Li fullname: Li, Qingwu – sequence: 3 givenname: Yan surname: Zhou fullname: Zhou, Yan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31217109$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1rGzEQxUVJqPN1LxTKQi-5rKuRdlfSMaRpakhIIA45Clk7KkrXWlfaDfi_r1zbPfiQi0Ywv_ekmXdKjkIfkJBPQKcAVH2bzx6njIKaMsVACvmBnICqoKS0Ykf5TmtRCqjUhJym9EopVDU0H8mEAwORDU7I4_3YDX7VYTkLaTDBYvHdJxv90gcThuIqmG6dfCpcH4sXNL-7dfE0rjC--YRt8YS_lvgPC_1gBt-Hc3LsTJfwYlfPyPOPm_n1z_Lu4XZ2fXVXWl6JoXSLtmmoYvkUjimUZtHWDUMqubXKyda4tq6lVLnhbE2FrYRrgfK6WRjmJD8jl1vfVez_jJgGvcz_xq4zAfsxacaqCjhQqjL69QB97ceYB9tQknPIr9SZ-rKjxsUSW73KOzBxrfe7ykCzBWzsU4rotPXbmYdofKeB6k0oOoeiN6HoXShZSA-Ee-93JJ-3Eo-I_3EpeKMU438BJYaWsA |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_ecoinf_2021_101323 crossref_primary_10_1109_LSP_2024_3404348 crossref_primary_10_1016_j_rse_2020_112045 |
| Cites_doi | 10.1007/978-3-319-10599-4_28 10.1109/TPAMI.2010.161 10.1109/TNN.2011.2156808 10.1109/ICCV.2017.204 10.1109/CVPR.2013.321 10.1016/j.patcog.2014.02.002 10.1109/CVPR.2016.319 10.1109/CVPR.2016.326 10.1109/ICCV.2007.4408856 10.1007/s10994-009-5125-7 10.1109/CVPR.2011.5995545 10.1007/978-3-642-33709-3_1 10.1109/TPAMI.2016.2567393 10.1016/j.patcog.2016.01.015 10.1007/s10115-006-0013-y 10.1016/j.neucom.2015.10.066 10.1109/ICCV.2015.352 10.1109/TPAMI.2009.144 10.1109/TCYB.2017.2647965 10.1109/NNSP.1999.788121 10.1007/978-3-030-01240-3_23 10.1007/978-3-642-33783-3_45 10.5244/C.28.6 10.1109/CVPR.2018.00399 10.1007/978-3-540-88682-2_16 10.1109/CVPR.2008.4587586 10.1023/B:VISI.0000029664.99615.94 10.1109/TPAMI.2009.167 10.21236/ADA507101 10.1109/CVPR.2015.7298968 10.1109/TPAMI.2016.2535231 10.1109/CVPR.2014.309 10.1007/978-3-319-46493-0_42 10.1007/978-3-642-04174-7_2 10.1109/TIP.2016.2514503 10.1109/CVPR.2016.311 10.1109/CVPR.2015.7298711 10.1109/ICCV.2015.75 10.1023/A:1018677409366 10.1111/j.1469-1809.1936.tb02137.x 10.1109/ICCV.2013.271 10.1109/TIP.2017.2688133 10.1109/TCYB.2016.2631528 10.1109/CVPR.2015.7298642 10.1109/TPAMI.2015.2435740 10.1109/TNN.2009.2015760 10.1007/978-3-642-15561-1_33 10.5244/C.31.29 10.1109/CVPR.2006.91 10.1109/ICCV.2011.6126383 10.1109/ICPR.2014.29 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2019.2921878 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 5728 |
| ExternalDocumentID | 31217109 10_1109_TIP_2019_2921878 8736992 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: State Key Laboratory of Novel Software Technology grantid: KFKT2017B09 funderid: 10.13039/501100011246 – fundername: National Natural Science Foundation of China grantid: 61703139 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION NPM RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c347t-fbd66092d667f29e8abd562e083cc9f8dafd558898abfc507c47fd10356ba2f83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484209100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 14:11:46 EDT 2025 Mon Jun 30 10:15:57 EDT 2025 Wed Feb 19 02:33:51 EST 2025 Sat Nov 29 03:21:10 EST 2025 Tue Nov 18 22:41:40 EST 2025 Wed Aug 27 08:34:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-fbd66092d667f29e8abd562e083cc9f8dafd558898abfc507c47fd10356ba2f83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1632-5179 |
| PMID | 31217109 |
| PQID | 2283318985 |
| PQPubID | 85429 |
| PageCount | 13 |
| ParticipantIDs | pubmed_primary_31217109 proquest_journals_2283318985 crossref_citationtrail_10_1109_TIP_2019_2921878 ieee_primary_8736992 proquest_miscellaneous_2244131009 crossref_primary_10_1109_TIP_2019_2921878 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 yan (ref39) 2012; 13 ref52 ref55 ref10 ref17 ref19 ye (ref22) 2008; 9 ref51 ref50 fukunaga (ref53) 1990 bishop (ref54) 2006 ref46 ref45 ref48 ref47 ref42 ref44 ref43 zhang (ref6) 2016 chen (ref24) 2012 ref49 jia (ref41) 2009; 20 ref9 ref3 zhu (ref4) 2014 ref5 ref40 viola (ref8) 2005 ref35 liu (ref62) 2012 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref38 sugiyama (ref36) 2007; 8 simonyan (ref65) 2014; abs 1409 1556 doersch (ref7) 2013 ref67 ref26 ref25 ref64 ref20 ref63 ref66 ref21 andrews (ref16) 2002 ref28 ref27 ref29 ren (ref11) 2015 yakhnenko (ref18) 2011 ref60 zhou (ref23) 2012 ref61 |
| References_xml | – ident: ref64 doi: 10.1007/978-3-319-10599-4_28 – ident: ref57 doi: 10.1109/TPAMI.2010.161 – start-page: 1 year: 2011 ident: ref18 article-title: Region-based image classification with a latent SVM model – start-page: 91 year: 2015 ident: ref11 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref38 doi: 10.1109/TNN.2011.2156808 – ident: ref15 doi: 10.1109/ICCV.2017.204 – ident: ref3 doi: 10.1109/CVPR.2013.321 – ident: ref42 doi: 10.1016/j.patcog.2014.02.002 – ident: ref13 doi: 10.1109/CVPR.2016.319 – ident: ref14 doi: 10.1109/CVPR.2016.326 – ident: ref21 doi: 10.1109/ICCV.2007.4408856 – ident: ref37 doi: 10.1007/s10994-009-5125-7 – ident: ref2 doi: 10.1109/CVPR.2011.5995545 – ident: ref60 doi: 10.1007/978-3-642-33709-3_1 – ident: ref47 doi: 10.1109/TPAMI.2016.2567393 – ident: ref50 doi: 10.1016/j.patcog.2016.01.015 – ident: ref20 doi: 10.1007/s10115-006-0013-y – ident: ref56 doi: 10.1016/j.neucom.2015.10.066 – ident: ref46 doi: 10.1109/ICCV.2015.352 – ident: ref67 doi: 10.1109/TPAMI.2009.144 – ident: ref25 doi: 10.1109/TCYB.2017.2647965 – start-page: 71 year: 2012 ident: ref23 article-title: Arbitrary-shape object localization using adaptive image grids publication-title: Proc Asian Conf Comput Vis (ACCV) – ident: ref35 doi: 10.1109/NNSP.1999.788121 – ident: ref52 doi: 10.1007/978-3-030-01240-3_23 – ident: ref61 doi: 10.1007/978-3-642-33783-3_45 – ident: ref44 doi: 10.5244/C.28.6 – ident: ref51 doi: 10.1109/CVPR.2018.00399 – volume: 8 start-page: 985 year: 2007 ident: ref36 article-title: Covariate shift adaptation by importance weighted cross validation publication-title: J Mach Learn Res – ident: ref30 doi: 10.1007/978-3-540-88682-2_16 – ident: ref66 doi: 10.1109/CVPR.2008.4587586 – ident: ref43 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 13 start-page: 607 year: 2012 ident: ref39 article-title: Non-sparse multiple kernel Fisher discriminant analysis publication-title: J Mach Learn Res – start-page: 577 year: 2002 ident: ref16 article-title: Support vector machines for multiple-instance learning publication-title: Proc 15th Int Conf Neural Inf Proc – ident: ref17 doi: 10.1109/TPAMI.2009.167 – ident: ref9 doi: 10.21236/ADA507101 – start-page: 1125 year: 2014 ident: ref4 article-title: Learning from weakly supervised data by the expectation loss SVM (e-SVM) algorithm publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1109/CVPR.2015.7298968 – ident: ref10 doi: 10.1109/TPAMI.2016.2535231 – ident: ref29 doi: 10.1109/CVPR.2014.309 – ident: ref49 doi: 10.1007/978-3-319-46493-0_42 – start-page: 253 year: 2012 ident: ref62 article-title: Key instance detection in multi-instance learning publication-title: Proc Asian Conf Mach Learn – ident: ref1 doi: 10.1007/978-3-642-04174-7_2 – year: 1990 ident: ref53 publication-title: Introduction to statistical pattern recognition – ident: ref5 doi: 10.1109/TIP.2016.2514503 – ident: ref12 doi: 10.1109/CVPR.2016.311 – start-page: 1 year: 2005 ident: ref8 article-title: Multiple instance boosting for object detection publication-title: Proc Adv Neural Inf Process Syst – start-page: 1274 year: 2012 ident: ref24 article-title: Efficient activity detection with max-subgraph search publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref63 doi: 10.1109/CVPR.2015.7298711 – volume: 9 start-page: 719 year: 2008 ident: ref22 article-title: Multi-class discriminant kernel learning via convex programming publication-title: J Mach Learn Res – ident: ref32 doi: 10.1109/ICCV.2015.75 – ident: ref19 doi: 10.1023/A:1018677409366 – start-page: 494 year: 2013 ident: ref7 article-title: Mid-level visual element discovery as discriminative mode seeking publication-title: Proc 27th Annu Conf Adv Neural Inf Process Syst – ident: ref34 doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: ref27 doi: 10.1109/ICCV.2013.271 – ident: ref48 doi: 10.1109/TIP.2017.2688133 – ident: ref28 doi: 10.1109/TCYB.2016.2631528 – ident: ref45 doi: 10.1109/CVPR.2015.7298642 – ident: ref40 doi: 10.1109/TPAMI.2015.2435740 – volume: 20 start-page: 729 year: 2009 ident: ref41 article-title: Trace ratio problem revisited publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2015760 – ident: ref58 doi: 10.1007/978-3-642-15561-1_33 – year: 2006 ident: ref54 publication-title: Pattern Recognition and Machine Learning – volume: abs 1409 1556 year: 2014 ident: ref65 article-title: Very deep convolutional networks for large-scale image recognition publication-title: CoRR – start-page: 3538 year: 2016 ident: ref6 article-title: Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning publication-title: Proc Intern Joint Conf Artificial Intel (IJCAI) – ident: ref33 doi: 10.5244/C.31.29 – ident: ref26 doi: 10.1109/CVPR.2006.91 – ident: ref59 doi: 10.1109/ICCV.2011.6126383 – ident: ref55 doi: 10.1109/ICPR.2014.29 |
| SSID | ssj0014516 |
| Score | 2.3306332 |
| Snippet | In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for... In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce selection parameter for... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5716 |
| SubjectTerms | Algorithms Annotations Clutter Discriminant analysis Eigenvalues Image segmentation linear discriminant analysis Linear programming Machine learning Multiple-instance learning Optimization Parameters Proposals Quadratic programming region selection Regularization Semantics Support vector machines Training Transformations Visualization weakly supervised segment annotation |
| Title | Multiple-Instance Discriminant Analysis for Weakly Supervised Segment Annotation |
| URI | https://ieeexplore.ieee.org/document/8736992 https://www.ncbi.nlm.nih.gov/pubmed/31217109 https://www.proquest.com/docview/2283318985 https://www.proquest.com/docview/2244131009 |
| Volume | 28 |
| WOSCitedRecordID | wos000484209100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEfnN_WLyr4IljXpWuTPIofOFAZOHFvpU0TEaUTtwn-996lWdmDCr6UQq_p0Uvufsl9ARwbrlWHmTDQMgzp6EYHecZkIAxjebdIFKsShW_5_b0YDmW_Aad1LozW2gaf6TO6tb78YqSmdFTWFjxKpESFu8B5UuVq1R4DajhrPZsxDzjC_plLMpTtQa9PMVzyjEk0aNRQbc4E2Z4qv8NLa2auW_9jcBVWHJz0zyv5r0FDl-vQctDSdwt3vA7Lc3UHN6B_58IIg55Fh0r7ly-kP6q4GH9WqcRHROs_6ez17ct_mL6TWhnTsPqZ-ECyclR58jfh8fpqcHETuNYKgYq6fBKYvEiSUDK8csOkFlleIBLSCMiUkkYUmSniWAiJD4xCzKi63BSdMIoTFKUR0RY0y1Gpd8DHfS2ioCJCoJXZ4vNJpkIEKWj3mDIm96A9-9upcnXHqf3FW2r3H6FMUT4pySd18vHgpH7jvaq58QftBomhpnMS8GB_JtDULcpxSpV-UIVJEXtwVD_G5UQ-kqzUoynRID4kp4f0YLuaCPXYUQf3b8jE7s_f3IMl4qxKVNyH5uRjqg9gUX1OXsYfhzhnh-LQztlvGabnoA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEB5EhaMP3i_1WuG8CNbNprfkUbzg4rosnD3oW2nTRETpirsr-O-dSbPFBxV8KYVO06GTzHzJ3AD-mlSrNjcs0JIxOrrRQZFzGQjDeRGVieJ1onA37fXE_b3sz8BJkwujtbbBZ_qUbq0vvxyqCR2VtUQaJlKiwp2Lo4izOlur8RlQy1nr24zTIEXgP3VKMtkadPoUxSVPuUSTRi3VPhkh21Xle4BpDc3V8u9YXIElByj9s3oGrMKMrtZg2YFL3y3d0Rosfqo8uA79WxdIGHQsPlTav3gkDVJHxvjTWiU-Ylr_TudPz-_-v8kLKZYRDasfiA8kq4a1L38D_l9dDs6vA9dcIVBhlI4DU5RJwiTHa2q41CIvSsRCGiGZUtKIMjdlHAsh8YFRiBpVlJqyzcI4QWEaEW7CbDWs9Db4uLNFHFSGCLVyW34-yRVDmIKWjytjCg9a07-dKVd5nBpgPGd2B8JkhvLJSD6Zk48Hx80bL3XVjR9o10kMDZ2TgAd7U4FmblmOMqr1g0pMitiDo-YxLijykuSVHk6IBhEiuT2kB1v1RGjGDtu4g0Mmdr7-5iH8uR7cdrNup3ezCwvEZZ22uAez49eJ3od59TZ-HL0e2Jn7AdRv6f8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple-instance+Discriminant+Analysis+for+Weakly+Supervised+Segment+Annotation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Liantao&rft.au=Li%2C+Qingwu&rft.au=Zhou%2C+Yan&rft.date=2019-11-01&rft.eissn=1941-0042&rft_id=info:doi/10.1109%2FTIP.2019.2921878&rft_id=info%3Apmid%2F31217109&rft.externalDocID=31217109 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |